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a b s t r a c t

We introduce the distinguishing index D′(G) of a graph G as the least
number d such that G has an edge-colouring with d colours that
is only preserved by the trivial automorphism. This is an analog to
the notion of the distinguishing numberD(G) of a graph G, which is
defined for colourings of vertices.We obtain a general upper bound
D′(G) ≤ ∆(G) unless G is a small cycle C3, C4 or C5.

We also introduce the distinguishing chromatic index χ ′

D(G)
defined for proper edge-colourings of a graph G. A correlation with
distinguishing vertices by colour walks introduced in Kalinowski
et al. (2004) is shown. We prove that χ ′

D(G) ≤ ∆(G) + 1 except for
four small graphs C4, K4, C6 and K3,3. It follows that each connected
Class 2 graph G admits a minimal proper edge-colouring, i.e., with
χ ′(G) colours, preserved only by the trivial automorphism.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and definitions

We use standard terminology and notation of graph theory. In particular, the minimum and the
maximum degree of a graph G will be denoted by δ(G) and ∆(G), respectively. We shall use for
simplicity δ and ∆ when no confusion is possible.

Albertson and Collins [1] introduced the distinguishing number D(G) of a graph G as the least
number d such that G admits a vertex-colouring with d colours that is only preserved by the trivial
automorphism. Ten years later Collins and Trenk [6] defined the distinguishing chromatic number
χD(G) of a graph G for proper colourings, so χD(G) is the least number d such that G has a proper
colouringwith d colours that is only preserved by the trivial automorphism. This concept has spawned
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numerous papers on finite graphs (e.g., [2–5,7,10]), as well as on infinite graphs (e.g., [12,15]). For
endomorphisms instead of automorphisms this concept was investigated in [11].

Note that D(G) = 1 for all asymmetric graphs. This means that almost all finite graphs have dis-
tinguishing number one, because almost all graphs are asymmetric (see Erdős and Rényi [9]). Clearly,
D(G) ≥ 2 for all other graphs. Again, it is conjectured that almost all of them have distinguishing
number two. This is supported by some observations of Conder and Tucker [8].

On the other hand, for a complete graph Kn, and a complete bipartite graph Kn,n wehaveD(Kn) = n,
andD(Kn,n) = n+1. Furthermore, the distinguishing number of cycles C3, C4, C5 is three, while cycles
Cn of length n ≥ 6 have distinguishing number two.

This compares with a more general result of Collins and Trenk [6], and of Klavžar, Wong and
Zhu [14].

Theorem 1 ([6,14]). If G is a connected graphwithmaximumdegree∆, then D(G) ≤ ∆+1. Furthermore,
equality holds if and only if G is a Kn, Kn,n or C5.

In the same paper, Collins and Trenk obtained a general result for the distinguishing chromatic
number.

Theorem 2 ([6]). If G is a connected graph with maximum degree ∆, then χD(G) ≤ 2∆. Furthermore,
equality is achieved if and only if G is a Kn,n or C6.

The aim of this paper is a presentation of fundamental results for colourings of edges instead
of vertices. We obtain general bounds, and an interesting relationship between the distinguishing
chromatic index and the vertex distinguishing index by colour walks (introduced in [13]).

Definition 3. The distinguishing index D′(G) of a graph G is the least number d such that G has an
edge-colouring with d colours that is preserved only by the identity automorphism of G.

Definition 4. The distinguishing chromatic index χ ′

D(G) of a graph G is the least number d such that
G has a proper edge-colouring with d colours that is preserved only by the identity automorphism
of G.

One may use the term labelling instead of colouring. Obviously, none of these two invariants is
defined for graphs having K2 as a connected component.

Given an edge-colouring c , the palette at a vertex x is the set of colours of the edges incident to x.
Clearly, if different vertices have different palettes, then the only automorphism preserving c is the
identity.

Sometimes D′(G) = D(G). Clearly it holds for all graphs with a trivial automorphism group, and
also for paths and cycles.

Proposition 5. D′(Pn) = D′(Cp) = 2, for any n ≥ 3 and p ≥ 6, while D′(C3) = D′(C4) = D′(C5) = 3.

Proof. The distinguishing number for paths and cycles equals D(Pn) = 2 for n ≥ 2,D(Cp) = 2 for
p ≥ 6 and D(C3) = D(C4) = D(C5) = 3. Our observation follows immediately from the fact that the
L(Pn) ∼= Pn−1 and L(Cp) ∼= Cp, where L denotes the line graph. �

It has to be noted that, in general, the distinguishing index of a graph G is not the same as the
distinguishing number of its line graph L(G). A simple example is K4 − e, a complete graph of order
four with one edge deleted. It can easily be verified that D′(K4 − e) = 2 while D(L(K4 − e)) = 3.

However, quite frequently D′(G) < D(G). Albertson and Collins [1] proved that D(L(Kn)) = 2 if
n ≥ 6 by simply showing that there exists an edge-colouring of Kn with two colours that is preserved
only by the identity. To do this, they used an argument suggested by Lovász, that Kn contains an
asymmetric spanning graph if and only if n ≥ 6. Thus, without introducing a concept of distinguishing
graphs by edge-colourings, they actually proved the following.

Proposition 6 ([1]). D′(Kn) = 3 for n = 3, 4, 5, and D′(Kn) = 2 for any n ≥ 6.
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Fig. 1. A bisymmetric tree T ′′

2,4 .

The argument of Lovász can be also used for balanced complete bipartite graphs Kp,p since for each
n ≥ 7 there exists an asymmetric tree of order n. It easily follows that Kp,p contains an asymmetric
spanning tree if and only if p ≥ 4.

Proposition 7. D′(Kp,p) = 3 for p = 2, 3, and D′(Kp,p) = 2 for p ≥ 4. �

In the next section we first present a special class of trees with the distinguishing index greater
by one than the distinguishing number, and we show that D′(T ) = D(T ) for all remaining trees (see
Theorem 9). We show finally that D′(G) ≤ ∆(G) except for three small cycles (Theorem 13).

In the last section we investigate proper colourings of edges of G. By Vizing’s Theorem every graph
has a colouring with∆(G) or∆(G)+1 colours. We show that∆(G)+1 colours suffice to find a proper
colouring preserved only by the trivial automorphismunlessG is one of four exceptional small graphs:
C4, K4, C6 or K3,3.

2. Distinguishing index

2.1. Trees

Recall that every finite tree T has either a central vertex or a central edge, which is fixed by every
automorphism of T . A symmetric tree, denoted by Th,d, is a tree with a central vertex v0, all leaves at
the same distance h from v0 and all the vertices which are not leaves with degree d. A bisymmetric
tree, denoted by T ′′

h,d, is a tree with a central edge e0, all leaves at the same distance h from e0 and all
the vertices which are not leaves with degree d. An almost symmetric tree, denoted by T ′

h,d, is a tree
with a central vertex v0 of degree d− 1 such that all other vertices are either leaves or have degree d,
and all leaves are at the same distance h from v0. Thus, the bisymmetric tree T ′′

h,d is a tree obtained by
joining central vertices of two almost symmetric trees T ′

h,d by an edge. Observe that a path is either a
symmetric or a bisymmetric tree depending of the parity of its length (see Fig. 1).

Collins and Trenk in [6], obtained a general bound for the distinguishing number of trees. We cite
it improving a small mistake in the original paper.

Theorem 8 ([6]). If T is a tree of order n ≥ 3, then D(T ) ≤ ∆(T ). Furthermore, equality is achieved if
and only if T is a symmetric tree or a path of odd length.

For k ≥ 0, a k-th level of a tree is the set of all vertices of distance k from either its central vertex or
its central edge, respectively. The height of a tree is the largest h for which the k-th level is nonempty.
For h ≥ 1 and d ≥ 2, we define a class B(h, d) of trees constructed in the following way. Take an
almost symmetric tree T ′

h,d, choose l its levels h1, . . . , hl with 0 ≤ hi ≤ h − 2, i = 1, . . . , l, and l
almost symmetric trees T ′

k1,d
, . . . , T ′

kl,d
such that 1 ≤ ki ≤ h − hi − 1 for every i, and construct a tree

T ′

h,d ([T ′

k1,d
]h1 , . . . , [T

′

kl,d
]hl) by attaching each tree T ′

ki,d
, i = 1 . . . , l, to every vertex of the hi-th level

of T ′

h,d (here attaching means identifying the root of T ′

ki,d
with the vertex of attachment in T ′

h,d). The
levels h1, . . . , hl need not be distinct but we assume that T ′

ki,d
is not isomorphic to T ′

kj,d
if hi ≠ hj. Next,

we can again choose any attached tree, say T ′

ki,d
, then l1 levels of T ′

ki,d
and l1 almost symmetric trees

satisfying analogous height constraints, and attach each of them to all vertices of the corresponding
levels of each copy of T ′

ki,d
attached in the first stage. Then we can repeat this operation for any tree
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Fig. 2. An example of a tree T from the class B(4, 3) obtained by joining two copies of T ′

4,3([T
′

1,3]0, [T
′

2,3]1) by an edge. The
trees T ′

1,3 and T ′

2,3 attached to T ′

4,3 in the process of constructing T are drawn with dashed edges.

attached in the previous stages. This way, we obtain a tree T0. Finally, we take two copies of T0 and
join central vertices of T0 by an edge e0 to obtain a tree T that belongs to B(h, d) (see Fig. 2).

Thus, every tree that belongs to B(h, d) has a central edge e0. Clearly, a bisymmetric tree T ′′

h,d
belongs to B(h, d) since we can choose l = 0 in the beginning of the above procedure.

Given a vertex x of a tree T ∈ B(h, d), let T 1, . . . , T s be the connected components of T − x not
containing the central edge of T . Let xi be the vertex of T i adjacent to x in T , i = 1, . . . , s. The tree
Txi = T i

+ xix is called a branch rooted at x in T . It is not difficult to see that for every tree T that
belongs to B(h, d) the following crucial property holds.

For every vertex x ∈ V (T ), if Tx is a branch of T rooted at x, then there are exactly d − 1 branches
rooted at x (including Tx) isomorphic to Tx. Moreover, every tree of height h with this property belongs to
B(h, d).

It follows that D(T ) = d − 1 for every tree T ∈ B(h, d) with d ≥ 3. Indeed, we first colour the
end vertices of the central edge e0 with two distinct colours. Then, due to the above property, we need
d − 1 colours to colour children in each of d − 1 isomorphic branches rooted at an already coloured
vertex. If T ∈ B(h, 2), then D(T ) = D′(T ) = 2 because we can colour one end vertex of a central edge
e0, one edge adjacent to e0 with 2 and everything else by 1 to obtain colourings of vertices and edges,
respectively, that are not preserved by any nontrivial automorphism of T .

Note that the distinguishing index of any tree T ∈ B(h, d) equals d. Indeed, for every vertex x
of T , we have to colour all the edges joining x to its children in each branch rooted at x with d − 1
distinct colours. However, the automorphism that switches the two components of T − e0 preserves
this colouring. Hence, we need an additional colour for one edge, say the one adjacent to the central
edge e0.

We now show that the distinguishing index of a tree T equals its distinguishing number unless T
belongs to the class B(h, d) with d ≥ 3.

Theorem 9. Let T be a tree of order n ≥ 3. Then D′(T ) = D(T ) + 1 if T belongs to B(h, d) with h ≥ 1
and d ≥ 3, and D′(T ) = D(T ) for all other trees.

Proof. Let ĉ : V (T ) → {1, 2, . . . ,D(T )} be a vertex-colouring preserved only by the identity.
Case 1. A tree T has a central vertex v0. If xy is an edge of T such that d(x, v0) = d(y, v0) + 1,
then we colour it as c(xy) := ĉ(x). Suppose ϕ is a nontrivial automorphism of T preserving the
colouring c . As ϕ fixes the central vertex v0, it also fixes the distance from any vertex x to v0. Hence,
ĉ(ϕ(x)) = c(ϕ(x)ϕ(y)) = c(xy) = ĉ(x), that is, ϕ preserves the vertex colouring ĉ , a contradiction.
Case 2. A tree T has a central edge e0 = a1a2. Let Ti be the connected components of T − e0 containing
ai, i = 1, 2.

If xy is an edge of T−e0 such that the distance from x to the central edge e0 is greater by one than the
distance from y to e0, then we colour xy with c(xy) = ĉ(x). Finally, we colour e0 arbitrarily. Suppose
that ϕ is a nontrivial automorphism of T preserving the colouring c. So there exist two edges x1y1 and
x2y2 with the same colour such that ϕ(x1)ϕ(y1) = x2y2. As ϕ fixes the edge e0, the distances from e0
to x1 and x2 are equal, and ĉ(x1) = ĉ(x2). If both edges x1y1, x2y2 belong to the same component of
T − e0, then, by the definition of c , the automorphism ϕ preserves ĉ , a contradiction.
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Otherwise, ϕ switches the end vertices of e0 and generates an isomorphism between the subtrees
T1 and T2. We distinguish three subcases. If T ∈ B(h, 2), then we have already shown that D′(T ) =

D(T ) = 2. If T belongs to B(h, d) with d ≥ 3, then D′(T ) = D(T ) + 1, as we have proved earlier.
Otherwise, there exists a vertex xwith less than D(T ) isomorphic branches rooted at x. Hence, we can
re-colour one of the edges incident to x in such a branch with one of D(T ) colours.

Thus we have shown that D′(T ) ≤ D(T ) + 1 for every tree T , and the equality holds if and only if
T belongs to B(h, d) with d ≥ 3.

To end the proof, it suffices to show that D(T ) ≤ D′(T ). Let c be an edge-colouring of T with D′(T )
colours that is preserved only by the identity. By the inverse operation to the one used in the first part
of the proof, we get a vertex-colouring ĉ . That is, if T has a central edge e0 we put c(e0) on both its
end vertices. In all other cases, we define ĉ(x) = c(xy) where xy lies on the path between x and either
a central vertex or a central edge. Clearly, ĉ is not preserved by any nontrivial automorphism of T ,
therefore D(T ) ≤ D′(T ). �

Theorems 8 and 9 immediately imply the following result since the only tree in B(h, d) with
maximum degree d is a bisymmetric tree.

Theorem 10. If T is a tree of order n ≥ 3, then D′(T ) ≤ ∆(T ). Moreover, equality is achieved if and only
if T is either a symmetric or a bisymmetric tree. �

2.2. Connected graphs

Theorem 11. If G is a connected graph of order n ≥ 3, then D′(G) ≤ D(G) + 1.

Proof. If G is a tree then the claim is true by Theorem 9. Suppose that G contains a cycle. If G is just a
cycle, then the claim follows from Proposition 5.

Let ĉ : V → {1, 2, . . . ,D(G)} be a colouring preserved only by the identity. Obviously, if D(G) = 1,
then G is asymmetric and D′(G) = 1. So, let ĉ using at least two colours.

We will define an edge-colouring c with D(G) + 1 colours. Denote by 0 an additional colour not
used by ĉ. Let C be a shortest cycle of G. We first colour the edges of C with three colours 0, 1, 2 in
such a way that two adjacent edges uv and vw have colours 1 and 2, and all remaining edges of C are
colouredwith 0. Thus C has no nontrivial automorphism. Then, wewill not usemore the colour 0, and
we colour every edge xy with c(xy) = ĉ(x) if the distance from x to the cycle C is one more than the
distance from y to C . Finally, we colour every edge xy such that x and y are at the same distance from
the cycle C arbitrarily, say with colour 1.

Suppose that ϕ is a nontrivial automorphism of G preserving the colouring c . First observe that
the cycle C is fixed by ϕ, because 0 appears only on C , and if the vertices u, w have a common
neighbour z outside C , then c(zu) = c(zw). Then ϕ preserves the distances from vertices of G to
C . Therefore there exist edges xy such that the distance from x to C is greater by one than that of y,
and c(ϕ(x)ϕ(y)) = c(xy). For each such edge, we have ĉ(ϕ(x)) = c(ϕ(x)ϕ(y)) = c(xy) = ĉ(x). As ϕ
fixes C , it follows that the vertex-colouring ĉ is preserved by ϕ, a contradiction. �

Theorem 11 is interesting in view of the conjecture, mentioned in Section 1, that almost every
non-asymmetric graph has the distinguishing number two.

Theorems 1 and 11 immediately imply the following.

Corollary 12. If G is a connected graph of order n ≥ 3, then

D′(G) ≤ ∆(G) + 1. �

We can strengthen the above corollary as follows.

Theorem 13. If G is a connected graph of order n ≥ 3, then

D′(G) ≤ ∆(G)

except for three small cycles C3, C4 or C5.
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Proof. Denote ∆ = ∆(G) and δ = δ(G). Due to Proposition 5, we may assume that ∆ ≥ 3. Denote by
Nr(ξ) the set of all vertices of distance r from ξ , where ξ is either a vertex or an edge.

Consider first an irregular graph G = (V , E). Let xy be an edge of G such that deg(x) = δ. We colour
xywith 1, then all other edges incident to xwith a colour from {2, . . . , δ}, and all other edges incident
with y from {∆ − deg(y) + 2, . . . , ∆}. As δ ≠ ∆, the sets of colours of edges incident to x or to y are
different. We will not use colour 1 any more, so vertices x and y are fixed by any automorphism of G.
Moreover, all vertices from N1(xy) are fixed by any automorphism. Now, for r ≥ 1 let u be a vertex
from Nr(xy). We colour all edges uv, for v ∈ Nr+1(xy), with colours from {2, . . . , ∆}. Therefore, all
vertices of G are fixed by any automorphism of G. Observe that colours of edges between two vertices
of the same Ni(x) could be arbitrary.

Now, let G be a regular graph. Due to Proposition 5, we may assume ∆ ≥ 3. Fix any vertex x of G
and colour all edges incident to it with 1. In our edge-colouring c of the graph G, the vertex x will be
the unique vertex with the monochromatic palette {1}, hence it will be fixed by every automorphism
ϕ preserving c . The neighbourhood N1(x) can be partitioned into subsetsMk, for k = 0, 1, . . . , ∆ − 1,
defined as

Mk = {v ∈ N1(x) : |N1(v) ∩ N2(x)| = k}.

Denote Mk = {v1, . . . , vlk}, k = 0, 1, . . . , ∆ − 1. Thus, l0 + l1 + · · · + l∆−1 = ∆. If l0 = ∆, then G is
a complete graph K∆+1, and we done by Proposition 6. Otherwise, if l0 ≥ 1, we can colour the edges
incident to the vertices of M0 with two colours 2 and 3 such that the palette of vi contains exactly
l0 + 1 − i edges coloured with 2. Thus, each vertex ofM0 is fixed.

Let k ≥ 1. For every i = 1, . . . , lk, we colour the edges viu, where u ∈ N2(x), with a distinct colour
from {1, . . . , k + 1} in such a way that the colour i is missing in the palette of vi. Then we colour
all the remaining edges incident to vi with 2. Clearly, each vertex of N1(x) ∪ N2(x) is fixed by every
automorphism preserving the colouring c.

For vj ∈ Nj(x), j ≥ 2, we colour all edges vju, u ∈ Nj+1(x) with distinct colours from {2, . . . , ∆}

and the remaining edges incident to vj arbitrarily.
Then we recursively colour the edges incident to consecutive spheres Nj(x) in such a way that

distinct vertices of Nj(x) have distinct palettes. It is easily seen that it is always possible. Hence, all
vertices of G are fixed by any automorphism ϕ preserving our colouring c. �

As we alreadymentioned, D′(G) = D(G) = 1 for every asymmetric graph G. For other graphs there
is a trivial lower bound 2 ≤ D′(G) which is sharp due to Propositions 6 and 7.

3. Distinguishing chromatic index

3.1. General bound

Let c be a proper edge-colouring of a connected graph G of order n ≥ 3. For every vertex x, each
walk starting at x defines a sequence of colours (αi) called a colour walk. Denote by Wc(x) the set of
all colour walks starting at x. A new invariant µ(G), called the distinguishing index by colour walks of a
graph G, was introduced in [13] as the minimum number of colours required in an edge-colouring of
G such that Wc(x) ≠ Wc(y) for every two distinct vertices x, y.

Theorem 14 ([13]). Let G be a connected graph of order n ≥ 3. Then

µ(G) ≤ ∆(G) + 1

except for four graphs of small order C4, K4, C6, K3,3.

The next lemma exhibits a relationship between µ(G) and χ ′

D(G).

Lemma 15. Every connected graph G of order n ≥ 3 fulfils the inequality

χ ′

D(G) ≤ µ(G).
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Fig. 3. A graph G such that χ ′

D(G) < µ(G).

Proof. Let c be an edge-colouring distinguishing vertices by colourwalks, i.e.,Wc(x) ≠ Wc(y) if x ≠ y.
Suppose ϕ is a nontrivial automorphism of G preserving c. Then there exists a vertex x such that
x ≠ ϕ(x). An automorphism ϕ preserves the colouring, so every sequence (αi) ∈ Wc(x) belongs
also toWc(ϕ(x)). Every sequence (βi) starting at ϕ(x), starts also at ϕ−1(ϕ(x)) = x. Hence, x and ϕ(x)
are not distinguished by colour walks in this colouring. �

In consequence, we obtain a sharp upper bound for the distinguishing chromatic index of
connected graphs.

Theorem 16. If G is a connected graph of order n ≥ 3, then

χ ′

D(G) ≤ ∆(G) + 1

except for four graphs of small order C4, K4, C6, K3,3. �

This theorem immediately implies the following interesting result. An edge-colouring of G with
χ ′(G) colours is calledminimal.

Theorem 17. Every connected Class 2 graph admits a minimal edge-colouring that is not preserved by
any nontrivial automorphism. �

3.2. Some class 1 graphs

As it follows from the previous subsection, χ ′

D(G) = µ(G) = χ ′(G) for every connected Class 2
graph. For Class 1 graphs, one of these two equalities may not hold.

We shall first show that there are graphs for which χ ′

D < µ. Every regular graph G of Class 1
satisfies µ(G) = ∆(G) + 1. Indeed, for every minimal edge-colouring of G, the palette of each vertex
is the same. Hence, for any vertex x, the setWc(x) is the same, as it comprises all sequences of colours
of c. By Theorem 14, one additional colour is enough to distinguish all vertices by colour walks.

Consider the cubic graph G drawn in Fig. 3. The edges of a cycle C8 are properly coloured with
two colours, and the remaining edges, creating a perfect matching, have a third colour. Let ϕ be
an automorphism preserving this colouring. The unique triangle of G has to be mapped onto itself.
Regarding the colours of its edges, it has to be fixed by ϕ. Hence, the cycle C8 also is fixed. Thus
χ ′

D(G) = 3 while µ(G) = 4.
This example can easily be generalized to higher orders and degrees by taking a longer even cycle

with a perfect matching creating exactly one triangle, and then introducing more arbitrary perfect
matchings.

For Class 1 graphs, we sometimes need one colour more than χ ′ for χ ′

D, and in four cases, two
additional colours. Also for paths of odd length we have χ ′

D(P2k) = χ ′(P2k) + 1 colours. If we have a
proper colouring of P2k, then it is enough to recolour a hanging edge with a new additional colour. For
paths of even length, any proper colouring is preserved only by the identity. This observation can be
extended to trees in general.
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Proposition 18. If T is a tree of order n ≥ 3, then

χ ′

D(T ) = ∆(T ) + 1

if and only if T is a bisymmetric tree.

Proof. Consider any proper edge-colouring of T with ∆(T ) colours.
Case 1. T has a central vertex v0 fixed by every automorphism. A colouring is proper, so every edge
incident to v0 has a distinct colour. Hence, all vertices adjacent to v0 are fixed by every automorphism
of T . By induction on the distance from v0, all vertices of T are fixed.
Case 2. T has a central edge e0 fixed by every automorphism. Let T1 and T2 be subtrees created by
deleting the edge e0. If these subtrees are not isomorphic, then the end vertices of e0 are fixed by every
automorphism, and we are done by similar arguments as in Case 1. Let then T1 and T2 be isomorphic.
Suppose there exist vertices x1 ∈ V (T1) and x2 ∈ V (T2), that are not leaves, with the degree in
T smaller than ∆(T ). If the sets of colours of edges incident to x1 and x2 are different, the unique
automorphism preserving this colouring of T is the identity. If not, let 0 be a colour which is not in a
set of colours of edges incident to x2. We re-colour one edge incident to x2 with 0, and, if necessary,
we re-colour a Kempe path in T2 induced by 0 and the colour of the edge incident with x2 before
re-colouring.

If T1 and T2 are isomorphic and all vertices in T that are not leaves have degree ∆(T ), then T is a
bisymmetric tree.Weneed an additional colour for one edge adjacent to the central edge to distinguish
its end vertices, which are then fixed by every automorphism, and we can use the same arguments as
in Case 1 to finish the proof. �
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