
Discrete Applied Mathematics 232 (2017) 221–225

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

A note on breaking small automorphisms in graphs✩

Rafał Kalinowski *, Monika Pilśniak, Mariusz Woźniak
AGH University, Department of Discrete Mathematics, al. Mickiewicza 30, 30-059 Krakow, Poland

a r t i c l e i n f o

Article history:
Received 22 February 2016
Received in revised form 19 June 2017
Accepted 26 July 2017
Available online 1 September 2017

Keywords:
Symmetry breaking in graphs
1-2-3 Conjecture
1-2 Conjecture
Distinguishing index
Total distinguishing index

a b s t r a c t

This paper brings together two concepts in the theory of graph colourings: edge or total
colourings distinguishing adjacent vertices and those breaking symmetries of a graph.

We introduce a class of automorphisms such that edge colourings breaking them are
connected to edge colouring distinguishing neighbours by multisets or sums. We call an
automorphism of a graph G small if there exists a vertex of G that is mapped into its
neighbour. The small distinguishing index of G, denoted D′

s(G), is the least number of
colours in an edge colouring of G such that there does not exist a small automorphism
of G preserving this colouring. We prove that D′

s(G) ≤ 3 for every graph G without K2 as
a component, thus supporting, in a sense, the 1-2-3 Conjecture of Karoński, Łuczak and
Thomason.

We also consider an analogous problem for total colourings in connection with the 1-2
Conjecture of Przybyło and Woźniak.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

We use a standard graph theory terminology and notation [3]. In particular, G[S] stands for the subgraph of G induced
by a set S ⊆ V (G), and Aut(G) denotes the automorphism group of a graph G. By χ ′(G) and χ ′′(G) we denote the chromatic
index and the total chromatic index of a graph G, respectively.

We say that a (vertex, edge or total) colouring, not necessarily proper, of a graph G breaks an automorphism ϕ of G if ϕ
does not preserve this colouring. If a colouring with d colours breaks all non-trivial automorphisms of G, then we call it a
distinguishing d-colouring.

The minimum number d such that a graph G admits a distinguishing d-colouring of edges of G is called the distinguishing
index of G and is denoted by D′(G). This notion was introduced by the first two authors in [4] as an analogue of the well-
known distinguishing number D(G) of a graph G defined by Albertson and Collins [2] for vertex colourings. Obviously, the
distinguishing index is not defined for graphs having K2 as a component.

In the same paper [4], the first two authors considered also breaking automorphisms by proper edge colourings. They
proved that for every connected graph G of order at least 7 there exists a proper edge colouring with ∆(G) + 1 colours that
breaks all non-trivial automorphisms. This result is an example of a useful connection between edge colourings breaking
automorphisms and those distinguishing all vertices by ‘‘extended palettes’’ defined as colour walks in [5]. Actually, this
interesting relationship between two kinds of distinguishing colourings was a motivation for us to investigate connections
between breaking some automorphisms and the 1-2-3 Conjecture and the 1-2 Conjecture. We consider not necessarily
proper colourings, since proper colourings are less interesting from this point of view, what we explain at the end of this
section.
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1.1. Distinguishing adjacent vertices by edge colourings

In this paperwe are interested in edge colourings distinguishing adjacent vertices bymultisets or by sums. Let c : E(G) →

{1, . . . , k} be any colouring of edges of a graph G, not necessarily proper. For each vertex v, we denote byMc(v) the multiset
of colours of edges incident to v, and we call it the c-palette of v. If Mc(u) ̸= Mc(v) for every uv ∈ E(G), then c is called a
neighbour-distinguishing edge colouring. The neighbour distinguishing index χ e

m(G) of a graph G is the least number of colours
in a neighbour-distinguishing edge colouring of G. The best upper bound for χ e

m(G) was obtained by Addario-Berry, Aldred,
Dalal and Reed in [1]. They showed that for every graph G without K2 as a component, χ e

m(G) ≤ 4. Moreover, they proved
that χ e

m(G) ≤ 3 if δ(G) ≥ 1000. It is conjectured that χ e
m(G) ≤ 3 for every graph G without isolated edges and with at most

one isolated vertex.
Distinguishing adjacent vertices by sums is even better known. By σc(v) we denote the sum of colours of edges incident

to a vertex v. The least number k for which G admits an edge colouring c such that σc(u) ̸= σc(v), for every edge uv of G, is
called the neighbour distinguishing index by sums of a graphG, and is denoted byχ e

Σ (G). Clearly,χ e
m(G) ≤ χ e

Σ (G). The following
1-2-3 Conjecture posed by Karoński, Łuczak and Thomason in [9] spawned an avalanche of papers on this and related topics.
1-2-3 Conjecture (Karoński, Łuczak and Thomason [9]) For every graph G without K2 as a component,

χ e
Σ (G) ≤ 3.

This conjecture has been confirmed for some classes of graphs, but in general it remains open since 2004. Up to now, the
best upper bound χ e

Σ (G) ≤ 5 was obtained by Kalkowski, Karoński and Pfender [8].
The aim of this paper is to introduce a class of automorphisms such that neighbour-distinguishing edge colourings are

also colourings breaking them.
We call an automorphism ϕ of G small if there exists a vertex v such that ϕ(v) is a neighbour of v. We denote the

set of all small automorphisms of G by Auts(G). The least number of colours in an edge-colouring of G breaking all
small automorphisms is called a small distinguishing index of G and denoted by D′

s(G). There are graphs without small
automorphisms, e.g., asymmetric graphs, non-balanced bipartite graphs (including trees with a central vertex). Naturally,
they have the small distinguishing index equal to 1. Clearly, D′

s(G) ≤ D′(G), and the equality holds for all graphs G with
Auts(G) ̸= ∅ and D′(G) = 2.

In Section 2, assuming that K2 is not a component of G, we prove that D′
s(G) ≤ 3 ( Theorem 4), while the sharp upper

bound for D′(G) of a connected graph of order at least 6 is ∆(G), as was shown in [4].
If ϕ is an automorphism of G preserving an edge colouring c , then it obviously preserves the c-palettes of vertices,

i.e., Mc(v) = Mc(ϕ(v)) for every vertex v. Hence, if c is neighbour-distinguishing, then it breaks all small automorphisms.
Consequently, D′

s(G) ≤ χ e
m(G) ≤ χ e

Σ (G), and Theorem 4 can be viewed as a weaker statement of 1-2-3-Conjecture.

1.2. Distinguishing vertices by total colourings

We also consider an analogous problem for general total colourings c : V ∪ E → {1, 2, 3, . . .}. The total distinguishing
number D′′(G) of a graph G is the least number d such that G has a total colouring with d colours that is preserved only
by the identity automorphism of G. This definition was introduced by the authors in [6]. For instance, D′′(K2) = 2, and
D′′(K1,p) = ⌈

√
p⌉, p ≥ 2. Observe that D′′(G) ≤ min{D(G),D′(G)}. Clearly, the equality holds for asymmetric graphs, and for

graphs with min{D(G),D′(G)} = 2. The sharp upper bound was proved in [6]. Namely, if G is a connected graph of order
n ≥ 3, then D′′(G) ≤ ⌈

√
∆(G)⌉.

The small total distinguishing number D′′
s (G) of a graph G is the least number d such that G has a total colouring with d

colours that breaks all small automorphisms of G.
In Section 3, we prove that D′′

s (G) ≤ 2 for every graph G. It refers to the 1-2 Conjecture formulated by Przybyło and
Woźniak. Given a total colouring c , for every vertex v, by σ t

c (v) we denote the sum of a colour of v and colours of all edges
incident to v. If σ t

c (u) ̸= σ t
c (v) for every edge uv ∈ E(G), then c is a neighbour-distinguishing total colouring. The least number

of colours for which G admits such a colouring is called the total neighbour distinguishing index by sums of a graph G, and is
denoted by χ t

Σ (G).
1-2 Conjecture (Przybyło and Woźniak [11]) For every graph G,

χ t
Σ (G) ≤ 2.

The 1-2 Conjecture was also confirmed for some classes of graphs, but in general it remains open. Kalkowski [7] proved
the best result so far. Since the proof of his result can be found only in Polish in the Ph.D. thesis of Kalkowski we quote it
below, adapting it to our terminology and notation.

Theorem 1 (Kalkowski [7]). Every graph admits a total colouring c : V (G) ∪ E(G) → {1, 2, 3} such that the vertices of G do not
assign colour 3 and σ t

c (u) ̸= σ t
c (v) for every edge uv ∈ E(G). As a consequence, χ t

Σ (G) ≤ 3 for any graph G.

Proof. The proof stems from a greedy algorithm, which processes the vertices in a given order, and generates a desired total
colouring of G. Without loss of generality, we assume G is a connected graph, otherwise we can argue component wise. Let
V (G) = {v1, . . . , vn}. For each vi, we call its neighbours vj with j < i the predecessors of vi.

Initially all vertices get colour 1 and all edges are coloured with 2, so every vertex vi ∈ V (G) has an initial value
σ t
c (vi) = 2d(vi) + 1. Then, iteratively, for all vertices vi, i = 1, . . . , n, the algorithm performs the following steps:
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1. Compute the numbers s and t of predecessors of vi that have colour 1 or 2, respectively.
2. Compute the minimal r ∈ [−s, t] such that for no predecessor vj of vi we have σ t

c (vj) = 2d(vi) + 1 + r . (Observe
that such an r always exists since the number of integers in the interval [−s, t] is greater by one than the number of
predecessors of vi.)

3. If r > 0 choose r predecessors vj with colour 2 and set c(vj) = 1 and c(vjvi) = 3.
4. If r < 0 choose |r| predecessors vj with colour 1 and set c(vj) = 2 and c(vjvi) = 1.

The algorithm yields a desired total colouring. Indeed, for each vi the value σ t
c (vi) changes at most once, only when it

is processed, because the algorithm only changes the colour of (edges to) predecessors vj and step 3 and 4 do it in such a
way that ensures σ t

c (vj) remains the same. Thus it suffices to ensure that σ t
c (vi) is unique among the current vertex and its

predecessors. This is guaranteed by the choice of r in step 2. □

1.3. Proper colourings

An analogous problemof breaking small automorphisms can also be formulated for proper edge or total colourings. Recall
that the minimum number of colours in a proper edge colouring of G that breaks all non-trivial automorphisms is bounded
from above by∆(G)+1 for all graphs except for four graphs C4, K4, C6, K3,3 (cp. [4]). It follows from Vizing’s theorem that the
small distinguishing chromatic index, which can be naturally defined, of a graph Gmay attain one of only two possible values:
χ ′(G) or χ ′(G) + 1. Therefore, this is less interesting than for general colourings.

For proper total colourings, an analogous problem even does not exist, because every proper total colouring breaks all
small automorphisms of a graph.

2. Small distinguishing index

We begin this section with a lemma used in the proof of Theorem 4. A graph G is traceable if it contains a Hamiltonian
path.

Lemma 2. If G is a traceable graph of order at least 3, then D′(G) ≤ 3.

Proof. If H is a spanning subgraph of G, then D′(G) ≤ D′(H)+ 1 (see [10]). As D′(Pn) = 2 for n ≥ 3, we immediately infer the
conclusion. □

Let us mention that a stronger result has been proved by Pilśniak in [10].

Theorem 3 ([10]). If G is a traceable graph of order at least 7, then D′(G) ≤ 2.

Let r be a non-negative integer. A sphere of radius r and centre v0, denoted S(v0, r), is a set of vertices of distance r from
a vertex v0. IfW ⊂ V (G), then the rth layer with respect toW , denoted S(W , r), is the set of vertices of distance r fromW .

Theorem 4. For every graph G without K2 as a component

D′

s(G) ≤ 3.

Proof. Clearly, if G is disconnected and G1, . . . ,Gq are its components, then D′
s(G) = max{D′

s(Gi) : i = 1, . . ., q}. Hence, it is
enough to prove that D′

s(G) ≤ 3 for every connected graph G distinct from K2.
Assume first that G contains a vertex v0 that does not belong to any triangle. Partition the vertex set V (G) into non-empty

spheres S(v0, 0), S(v0, 1), . . . , S(v0, ρ). Thus, S(v0, 1) is an independent set. For each r = 2, . . . , ρ, let c ′
r be a neighbour-

distinguishing total colouring of G[S(v0, r)] that follows from Theorem 1 of Kalkowski, where vertices are coloured with 1,2
and edges with 1, 2, 3.

We now define an edge colouring c of G as follows. We leave the colours c ′
r of edges between vertices of the same sphere

S(v0, r), r = 1, . . . , ρ. If v ∈ S(v0, r) for some r ≥ 2, then we colour all edges joining v to vertices in S(v0, r − 1) with c ′
r (v).

Finally, we colour all edges incident to v0 with 3.
Let ϕ be a small automorphism of G preserving the edge colouring c . The vertex v0 is fixed by ϕ since it is the only

vertex in G with all incident edges coloured with 3 (except possible pendant neighbours of v0, but then v0 is of higher
degree). Therefore, for each r = 0, . . . , ρ, the sphere S(v0, r) is mapped onto itself by ϕ, i.e., ϕ reduced to S(v0, r) is an
automorphism of G[S(v0, r)]. Suppose that v and ϕ(v) are neighbours. Then they both belong to the same sphere S(v0, r) for
some r ≥ 2. Hence all edges joining them to S(v0, r − 1) have the same colour c ′

r (v) = c ′
r (ϕ(v)), and the multisets of colours

of edges incident to v and ϕ(v) are identical, contrary to the assumption that c ′
r is a neighbour-distinguishing total colouring

of G[S(v0, r)].
Now, assume that every vertex of G belongs to a triangle. Let P = v1 . . . vt be a longest path in G. If P is a Hamiltonian

path, then D′(G) ≤ 3 by Lemma 2. Otherwise, the vertex set V (G) is partitioned into non-empty layers S(P, 0), . . . , S(P, ρ).
For every r = 1, . . . , ρ, let c ′

r be a neighbour-distinguishing total colouring of G[S(P, r)], where vertices are coloured with
1,2 and edges with 1, 2, 3.
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Again, we define an edge colouring c of G as follows. We leave the colours of edges within the same set S(P, r),
r = 1, . . . , ρ. For every r ≥ 1 and every v ∈ S(P, r), we colour all edges joining v to vertices in S(P, r − 1) with c ′

r (v).
Then we colour all edges of P with 3. Each of the vertices v1, vt belongs to a triangle, and all their neighbours are contained
in P because P is a longest path. Thenwe colour one edge incident to v1 with 1, and all other yet uncoloured edges of G[V (P)]
we colour with 2.

Suppose that c is preserved by a small automorphism ϕ of G. It is well known that any two longest paths in a graph
must have at least one vertex in common. Therefore, G does not contain another path coloured with 3 of the same length
as P . It follows that each vertex of P is fixed by ϕ since the end-vertices v1, vt of P have distinct c-palettes. Then we argue
analogously as in the previous case. Each set S(P, r) is mapped by ϕ into itself. Hence, if ϕ(v) was a neighbour of v ∈ S(P, r),
then this would contradict that c ′

r is a neighbour-distinguishing total colouring of G[S(P, r)]. □

The bound in Theorem 4 is sharp since D′
s(Kn) = 3, n = 3, 4, 5, and D′

s(C5) = 3.
For bipartite graphs, we get even a better upper bound than in 1-2-3 Conjecture. Namely, if G is a bipartite graph, then

the neighbour distinguishing index by sums is at most 3 and the equality is achieved since, e.g., χ e
Σ (C4k+2) = 3.

Proposition 5. If G is a connected bipartite graph with |G| ≥ 3, then

D′

s(G) ≤ 2.

Moreover, D′
s(G) = 2 if and only if G is balanced and there exists an automorphism of G that switches the sets X and Y of

bipartition.

Proof. Observe that every small automorphism of G switches the sets X and Y . Let v0 be a vertex with deg(v0) = ∆(G).
Clearly, deg(v0) ≥ 2. We colour the edges incident to v0 with 1, and all other ones with 2. Thus, v0 is the only one vertex of
degree greater than one in G with all incident edges coloured with 1. Hence v0 is fixed by every automorphism preserving
the colouring. Therefore D′

s(G) ≤ 2. □

It follows that D′
s(T ) ≤ 2 for every tree T with equality whenever T has a central edge uv and an automorphism that

interchanges the vertices u and v. On the other hand, for every ∆ ≥ 2, there exist trees with D′(T ) = ∆ and ∆(T ) = ∆
(see [4]).

3. Small total distinguishing index

In this section we also start with a lemma concerning traceable graphs.

Lemma 6. If G is traceable, then D′′(G) ≤ 2.

Proof. Let P be a Hamiltonian path of G. We colour one end-vertex of P with 1 and all other vertices with 2. The edges of P
we colour with 1 and all other edges of Gwith 2. Clearly, this is a total distinguishing 2-colouring of G. □

Theorem 7. For every graph G,

D′′

s (G) ≤ 2.

Proof. Without loss of generality, we may assume that G is connected. Let P0 be a longest path in G. We totally colour the
subgraph G[V (P0)] induced by the vertex set of P0 with a distinguishing total 2-colouring as in the proof of Lemma 6, i.e., one
end-vertex and all edges of P0 are coloured with 1, and the remaining vertices and edges with 2. If V (G) = V (P0), then we
are done by Lemma 6. Otherwise, the set V (G) \ V (P0) is partitioned into nonempty layers S(P0, 1), . . . , S(P0, ρ) with ρ ≥ 1.
We colour all edges between P0 and S(P0, 1) with 2. Thus each vertex of P0 will be fixed by any automorphism preserving
this colouring since a connected graph cannot have two disjoint longest paths. Consequently, for every r , the set S(P0, r) will
be mapped onto itself. Then we colour all edges between S(P0, r − 1) and S(P0, r) with 2.

Now, let r = 1. If the edge set of G[S(P0, 1)] is nonempty, then for every component H of G[S(P0, 1)] we define a total
colouring of H using the following procedure. We take a longest path P1,1 of H . We colour one end-vertex and all edges of
it with 1 and all other vertices and edges of the subgraph H[V (P1,1)] with 2. Then we delete the edges of H[V (P1,1)] and we
take a longest path P1,2 of the subgraphH1 = H−E(H[V (P1,1)]). We totally colour the subgraphH1[V (P1,2)] as above. It is not
difficult to see that there does not exist a small automorphism of H[V (P1,1) ∪ V (P1,2)] that preserves this colouring. Indeed,
if the paths P1,1 and P1,2 are of the same length, then they have to share exactly one vertex that is a central vertex of both
paths and there cannot exist another path joining a vertex of P1,1 with a vertex of P1,2 because of the maximality of these
paths. Then we delete the edges of H1[V (P1,2)] and continue this procedure until only independent vertices of H remain. We
colour them with 1.

Thus we obtain a total colouring of G[V (P0)∪ S(P0, 1)] that is not preserved by any small automorphism. We then repeat
this procedure for r = 2, . . . , ρ, and obtain a total 2-colouring c of G that breaks all small automorphisms of G. □

Note that Theorem 7 implies that for every graph G, we have D′′
s (G) = 2 if and only if Auts(G) ̸= ∅. Otherwise D′′

s (G) = 1
if Auts(G) = ∅.

Clearly, every neighbour-distinguishing total colouring of G breaks all small automorphisms. In this sense, our result
supports the 1-2 Conjecture.
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