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The distinguishing index D ′(G) of a graph G is the least number d such that G has an 
edge colouring with d colours that is preserved only by the identity automorphism. The 
distinguishing index of the Cartesian product of graphs was investigated by the authors 
and Kalinowski. They considered colourings with two colours only and obtained results 
that do not determine the distinguishing index for all the possible cases.
In this paper we investigate colourings with d colours and determine the exact value of 
the distinguishing index of the Cartesian product K1,m�K1,n for almost all m and n. In 
particular, we supplement the result of [6] for the case when 22m+1 −⌈ m

2

⌉+1 < n ≤ 22m+1. 
We also observe the distinguishing index of the Cartesian product of two graphs in general 
does not have to depend on the size of the graphs and it can be arbitrarily small.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let c be an edge colouring c : E(G) → {1, . . . , d} of a graph G . We say that an automorphism ϕ ∈ Aut(G) is broken by 
the edge colouring c if there exists an edge uv ∈ E(G) such that the colour c(ϕ(u)ϕ(v)) of its image is different from the 
colour c(uv) of the edge itself. The distinguishing index D ′(G) of a graph G is the least number of colours d such that there 
exists a colouring c breaking every nontrivial automorphism of the graph. We call such a colouring distinguishing. Clearly, 
this parameter does not make sense for K2. The distinguishing index was introduced by Kalinowski and Pilśniak in [11]. 
Symmetry breaking (in various ways) has interesting applications to numerous problems of theoretical computer science, 
for instance to the leader election problem and self-stabilizing algorithms (cf. [4,5,10]).

The Cartesian product of graphs G and H is a graph denoted G�H whose vertex set is V (G) × V (H). Two vertices (g, h)

and (g′, h′) are adjacent if either g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′ . We denote G�G by G2, and we recursively 
define the k-th Cartesian power of G as Gk = G�Gk−1. We say a graph G is prime with respect to the Cartesian product if for 
any decomposition G = G1�G2 the graph G1 or G2 is isomorphic to K1.

For a given vertex v ∈ V (H) the G v -layer is the subgraph of the Cartesian product G�H induced by the vertex set

{(u, v) ∈ V (G�H) : u ∈ V (G)}.
Notice that the G v -layer is isomorphic with G . We often refer to it as a horizontal layer. Analogously, we define a vertical 
layer or an Hu-layer.
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The automorphism group of the Cartesian product was characterized by Imrich [7] and independently by Miller [13]. 
Here we present a simplified version of the theorem, for the Cartesian product of only two graphs.

Theorem 1. [7,13] Suppose ψ is an automorphism of a connected graph G with prime factor decomposition G = G1�G2 . Then there 
is a permutation π of {1, 2} and isomorphisms ψi : Gπ(i) �→ Gi , for i ∈ {1, 2} such that

ψ(x1, x2) = (ψ1(xπ(1)),ψ2(xπ(2))).

In this paper we consider the Cartesian product of two stars K1,m�K1,n . It is easy to see that stars are prime with respect 
to the Cartesian product. The case when m = n has already been considered in [6]. It has been proved that D ′(K 2

1,m) = 2 for 
all m ≥ 2. The authors in [6] also proved that if 2 ≤ m ≤ n ≤ 22m+1 − ⌈m

2

⌉ + 1, then D ′(K1,m�K1,n) = 2.
Further results concerning the case of a larger difference between the sizes of the stars have also been presented in [6].

Proposition 2. [6] If m ≥ 1 and n > d2m+1 , then D ′(K1,m�K1,n) > d.

The above results appear not to be tight as there is a gap between the presented conditions. In this paper we give a 
more precise condition, including the remaining cases, i.e., when d2m+1 − ⌈m

d

⌉ + 1 < n ≤ d2m+1.
The main goal of this paper is the proof of the following theorem.

Theorem 3. Let 2 ≤ m ≤ n and (d − 1)2m+1 < n ≤ d2m+1 . Then

1. D ′(K1,m�K1,n) = d, if n ≤ d2m+1 − logd k
2 − 1

2 ,

2. D ′(K1,m�K1,n) = d + 1, if n > d2m+1 − logd k
2 ,

where k = 	m
d 
.

Let us first remark that such precise result cannot be achieved for the Cartesian product of two arbitrary graphs G and H , 
even if they are trees. The theorem stated above determines the exact value of the distinguishing index of the Cartesian 
product of two stars, given the relation between their sizes. In general case, we are unable to introduce a relation between 
the sizes of two graphs that would allow for the distinguishing index to be determined accurately. Perhaps if another graph 
invariant was studied, such condition could be found.

The proofs in this paper are based on the one-to-one correspondence between the group of permutations on k elements 
Sk and the automorphism group of the star K1,k . For an arbitrary tree there is no such relation. The colouring of the 
Cartesian product of trees Tm�Tn , where m and n are the sizes of the trees, can also be represented as a set of n vectors 
of length m of pairs from the set {1, 2}, as was done in [6]. It suffices to define a special numeration of the vertices of both 
trees. If a tree has a central vertex, numerate it with 1. If a tree has two central vertices, numerate one with 1 and the 
other one with 2. The remaining vertices are numerated in the Breadth-First Search. Then every term vi = (ai, bi) of any 
given vector (v1, . . . , vm) represents the colours of edges adjacent to a vertex of a Tm-layer. The first number is the colour 
of the edge to a father in the BFS tree in the Tm-layer and the other to a father in the BFS tree in the Tn-layer. Considering 
this enumeration, it is easy to see that for trees Tm and Tn of sizes m and n, respectively, the following inequality holds

D ′(Tm�Tn) ≤ D ′(K1,m�K1,n).

Observe that the distinguishing index of the Cartesian product of two trees can be equal to 2 for arbitrarily large difference 
between their sizes. As an example consider Pm�Pn . As shown in [6] for any m ≥ 2 and n > 2 we have D ′(Pm�Pn) = 2.

The concept of the distinguishing index has been derived from a similar concept for vertex colourings. It has been 
initiated by Albertson and Collins in [1]. They defined the distinguishing number of a graph G , denoted by D(G), as the least 
number d such that G has a vertex colouring with d colours breaking all nontrivial automorphisms of G . This concept has 
also been studied for the Cartesian product of graphs, e.g., in [8,9,12] and [3] and recently for the Cartesian product of the 
countable graph, e.g., in [2]. Similar results to Theorem 3 were obtained by Imrich, Jerebic and Klavžar in [8] for vertex 
colourings.

Theorem 4. [8] Let k, n, d be integers so that d ≥ 2 and (d − 1)k < n ≤ dk. Then

D(Kk�Kn) =
{

d, if n ≤ dk − 	logd k
 − 1;
d + 1, if n ≥ dk − 	logd k
 + 1.

If n = dk − 	logd k
, then D(Kk�Kn) is either d or d + 1 and can be computed recursively in O (log∗(n)).

The proofs in this paper are based on the method presented in [8]. However, substantial modifications are necessary due 
to the fact that we colour edges instead of vertices.
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2. Preliminary results for stars

The following theorem is a generalization of the main result for trees obtained in [6]. Its proof is a straightforward 
extension of the proof for trees in [6].

Theorem 5. Let K1,m and K1,n be stars. If

2 ≤ m ≤ n ≤ d2m+1 −
⌈m

d

⌉
+ 1,

then D ′(K1,m�K1,n) ≤ d. �
In this section we present results that lead to the proof of the following theorem, which is Theorem 3 in the case of 

d = 2.

Theorem 6. Let m ≥ 2 and m ≤ n ≤ 22m+1 . Then

1. D ′(K1,m�K1,n) = 2, if n ≤ 22m+1 − log2 k
2 − 1

2 ,

2. D ′(K1,m�K1,n) = 3, if n > 22m+1 − log2 k
2 ,

where k = 	m
2 
.

Throughout this section we assume that m < n < 22m+1. We only consider 2-colourings of the Cartesian product of stars.
We denote with ([2]2)k the set of all vectors of length k whose elements are pairs from the set {1, 2}, that is

([2]2)k = {(v1, . . . , vk) : vi = (ai,bi) ∧ ai,bi ∈ {1,2}}.
Clearly, |([2]2)k| = 22k .

Let π ∈ Sk be a permutation on k elements and let V = {v1, v2, . . . , vr} ⊂ ([2]2)k be a set of r vectors described above. 
Permutation π acts on an element vi of the set V by exchanging the terms of the vector vi , i.e., π vi = (vi

π(1), . . . , v
i
π(k)

). We 
denote with π V = {π v1, π v2, . . . , π vr}. We say a set of vectors V ⊂ ([2]2)k is column invariant if there exists a permutation 
π ∈ Sk\{id} such that π V = V . Otherwise, we say the set V is not column invariant.

The notion of column invariance is better understood with a matrix representation of the set V . Let MV be a matrix 
whose rows are the vectors from the set V . The i-th column of MV consists of i-th terms of vectors from V . Clearly, MV is 
a r × k matrix. The set V is column invariant if and only if there exists a permutation π ∈ Sk of columns of the matrix MV

such that there exists a permutation σ ∈ Sr of rows of MV such that under the combined action of these two permutations 
the matrix MV does not change.

Let us remark that the set ([2]2)k is column invariant. Moreover, any nontrivial permutation π ∈ Sk has the property that 
π([2]2)k = ([2]2)k . Clearly, for any permutation π and any vector v ∈ ([2]2)k , the vector π v is in the set ([2]2)k . Therefore, 
the condition π([2]2)k = ([2]2)k is trivially fulfilled.

Lemma 7. For integers k and r < 22k if a set V ⊂ ([2]2)k of r vectors is column invariant then the set U = ([2]2)k\V of 22k − r vectors 
is column invariant.

Proof. Let V ⊂ ([2]2)k be a column invariant set of r vectors, i.e., V = {v1, v2, . . . , vr}. We know that there exists a per-
mutation π ∈ Sk\{id} such that for every vector vi ∈ V the condition π vi ∈ V is fulfilled. Since π([2]2)k = ([2]2)k , then 
for every vector ui ∈ ([2]2)k\V the vector πui has to also belong in ([2]2)k\V . Therefore, the set ([2]2)k\V is also column 
invariant. �

The above reasoning can be applied to an arbitrary set V . This yields that if all sets V ⊂ ([2]2)k of size r are column 
invariant, then all sets U ⊂ ([2]2)k of size 22k − r are column invariant and the following conclusion can be made.

Lemma 8. (Switching lemma) Let k and r < 22k be positive integers, every set V ⊂ ([2]2)k of r vectors is column invariant if and only 
if every set U ⊂ ([2]2)k of 22k − r vectors is column invariant.

For an integer m we use the notation k = 	m
2 
 and k′ = m

2 �. Consider sets V = {v1, . . . , vr} ⊂ ([2]2)k and V ′ =
{v ′ 1, . . . , v ′ r} ⊂ ([2]2)k′

. Denote with V ∗ the set of all vectors vi v ′ i = (vi
1, v

i
2, . . . , v

i
k, v

′ i
1 , . . . , v ′ i

k′ ). It is obvious that 
V ∗ ⊂ ([2]2)m . We define the action of a permutation π ∈ Sk\{id} on a vector v v ′ ∈ V ∗ by

π v v ′ = (vπ(1), . . . , vπ(k), v ′ , . . . , v ′ ′).
1 k
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Analogously, a permutation π ′ ∈ Sk′ \{id} acts on a vector v v ′

π ′v v ′ = (v1, . . . , vk, v ′
π ′(1), . . . , v ′

π ′(k′)).

We also write π V ∗ = {π v1 v ′ 1, . . . , π vr v ′ r} and π ′V ∗ = {π ′v1 v ′ 1, . . . , π ′vr v ′ r}. A set of vectors V ∗ ⊂ ([2]2)m is half-column 
invariant if there exists a permutation π ∈ Sk\{id} or π ′ ∈ Sk′ \{id} (or both) such that π V ∗ = V ∗ or π ′V ∗ = V ∗ . Otherwise, 
we say V ∗ is not half-column invariant.

Observation 9. If V and V ′ are not column invariant, then V ∗ is not half-column invariant. �
A set of vectors V ⊂ ([2]2)k of size r can be related to a colouring of edges of the Cartesian product of stars K1,r�K1,k . Let 

u and v be central vertices of the stars, respectively. If the set of all the edges of K v
1,r -layer and K u

1,k-layer is monochromatic 
and the colouring is distinguishing, then we call the colouring a strongly distinguishing colouring. Numerate the leaves of the 
star K1,k with numbers from the set {1, 2, . . . , k}. Consider the K1,k-layers that do not contain the vertex (u, v). Exactly one 
vertex of each such layer has degree equal to k. Every other vertex has degree equal to two. Assign each vector of the set 
V to exactly one of the K1,k-layers in a way that the consecutive vertices of degree two of the i-th layer are assigned to 
consecutive pairs of the i-th vector. The first coordinate of the pair corresponds to the colour of the incident edge in the 
K1,r -layer and the other one to the colour in the K1,k-layer.

Lemma 10. The strongly distinguishing colouring of K1,r�K1,k with two colours exists if and only if there exists a set of vectors 
V ⊂ ([2]2)k with |V | = r that is not column invariant.

Proof. If K1,r�K1,k has a strongly distinguishing 2-colouring, then every nontrivial automorphism ϕ ∈ Aut(K1,r�K1,k) is 
broken by such a colouring. Therefore, for the set V of r vectors from ([2]2)k representing this colouring as described above 
there does not exist a permutation π ∈ Sk\{id} such that π V = V , so V is not column invariant. Conversely, if there exists a 
set of r vectors V ⊂ ([2]2)k which is not column invariant, then these vectors generate a strongly distinguishing 2-colouring 
of the Cartesian product of stars K1,r and K1,k . It suffices to assign the vectors from the set V to the K1,k-layers. Since there 
does not exist a permutation π ∈ Sk\{id} such that π V = V , then there does not exist an automorphism ϕ ∈ Aut(K1,r�K1,k)

preserving this colouring. �
Colours red and blue correspond to 1 and 2, respectively. For any vector v = ((a1, b1), . . . , (ak, bk)) ∈ ([2]2)k consider a 

vector

v̄ = ((a1, b̄1), . . . , (ak, b̄k)).

We call vectors v and v̄ a complementary pair if bi + b̄i = 3 for all i ∈ {1, . . . , k}.
We present lemmas and observations leading to the proof of Theorem 6.

Lemma 11. If r ≤ k ≤ 22r − r + 1, then K1,r�K1,k has a strongly distinguishing colouring.

Proof. Denote with u and v the central vertices of stars K1,r and K1,k , respectively.
We construct a strongly distinguishing colouring of K1,r�K1,k . By definition, all edges of the K v

1,r -layer and K u
1,k-layer 

have the same colour, say blue. We colour the edges of the remaining layers based on the vectors in ([2]2)r =
{(v1, . . . , vr) : vi = (ai, bi), ai, bi ∈ {1, 2}}.

Assume first that k = 22r − r + 1. From the set of all vectors in ([2]2)r we remove the vectors of the form

vi = (
(2,bi

1), (2,bi
2), . . . , (2,bi

r)
)
,

for i ∈ {1, 2, . . . , r − 1}, where bi
j = 1 for j ≤ i and bi

j = 2 otherwise.
There are exactly r − 1 such vectors. We assign the remaining vectors to the K1,r -layers. Such colouring is strongly 

distinguishing. It follows from the fact that in every K1,k-layer there is a different number of red edges. Therefore, if any of 
those layers were interchanged by an automorphism of K1,r�K1,k , then the colouring would be broken. It is obvious that 
K1,r -layers are pairwise distinct, hence they cannot be interchanged either.

In the case when k < 22r − r + 1, let s = 22r − r + 1 − k. If s is even, remove additionally s
2 complementary pairs of 

vectors from ([2]2)r . If s is odd remove a vector of all 1’s and s−1
2 complementary pairs. The use of the remaining vectors 

will yield a colouring with the property described above. �
Since, 22r−1 ≤ 22r − r + 1 and by Lemma 11 we have the following result.
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Corollary 12. If r ≤ k ≤ 22r−1 , then K1,r�K1,k has a strongly distinguishing colouring. �
We present a result similar to the Switching Lemma for half-column invariant sets of vectors. Let us define a set of 

permutations

Sm =
{
π ∈ Sm : ∀ i ∈ {1,2, . . . ,

⌈m

2

⌉
} π(i) ∈ {1,2, . . . ,

⌈m

2

⌉
}

∧ ∀ i ∈ {
⌈m

2

⌉
+ 1, . . . ,m} π(i) ∈ {

⌈m

2

⌉
+ 1, . . . ,m}

}
.

Observation 13. A set of vectors V ∗ ⊂ ([2]2)m is half-column invariant if and only if there exists a permutation π∗ ∈ Sm\{id} such 
that for every vector v∗ ∈ V ∗ the condition π∗v∗ ∈ V ∗ is fulfilled.

Proof. For a set V ∗ ⊂ ([2]2)m , let V ⊂ ([2]2)k and V ′ ⊂ ([2]2)k′
be the sets like in the definition of V ∗ , where k = 	m

2 
 and 
k′ = m

2 �.
If V ∗ is half-column invariant, then there exists a permutation π ∈ Sk\{id} or π ′ ∈ Sk′ \{id}. We consider a permutation 

π∗ ∈ Sm such that π∗|V
= π and π∗|V ′ = π ′ . Clearly, π exchanges only the first k elements and π ′ only the last k′ elements. 

Therefore, π∗ ∈ Sm and for every v∗ ∈ V ∗ it is true that π∗v∗ ∈ V ∗ .
Let π∗ ∈ Sm be a permutation such that for every vector v∗ ∈ V ∗ the condition π∗v∗ ∈ V ∗ is fulfilled. Consider the 

restrictions π = π∗|V
and π ′ = π∗|V ′ . Clearly, π ′ ∈ Sk and π ′ ∈ Sk′ . Moreover, since for every vector v∗ ∈ V ∗ we get that 

π∗v∗ ∈ V ∗ , then we obtain that π V = V and π ′V ′ = V ′ . Which implies that the set V ∗ is half-column invariant. �
Lemma 14. If V ∗ ⊂ ([2]2)m is not a half-column invariant set, then the set U∗ = ([2]2)m\V ∗ also is not half-column invariant.

Proof. For an arbitrary permutation π ∈ Sm\{id} its inverse π−1 ∈ Sm\{id}. Since V ∗ is not half-column invariant, then for 
the permutation π−1 there exists a vector v∗ ∈ V ∗ such that u∗ = π−1 v∗ /∈ V ∗ . Then πu∗ = (π−1)−1π−1 v∗ = v∗ ∈ V ∗ . 
Therefore, we showed that for any permutation π ∈ Sm\{id} there exists a vector u∗ ∈ U∗ such that πu∗ /∈ U∗ . Hence, U∗ is 
not half-column invariant. �
Theorem 15. If there exist sets V ⊂ ([2]2)k and V ′ ⊂ ([2]2)k′

of size r that are not column invariant, then D ′(K1,m�K1,n) = 2, where 
k = 	m

2 
, k′ = m
2 � and n = 22m+1 − r.

Proof. Let V (K1,m) = {w0, w1, . . . , wm} and V (K1,n) = {u0, u1, . . . , un}, where w0 and u0 are the central vertices of the 
stars.

Let V = {v1, v2, . . . , vr} ⊂ ([2]2)k and V ′ = {v ′ 1, v ′ 2, . . . , v ′ r} ⊂ ([2]2)k′
be sets that are not column invariant. Then the 

set V ∗ ⊂ ([2]2)m associated with V and V ′ is not half-column invariant by Observation 9. It follows from Lemma 14 that the 
set U∗ = ([2]2)m\V ∗ also is not half-column invariant. We construct a colouring that breaks all nontrivial automorphisms of 
the graph K1,m�K1,n based on the set U∗ .

Colour the edges of the K u0
1,m-layer such that w0 wi is red if i ≤ k and blue otherwise. Colour the edges of the K w0

1,n -layer 
such that u0ui is red if i ≤ 22m − r and blue otherwise. Assign vectors from U∗ to the first 22m − r of the K1,m-layers and 
all the vectors from ([2]2)m to the remaining K1,m-layers. Since U∗ is not half-column invariant, then there does not exist 
a permutation π ∈ Sm{id} such that for every u∗ ∈ U∗ the vector πu∗ also belongs in U∗ , as stated in Observation 13. 
Therefore, for every nontrivial automorphism of the Cartesian product of stars K1,m and K1,n there exists at least one 
K1,m-layer that cannot be mapped into any other layer such that the colours are preserved. �
Lemma 16. If 22r < k, then every set V ⊂ ([2]2)k of size r is column invariant.

Proof. Consider a set V = {v1, . . . , vr}, where vi = (vi
1, . . . , v

i
k) for every i ∈ {1, . . . , r}. We define a vector u j =

(v1
j , . . . , v

r
j) ∈ ([2]2)r for every j ∈ {1, . . . , k}. Since k > 22r = |([2]2)r |, then there are at least two indices m and n, with 

m < n such that the vectors um and un are equal, i.e., vi
m = vi

n for all i. We consider a transposition π ∈ Sk such that 
π(m) = n. Then for every vector vi ∈ V we have

π vi = π(vi
1, . . . , vi

m, . . . , vi
n, . . . , vi

k) = (vi
π(1), . . . , vi

π(m), . . . , vi
π(n), . . . , vi

π(k)) =
(vi

1, . . . , vi
n, . . . , vi

m, . . . , vi
k) = (vi

1, . . . , vi
m, . . . , vi

n, . . . , vi
k) = vi .

Hence, the set V is column invariant. �
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The permutation π from the above proof is a transposition. Moreover, every vector v ∈ V is its own image under the 
action of the transposition π .

Theorem 17. For integers m and n, let k = 	m
2 
 and r = 22m+1 − n. If 22r < k, then D ′(K1,m�K1,n) > 2.

Proof. We show that for any colouring of the Cartesian product K1,m�K1,n with two colours there exists a nontrivial 
automorphism that is not broken.

Let v and u be central vertices of K1,m and K1,n , respectively. Consider first the K u
1,m-layer and K v

1,n-layer. Without loss 
of generality, we assume that the number of blue edges in the K u

1,m-layer is greater or equal to the number of red edges 
in this layer. Denote the number of blue edges in the K u

1,m-layer and K v
1,n-layer by k′ and n′ , respectively. Further, denote 

with n′′ the number of red edges in the K v
1,n-layer. Numerate the vertices of each star such that the blue edges connect the 

central vertex with first k′ vertices of K1,m and first n′ vertices of K1,n . We call the initial n′ of the K1,m-layers blue layers 
and the remaining K1,m-layers we call red layers.

Denote with W ′ and W ′′ the sets of all vectors of pairs of length m corresponding to the colouring of the blue layers 
and the red layers, respectively. Denote with V ′ and V ′′ the sets of all vectors of pairs of length k′ corresponding to the 
initial k′ terms of the vectors from the sets W ′ and W ′′ , respectively. Let U ′ = ([2]2)k′ \V ′ and U ′′ = ([2]2)k′ \V ′′ . Denote 
with U = U ′ ∪ U ′′ and r′ = |U |. Since r is the number of all the missing vectors, then r′ ≤ r and k′ ≥ 	m

2 
 = k. Therefore,

22r′ ≤ 22r < k ≤ k′.
As a result 22r′

< k′ . Then by Lemma 16, the set U is column invariant. There exists a transposition π ∈ Sk′ \{id} such 
that πU = U . Moreover, for every vector u′ ∈ U ′ we have πu′ = u′ . Clearly, the same is true for every vector u′′ ∈ U ′′ . 
Let π̄ ∈ Sm\{id} be a permutation such that π̄ (i) = π(i) for all i ∈ {1, . . . , k′} and π̄ ( j) = j for all j ∈ {k′ + 1, . . . , m}. 
Since π̄ ([2]2)m = ([2]2)m , for every vector v ′ ∈ V ′ (v ′′ ∈ V ′′) there exists a vector w ′ ∈ V ′ (w ′′ ∈ V ′′) such that w ′ = π̄ v ′
(w ′′ = π̄ v ′′). Therefore, there exists an automorphism corresponding to the permutation π̄ that exchanges two of the initial 
k′ K1,n-layers that preserves the colours of all the edges of the Cartesian product K1,m�K1,n . �
Proof of Theorem 6. Let r = 22m+1 − n. If r ≥ log2 k

2 + 1
2 , then k ≤ 22r−1. A graph K1,r�K1,k has a strongly distinguishing 

colouring, by Corollary 12. Moreover, by Lemma 10 there exists a set of vectors V ⊂ ([2]2)k of size r that is not column 
invariant. Finally, by Theorem 15, the distinguishing index of the Cartesian product K1,m�K1,n equals two.

Otherwise, if r <
log2 k

2 , then 22r < k. Therefore, by Theorem 17 two colours do not suffice to break all nontrivial auto-
morphisms of the graph K1,m�K1,n . �
3. Proof of the main theorem

The proof of Theorem 3 is a straightforward generalization of the proof of Theorem 6. We consider the set of vectors of 
length k

([d]2)k = {(v1, . . . , vk) : vi = (ai,bi) ∧ ai,bi ∈ {1,2, . . . ,d}}.
For an integer m, denote with k = 	m

d 
 and k′ = m
d �. For sets V ⊂ ([d]2)k and V ′ ⊂ ([d]2)k′

such that V = {v1, . . . , vr} and 
V ′ = {v ′ 1, . . . , v ′ r}. Let l and l′ be nonnegative integers such that m = lk + l′k′ and d = l + l′ . Clearly, this conditions give us a 
unique solution, unless d|m. In this case take l = d and l′ = 0. Denote with vi∗ the vector that is a concatenation of l copies 
of vi and l′ copies of v ′ i . Notice that vi∗ ∈ ([d]2)m .

We consider a special subset of the set of permutations Sm . For this purpose, we divide the set {1, 2, . . . , m} into the 
following sets

Is = {i : k(s − 1) + 1 ≤ i ≤ ks} for s ∈ {1, . . . , l}
It = {i : kl + k′(t − 1) + 1 ≤ i ≤ kl + k′t} for t ∈ {1, . . . , l′}.

Let us define

S
d
m = {

π ∈ Sm : ∀ s ∈ {1, . . . , l} ∀ i ∈ Is π(i) ∈ Is

∧ ∀ t ∈ {1, . . . , l′} ∀ i ∈ It π(i) ∈ It
}
.

We say that a set V ∗ ⊂ ([d]2)m is d-column invariant if there exists a permutation π ∈ S
d
m such that for every vector 

v∗ ∈ V ∗ the vector π v∗ ∈ V ∗ . Otherwise, we say that the set V ∗ is not d-column invariant.
With this notation, lemmas and theorems proved in Section 2 can be extended to the following results.
If there exists a strongly distinguishing colouring of K1,r�K1,k with d colours, then all of the nontrivial automorphisms 

of the Cartesian product are broken. This colouring is equivalent to a set of r vectors V ⊂ ([d]2)k , as presented in Section 2, 
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such that there does not exist a permutation π ∈ Sk\{id} such that π V = V . Therefore, V is not column invariant. Reverse 
argument also holds and the following lemma is justified.

Lemma 18. A strongly distinguishing colouring of K1,r�K1,k with d colours exists if and only if there exists a set of vectors V ⊂ ([d]2)k

such that |V | = r and V is not column invariant. �
A strongly distinguishing colouring with d colours can be constructed based on the set of vectors from ([d]2)k . The 

vectors are chosen in a similar way as in the proof of Lemma 11. More technical details are necessary for proper description 
of the complete proof of the following lemma.

Lemma 19. If r ≤ k ≤ d2r − r + 1, then K1,r�K1,k has a strongly distinguishing colouring. �
It is easy to notice that the following is also true.

Corollary 20. If r ≤ k ≤ d2r−1 , then K1,r�K1,k has a strongly distinguishing colouring. �
When V ∗ is not d-column invariant, then for every permutation π ∈ S

d
m\{id} there exists a vector v∗ ∈ V ∗ such that 

π v∗ /∈ V ∗ . Therefore, for every permutation σ = π−1 ∈ S
d
m\{id} there exists a vector π v∗ ∈ U∗ such that the vector σπ v∗

belongs in V ∗ . This directly implies that U∗ is not d-column invariant.

Lemma 21. If V ∗ ⊂ ([d]2)m is not a d-column invariant set, then the set U∗ = ([d]2)m\V ∗ also is not d-column invariant. �
Given the sets V ⊂ ([d]2)k and V ′ ⊂ ([d]2)k′

, where k = 	m
d 
 and k′ = m

d �, we construct the set V ∗ that is not d-column 
invariant. The set U∗ = ([d]2)m\V ∗ also is not d-column invariant by Lemma 21. Finally, based on the set U∗ we construct 
the colouring of the Cartesian product K1,m�K1,n similarly to the construction in the proof of Theorem 15.

Theorem 22. If there exist sets V ⊂ ([d]2)k and V ′ ⊂ ([d]2)k′
of size r that are not column invariant, then D ′(K1,m�K1,n) = d, where 

k = 	m
d 
, k′ = m

d � and n = d2m+1 − r. �
Let V = {v1, . . . , vr} ⊂ ([d]2)k , where vi = (vi

1, . . . , v
i
k) for every i ∈ {1, . . . , r}. If d2r < k, then there exist at least two 

indices m < n such that vi
m = vi

n for all i. Therefore, the transposition π = (mn) ∈ Sk is a permutation such that π vi =
vi ∈ V . This implies that V is column invariant.

Lemma 23. If d2r < k, then every set V ⊂ ([d]2)k of size r is column invariant. �
We conclude with the condition under which D ′(K1,m�K1,n) = d + 1. As in the proof of Theorem 17, we may show 

that for any colouring of the Cartesian product K1,m�K1,n with d colours here exists a nontrivial automorphism that is not 
broken. This automorphism corresponds to the transposition π ∈ Sm found in Lemma 23.

Theorem 24. If d2r < k, then D ′(K1,m�K1,n) > d, where k = 	m
d 
 and n = d2m+1 − r. �

The proofs do not differ much from the ones presented earlier. However, the notation becomes significantly more com-
plicated and a lot of additional technical details need to be put into consideration. Therefore, we decided to omit these 
proofs.

4. Open cases

In this section we show that there exist m and n for which the value of the distinguishing index of the Cartesian 
product K1,m�K1,n . Consider two arbitrary stars K1,m and K1,n , where m ≤ n. To determine the distinguishing index of their 
Cartesian product using Theorem 3, we start by determining a natural number d such that (d − 1)2m+1 < n ≤ d2m+1. We 
then check which of the two conditions is fullfilled by the sizes of the stars. However, there exists a small gap between the 
boundary values of n. Namely, if the integers m, n and d satisfy the inequalities d2m+1 − logd k

2 − 1
2 < n ≤ d2m+1 − logd k

2 , then 
Theorem 3 does not provide the value of D ′(K1,m�K1,n). Equivalently, this is the case when for given m and d there exists 
a positive integer l such that logd k

2 ≤ l < logd k
2 + 1

2 and then n = d2m+1 − l.
Let us consider the open cases from a different perspective. For a given positive integer d we find that there exists l as 

above if m ≥ d3 − d + 1. Therefore, for m < d3 − d + 1 Theorem 3 determines the value of D ′(K1,m�K1,n). Moreover, if there 
exists l ∈ N+ such that m = d2l + i, i ∈ {1, . . . , d2l+1 − d2l}, then the distinguishing index of the Cartesian product of K1,m
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Table 1
Initial values of the sizes of the stars for which D ′(K1,m�K1,n) is not known.

D ′(K1,m�K1,n) =
2 or 3 3 or 4 4 or 5

m n = 22m+1 − l m n = 32m+1 − l m n = 42m+1 − l

7 215 − 1 25 351 − 1 61 4123 − 1

8 217 − 1 26 353 − 1
.
.
. (4m − 1)

17 235 − 2 27 355 − 1 64 4129 − 1
.
.
. (22m+1 − 2) 82 3165 − 2 257 4515 − 2

32 265 − 2
.
.
. (32m+1 − 2)

.

.

. (42m+1 − 2)

65 2131 − 3 243 315 − 2 1024 42049 − 2

. . . (22m+1 − l) . . . (32m+1 − l) . . . (42m+1 − l)

and K1,n remains unknown. These are the only such situations. It is worth noting that if Theorem 3 does not give a precise 
answer, it always leaves only two possible values of the distinguishing index. Below we attach Table 1 with a few initial 
values of m and respective n with respect to a given d which remain open cases.
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