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a b s t r a c t

We extend results about asymmetric colorings of finite Cartesian products of graphs to
strong and direct products of graphs and digraphs. On the way we shorten proofs for
the existence of prime factorizations of finite digraphs and characterize the structure of
the automorphism groups of strong and direct products. The paper ends with results on
asymmetric colorings of Cartesian products of finite and infinite digraphs.
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1. Introduction

A coloring of the vertex set of a graph is called asymmetric if the identity automorphism is the only automorphism that
preserves it. Such coloringswere independently studied by several authors, notably Babai [1], Cameron [2], and also Polat [3]
and Sabidussi [4]. After Albertson and Collins [5], unaware of these developments, introduced the term distinguishing number
for the smallest positive integer d for which an asymmetric coloring of a graph G exists the subject became more widely
known. They introduced the notation D(G) for this number. We prefer to call it the asymmetric coloring number, but use the
same notation.

This paper extends results of [6], where it was shown that the Cartesian product of two finite graphs has an asymmetric
2-coloring if the sizes of the factors do not differ too much. In Section 4 we extend this result to the strong and the direct
product of finite graphs and digraphs. This is possible because the strong and the direct product of finite graphs share many
properties with the Cartesian product.

Our methods of proof, first of all, rely on the fact that all finite graphs have prime factorizations with respect to the
strong and the direct product, and that these factorizations are unique under suitable, natural conditions. This is treated in
Section 3.1. Another property which we will heavily use is the relationship between the automorphism group of a product
of prime graphs with the groups of the factors, see Section 3.2.

The unified treatment of the strong and the direct product in Section 3 is possible, because both products are instances
of the direct product of digraphs without multiple arcs, which can also be viewed as binary relational structures. We thus
begin with the prime factorization of binary relational structures with respect to the direct product.
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Fig. 1. The direct product of an arc by an arc.

The standard argument is to invoke the so called common refinement property, which in turn implies unique prime
factorization for finite structures. The proof of the common refinement property, on the other hand, consists of two parts.
The first is a result of Chang, Jónsson and Tarski [7], who proved that it is a consequence of a specific commutativity property
of decomposition functions, and the second is due to McKenzie [8], who showed that this property, see Lemma 1, is satisfied
under certain natural conditions.

We use the result of McKenzie, and then prove unique factorization directly, using neither the results of [7], nor common
refinement. Our main tool is Theorem 5, which we derive directly from a result of McKenzie [8]. It is the main result of
Section 3.1 and the basis of Section 3.2, where the structure of the automorphism group of direct products of digraphs is
investigated.

The Cartesian product of digraphs is treated in Section 6. Here the restriction to finite graphs is not necessary and we can
easily extend results from [6] about asymmetric colorings of finite or infinite Cartesian products to finite or infinite digraphs
with or without loops. This section is independent of the results in the previous sections.

For an entirely different approach to prime factorization of digraphs with respect to the direct product see [9–14]. The
approach in these papers leads to classes of graphs that have the unique prime factorization property, but are distinct from
the class of graphs with the unique prime factorization property of this paper. In other words, that approach secures unique
prime factorization of graphs not covered by the methods if this paper, but does not cover all graphs treated here.

These papers also pave the way to prime factorization algorithms, which is not the case with the approach we follow
here.

2. Preliminaries

A directed graph, or digraph for short, is a pair G = (V , E), where V is a set and E ⊆ V × V . The elements of V = V (G) are
called the vertices and the elements of E = E(G) the arcs of G. An arc (u, v) will be also be denoted by uv; if u = v we speak
of a loop. We will consider undirected graphs as directed graphs with the property that uv ∈ E(G) if and only if vu ∈ E(G).

To establish a connection between graphs and binary relational structures we define a relation R = RG for every digraph
G by letting u be in relation R to v, in symbols uRv, if uv ∈ E(G).4 The inverse relation R̆ is then defined by vR̆u if and only if
uRv, and the pair (V , R) is called a structure GR. We will often write GR = (V (G), RG), or simply G = (V (G), RG).

A structure (V , R) is connected,5 if for any two different elements x, y ∈ V there exists a sequence x0, . . . , xk such that
x = x0, y = xk, and xiRxi+1 for i = 0, . . . , k − 1. The concatenation R1|R2 of two relations R1, R2 on V is defined by setting

x(R1|R2)y

if there exists a z such that xR1z and zR2y. We will mainly consider structures that are both R|R̆- and R̆|R-connected. This
means that for any two vertices u and v there exist vertices x0, . . . , x2k such that u = x0, v = x2k, x2iRx2i+1 and x2i+1R̆x2i+2
for i = 0, . . . , k − 1, and vertices y0, . . . , y2k such that u = y0, v = y2k, y2iR̆y2i+1 and y2i+1Ry2i+2 for i = 0, . . . , k − 1.

By abuse of language we also say a digraph G is R|R̆- and R̆|R-connected if this is the case for the structure (V (G), RG).
The direct product G×H = {V (G × H), RG×H} of two structures G and H is defined on V (G×H) = V (G)×V (H) by setting

(g, h) RG×H (g ′, h′) if both g RG g ′ and h RH h′ hold. As shown in Fig. 1, an arc uv in a structureG and xy in a structureH thus give
rise to an arc (u, x)(v, y) in G × H . The direct product is also known as cardinal or categorical product. Direct multiplication
is commutative, associative, and the one-element set with a loop is its unit (but not the one element set without a loop).

If the relation R of a structure G is symmetric, that is, if R = R̆, then there is an arc vu to every arc uv in G and no loss of
information occurs if we represent every pair of arcs vu and uv by an undirected edge between u and v. Hence, the direct
product of undirected graphs is a special case of the direct product of binary relational structures. Let us recall that one
usually defines the direct product G × H of two undirected graphs G and H as the graph with vertex set V (G × H) and the
edge set

E(G × H) =
{
(x, u)(y, v) | xy ∈ E(G) ∧ uv ∈ E(H)

}
.

We always allow loops when speaking of the direct product.

4 Strictly speaking, if one considers R as the set of ordered pairs u, v for which uRv holds, then R and E are identical. Nonetheless it makes sense to
distinguish the cases when we consider the pair u, v as being in the relation R from uv being an arc of G.
5 If (V , R) is connected the corresponding directed graph G is usually called strongly connected, whereas G is connected if (V , R ∪ R̆) is connected.
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Fig. 2. Illustration to the definition of the strong product.

The strong product G ⊠ H is defined for digraphs G and H without loops. For the definition we add a loop to every vertex
of G and to every vertex of H , form the direct product, and then delete the loops from the product; see Fig. 2. Therefore, we
can consider also the strong product as a special case of the direct product of relational structures.

For simple graphs, that is, for undirected graphs without loops or multiple edges, our definition of the strong product is
equivalent to the definition of the strong product G ⊠ H of simple graphs, where V (G ⊠ H) is defined as V (G) × V (H) and
E(G ⊠ H) as the set of all distinct pairs (x, u)(y, v) of vertices such that

(x, u) ̸= (y, v) ∧ (xy ∈ E(G) ∨ x = y) ∧ (uv ∈ E(H) ∨ u = v).

Notice that the one-vertex graph K1 is a unit for the strong product.
In this paper thinness plays an important role. For its definition we introduce the concept of neighborhoods. Given a

vertex x ∈ V (G) of a graph, we call the set

N+(x) = {y | xRy}

the open out-neighborhood, or simply the out-neighborhood of x. The open in-neighborhood N−(x) is defined analogously. Two
vertices x, y with the same out-neighborhoods and the same in-neighborhoods are called equivalent, in symbols x ≈R y, or
simply x ≈ y. The relation ≈ is an equivalence relation, and we call R thin, if ≈ is trivial.

Similarly we call N+
[x] = {x} ∪N+(x) the closed out-neighborhood of x, and define N−

[x] analogously. We say a structure
is S-thin if x ̸= y implies N+

[x] ̸= N+
[y] or N−

[x] ̸= N−
[y]. Thinness is relevant for the direct product and S-thinness for

the strong product.
We also need the Cartesian product G□H of simple graphs. As for all other products considered here its vertex set is

V (G) × V (H). Its edge set is defined as

E(G□H) =
{
(x, u)(y, v) | (xy ∈ E(G) ∧ u = v) ∨ (x = y ∧ uv ∈ E(H))

}
.

Cartesian multiplication is commutative, associative and K1 is a unit. Notice that

E(G ⊠ H) = E(G□H) ∪ E(G × H),

but that the analogous relation for more than two factors need not be true.
The Cartesian product is best understood and there are numerous strong results about automorphism breaking of

Cartesian products. Here we wish to extend some of them to the strong and the direct product of directed and undirected
graphs and to the Cartesian product of digraphs.

3. The direct product of digraphs

In this section we study prime factorizations of graphs and digraphs with respect to the direct product and characterize
the structure of the automorphism group of the direct product of indecomposable factors.

3.1. Decomposition functions vs. factorizations

We begin with several definitions that apply to all products that are defined on the Cartesian product of the vertex sets
of the factors. Let ∗ denote a symbol in {□ , ×,⊠}, let G be the product G = G1 ∗ G2 ∗ · · · ∗ Gk of k graphs and let i be any
index. The map pGi : G1 ∗ G2 ∗ · · · ∗ Gk → Gi defined by pGi (x1, x2, . . . , xk) = xi is called the ith projection map. Usually we
abbreviate it by pi.

For any fixed vertex a = (a1, a2, . . . , ak) of a product G = G1 ∗ G2 ∗ · · · ∗ Gk of k graphs, and for any index i, the Gi-layer
(or i-layer) through a is the subgraph Ga

i of G induced by the set {(a1, a2, . . . , xi, . . . , ak) | xi ∈ V (Gi)} of vertices of G. The
projection pGxi (y) : G → Gx

i is then defined by pGxi : y ↦→ (x1, . . . , xi−1, yi, xi+1, . . . , xk).
Note that the i-layers through two vertices a and b are equal, in symbols Ga

i = Gb
i , if and only if the jth projection satisfies

pj(a) = pj(b) for every index j ̸= i. We call two layers Ga
i , G

b
j parallel if i = j, and note that any two layers Ga

i , G
b
j are either

identical, disjoint, or share exactly one vertex.
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A graph G is prime, or irreducible, with respect to the product ∗ if G has at least two vertices and if G = G1 ∗ G2 implies
that G1 or G2 is isomorphic to G (and the other factor is the unit with respect to ∗).

We also need the concept of a decomposition function, as defined in [7].

Definition 1. Let G = G1 ×G2. Then the function f : V (G)2 → V (G) that maps (x, y) into the projection of y into the layer Gx
2

is called the decomposition function of Gwith respect to the decomposition G1 × G2.

Note that with x = (x1, x2) and y = (y1, y2), we have that f (x, y) = f ((x1, x2), (y1, y2)) = (x1, y2) and, similarly,
f (y, x) = (y1, x2). The function f can also be used to define two functions of a single variable:

f dx : V (G) → V (G) is defined by f dx (y) = f (x, y), and
fx : V (G) → V (G) is defined by fx(y) = f (y, x).

Observe that, for a given decomposition function g , the function gd, defined by gd(x, y) = g(y, x), is also a decomposition
function.

In Section 6.1 of [15] the concept of a box is defined for the Cartesian product. Generalizing this concept to arbitrary
products we define a box as a subproduct U1 ∗U2 ∗ · · · ∗Uk of a product G = G1 ∗G2 ∗ · · · ∗Gk, where Ui ⊆ Gi. A box is trivial if
all Ui but one have only one vertex. The vertices x, f (y, x), y, f (x, y) determined by a decomposition function f as described
above clearly constitute a box in G1 × G2. Furthermore, a subgraph S of G1 × G2 is a box in G1 × G2 if and only if x, y ∈ V (S)
implies that f (x, y) and f (y, x) are also in V (S).

We are now ready to formulate the following basic result of McKenzie on decomposition functions, namely Lemma 3.1
of [8].

Lemma 1. Let f , g be decomposition functions of a structure (V , R) that is R|R̆- and R̆|R-connected. Then fxgx ≈ gxfx for all x ∈ V .

Recall that a structure is thin if the equivalence classes of ≈ are one-element sets. Hence, for thin structures Lemma 1
implies that fxgx = gxfx.

McKenzie then invokes Theorem 5.6 of Chang, Jónsson and Tarski [7] that asserts that the validity of the conclusion of
Lemma 1 implies the so-called common refinement property, which in turn yields unique prime factorization for finite R|R̆-
and R̆|R-connected digraphs.

We follow amore direct approach that also enables us to describe the structure of the automorphisms groups of products
of prime graphs that are thin and R|R̆- and R̆|R-connected. We first show that Lemma 1 implies that layers in a product
representation of such graphs are boxes in any other representation.

Lemma 2. Let A× B and C × D be two representations of a graph G which is thin, R|R̆-connected and R̆|R-connected. Then every
layer of G with respect to A or B is a box in the representation C × D of G.

Proof. Let f be the decomposition function for A × B and g the one for C × D. Clearly fxgx = gxfx by Lemma 1, because G is
thin.

It suffices to show that every A-layer is a box. That means, for any two distinct vertices x, y in an A-layer Av through a
vertex v we have to show that gx(y) and gd

x (y) are also in Av . To facilitate the proof, note that z ∈ Av if and only if z = fx(z).
Let a = gx(y) and b = gd

x (y). Applying Lemma 1 to f and g we infer that

a = gx(y) = gx(fx(y)) = gxfx(y) = fxgx(y) = fx(gx(y)) = fx(a),

which implies that a ∈ Av . Similarly, but now by application of Lemma 1 to f and gd, we have that

b = gd
x (y) = gd

x (fx(y)) = gd
x fx(y) = fxgd

x (y) = fx(gd
x (y)) = fx(b).

Hence b ∈ Av . □

This immediately yields the following unique prime factorization theorem, first proved by McKenzie [8] by invoking
results from [7].

Theorem 1. Let G be a finite digraph that is thin, R|R̆- and R̆|R-connected. Then G is representable as a direct product of prime
graphs, and this presentation is unique up to isomorphisms and the order of the factors.

Proof. BecauseG is finite, theremust be a representation ofG as a product of factorswith at least twovertices and amaximum
number of factors. Clearly these factors have to be prime, otherwise the number of factors would not be maximal. Hence
there always exists a prime factorization.

To prove uniqueness consider two prime factorizations

G ∼= P1 × · · · × Pk ∼= Q1 × · · · × Ql,
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and let ϕ be the isomorphism between them. Choose a vertex v ∈ V (G) and an index i ∈ {1, . . . , k}. By Lemma 2, ϕ(Pv
i )

is a box in Q1 × · · · × Ql. It must be trivial, because Pi is prime, and thus contained in a Qj-layer for some j. In symbols,
ϕ(Pv

i ) ⊆ Q ϕ(v)
j .

For the same reason, ϕ−1(Q ϕ(v)
j ) ⊆ Pv

r for some r . We wish to show that r = i. To see this we first observe that Pi has at
least two vertices. Hence, there must be another vertex besides v in Pv

i , say u. Clearly both ϕ(v) and ϕ(u) are in Q ϕ(v)
j . But

then both u and v are in ϕ−1(Q ϕ(v)
j ) ⊆ Pv

r . Since they are also in Pv
i we infer that r = i, and therefore ϕ(Pv

i ) = Q ϕ(v)
j .

This means that to any i ∈ {1, . . . , k} there is a π (i) ∈ {1, . . . , ℓ} such that ϕ(Pv
i ) = Q ϕ(v)

π (i) . If i ̸= i′ and i′ ∈ {1, . . . , k},
then π (i) ̸= π (i′), because Pv

i ̸= Pv
i′ , and hence also Q ϕ(v)

π (i) ̸= Q ϕ(v)
π (i′) . This implies that π is injective, and so k ≤ ℓ. Reversing

the argument we see that k = ℓ and that π is a permutation.
Because Pi ∼= Pv

i
∼= Q ϕ(v)

π (i)
∼= Qπ (i) the prime factorization is unique up to isomorphisms and the order of the factors. □

For the Cartesian product unique prime factorization holds for connected graphs as has been shown first by Sabidussi [16]
and then by Vizing [17]. There are many different ways to prove it, but we wish to remark that the proof of the Sabidussi–
Vizing Theorem in [15] is similar to the proof of Theorem 1. The proof in [15] uses the fact that convex subgraphs are boxes
in Cartesian products. For Cartesian products this implies that layers are boxes, which is used here.

3.2. Automorphisms of direct products of digraphs

The following theorem describes the structure of the automorphism group of the direct product of prime graphs under
the above thinness and connectivity conditions. It is exactly the same as the structure of the groups of Cartesian products of
connected, prime graphs, see [15, Theorem 6.10].

The key is to prove that the permutation π whose existence was shown in Theorem 1, and which might depend on the
choice of v, is actually independent of v.

Theorem 2. Suppose ϕ is an automorphism of a thin, R|R̆- and R̆|R-connected finite digraph G with prime factorization
G = G1 × G2 × · · · × Gr . Then there exist a permutation π of {1, 2, . . . , r} and an isomorphism ϕi:Gπ (i) → Gi for every i
such that

ϕ(x1, x2, . . . , xr ) = (ϕ1(xπ (1)), ϕ2(xπ (2)), . . . , ϕr (xπ (r))), (1)

for every vertex (x1, x2, . . . , xr ) ∈ V (G).

Proof. Let ϕ be an automorphism of G = G1 × G2 × · · · × Gr . It is an isomorphism from G1 × G2 × · · · × Gr to itself and by
Theorem 1 there is a permutation πv for every v ∈ V (G) such that ϕ(Gv

i ) = Gϕ(v)
πv

for every i ∈ {1, . . . , r}.
We show first that πv = πv′ if v, v′ differ in exactly one coordinate, say in coordinate t . Suppose l = πv(i) ̸= πv′ (i) = m.

Consider a vertex x ∈ Gv
i and the vertex x′

∈ Gv′

i with x′

i = xi. Since xt = vt and x′
t = v′

t we infer that xt ̸= x′
t . All other

coordinates are the same, hence x, x′
∈ Gx

t , and ϕ(x), ϕ(x′) are in ϕ(Gx
t ), hence ϕ(x), ϕ(x′) differ only in coordinate, namely

πx(t), which contradicts

ϕ(x)l ̸= ϕ(v)l = ϕ(v′)l = ϕ(x′)l, ϕ(x)m = ϕ(v)m = ϕ(v′)m ̸= ϕ(x′)m,

unless l = πv(i) = πv′ (i) = m. Hence πv = πv′ if v, v′ differ in exactly one coordinate. Because to any two vertices u, v there
is a sequence of vertices u = u0, u1, . . . , ur = v, where successive elements differ in only one coordinate, we infer that π is
independent of v.

We also observe that ϕ(x)j = ϕ(x′)j if j ̸= πx(t) = π (t).
Suppose x and x′ have the same ith coordinate, xi = x′

i . Then there is a chain x = u0, u1, . . . , ur = x′, where successive
elements have the same ith coordinate, but otherwise differ in only one coordinate. By the above, ϕ(x)π (i) = ϕ(x′)π (i). This
means, if xi = x′

i , then ϕ(x)π (i) = ϕ(x′)π (i). If we now define

ϕπ−1(i) : xπ−1(i) ↦→ ϕ(x′)i

then

ϕ(x1, x2, . . . , xr ) = (ϕ1(xπ (1)), ϕ2(xπ (2)), . . . , ϕr (xπ (r))).

To show that ϕi is an isomorphism from Gπ (i) to Gi consider an arcwz ∈ E(Gπ (i)). There are elements xy in E(G) with xπ (i) =

w and yπ (i) = z. ϕ maps xy into ϕ(x)ϕ(y) ∈ E(G) and so ϕ(x)iϕ(y)i ∈ E(Gi). The observation that ϕ(x)i = ϕi(xπ (i)) = ϕi(w) and
ϕ(y)i = ϕi(yπ (i)) = ϕi(z) completes the proof. □

We remark that the factors in a representation G = G1 × G2 × · · · × Gr are thin and R|R̆- and R̆|R-connected if and only if
this is the case for G.

We continue with the special cases of the direct product of graphs and the strong product of graphs and digraphs.
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3.3. The direct product of graphs

Suppose that G is a graph6 whose corresponding structure is thin and R|R̆- and R̆|R-connected. Then G has to be thin and
there must be a path of even length between any two vertices of G, which is only possible if G is nonbipartite.

This means that Theorems 1 and 2 also hold for the direct product of thin graphs that are connected and nonbipartite.

3.4. The strong product of graphs and digraphs

As already mentioned, the strong product G ⊠ H of two graphs or digraphs G and H without loops can be obtained by
addition of a loop to every vertex of G and H , formation of the direct product of the new graphs or digraphs, and subsequent
deletion of the loops from the product.

Let L(G) and L(H) be obtained from G and H by the addition of loops. Clearly Theorems 1 and 2 hold when L(G) and L(H)
are thin and R|R̆- and R̆|R-connected.

Let us consider thinness first. Clearly the in- or out-neighborhood of a vertex x in L(G) is the closed in- or out-
neighborhood of x in G. Hence, two vertices x and y have the same in- or out-neighborhoods in L(G) if and only if they
have the same closed in- or out-neighborhoods in G. This implies that L(G) is thin if and only if G is S-thin.

Now suppose that xRy holds in G. Then xRyR̆y and xR̆yRy hold in L(G), which means that x is R|R̆- and R̆|R-connected to y
in L(G). Similarly one shows that this is also valid if xR̆y holds.

Therefore the graph or digraph G is S-thin and connected7 if and only if L(G) is thin and R|R̆- and R̆|R-connected.
Hence Theorems 1 and 2 also hold for the strong product of S-thin, connected graphs and digraphs.

4. Asymmetric colorings of strong and direct products

In this section we extend two theorems for Cartesian products to the direct and the strong product of finite graphs. The
first one is the main result of [6].

Theorem 3 ([6, Theorem 6]). Let G and H be connected graphs such that

|G| ≤ |H| ≤ 2|G|
− |G| + 1. (2)

Then D(G□H) ≤ 2 unless G□H ∈ {K □,2
2 , K □,2

3 }.8

Actually Theorem 6 in [6] also lists K 3
2 as an exception, but strictly speaking this is not correct, because the product G□H

does not satisfy Eq. (2) if G = K2 and H = K □,2
2 .

However, K □,3
2 is a proper exception in the second theorem that we will generalize. It comprises Theorem 1.1 of [18] and

the remarks following it.

Theorem 4 ([18]). Let G be a connected graph and k ≥ 2. Then D(G□,k) = 2 except for the graphs K □,2
2 , K □,3

2 and K □,2
3 , whose

asymmetric coloring number is three.

The key idea in this section is that, given a direct or strong product G of prime graphs or digraphs, there is a Cartesian
product H of complete graphs with the same set of vertices such that Aut(G) is a subgroup of Aut(H), both groups being
considered as permutation groups. In this case, every asymmetric coloring of the vertices ofH also is an asymmetric coloring
of G.

To see this, let G = G1 × G2 × · · · × Gr be a prime factorization of a thin, R|R̆- and R̆|R-connected digraph. Replace every
Gi by an undirected complete graph KGi on the same set of vertices as Gi. Since complete graphs are prime and because
the automorphism group of the complete graph on a set V is the full symmetric group on V , Theorem 2 ensures that
Aut(G) ≤ Aut(KG), where KG = KG1 □ KG2 □ · · · □ KGr . We formulate this as a lemma.

Lemma 3. Let G = G1 ×G2 ×· · ·×Gr be a prime factorization of a thin, R|R̆- and R̆|R-connected digraph and KGi be the complete
graph with vertex set V (Gi). Then

Aut(G1 × G2 × · · · × Gr ) ≤ Aut(KG1 □ KG2 □ · · · □ KGr ).

Clearly the lemma also holds when the Gi are thin, connected non-bipartite graphs. It also holds for the strong product
G1 ⊠ · · · ⊠ Gr , when the Gi are S-thin connected graphs or digraphs.

We first extend Theorem 3 when |V (G)| · |V (H)| ≥ 10. Its proof uses the prime factorizations of G = G1 □ · · · □Gr and
H = H1 □ · · · □Hs and also holds when all factors are complete, because complete graphs are prime with respect to the
Cartesian product.

6 We allowed loops in the case of directed graphs. We also have to allow them here, otherwise we could not use the results about the direct product of
directed graphs.
7 Recall that G is connected if the corresponding structure (V , R) is R ∪ R̆ connected.
8 Here G□,k denotes the kth power of Gwith respect to the Cartesian product.
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This means, if G = G1 × · · · × Gr and H = H1 × · · · × Hs are the unique prime factorizations of G and H , where G and H
are thin digraphs whose corresponding structures are R|R̆- and R̆|R-connected then

Aut(G × H) ≤ Aut(KG1 □ · · · □ KGr □ KH1 □ · · · □ KHs ).

If G,H satisfy (2) and |V (G × H)| ≥ 10, then

KG1 □ · · · □ KGr □ KH1 □ · · · □ KHs

is 2-distinguishable, and hence also G × H . We thus infer the following lemma.

Lemma 4. Let G, H be thin, R|R̆- and R̆|R-connected digraphs that satisfy (2). If |V (G × H)| ≥ 10, then D(G × H) ≤ 2.

Again, the lemma also holds for thin, connected non-bipartite graphs and with respect to the strong product of S-thin
connected graphs or digraphs.

We now consider the case when |V (G)| · |V (H)| ≤ 9 and G and H satisfy (2). This means that (|V (G)|, |V (H)|) ∈

{(2, 2), (2, 3), (3, 3)}.
We begin with a consideration of all thin, R|R̆- and R̆|R-connected digraphs on 2 and 3 vertices. For two vertices there are

two such graphs, one consists of an arc with loops at both ends, say L, and the other of an edge and a loop at one endpoint,
say K . Both graphs are asymmetric.

To treat the case with three vertices we introduce the concept of the shadow Gs of a directed graph G.9 It is a simple
graph with the same vertex set as G, where two vertices x and y are adjacent whenever xRy or xR̆y holds in the structure
corresponding to G. Clearly Aut(G) ≤ Aut(Gs), and therefore D(G) ≤ D(Gs).

The shadow Gs of a connected digraph G on three vertices is a path of length 2 or a K3. In the first case Gs is 2-
distinguishable, and thus also G. In the second case G is 2-distinguishable if there is at least one pair of vertices x, y where
xRy or xR̆y, but not both. Hence, Gmust be undirected unless it is 2-distinguishable. If it has two or three loops, then it is not
thin, if it has only one loop, then it is 2-distinguishable.

Thus K3 is the only thin, R|R̆- and R̆|R-connected digraph that is not 2-distinguishable.
Let us now consider products G × H of type (2, 2). Both factors are prime and asymmetric. By Eq. (1) a nontrivial

automorphismmust interchange the factors. If we color the vertices of one G-layer black and the vertices of the other white,
this is not possible any more. Hence all such products are 2-distinguishable.

For productsG×H of type (2, 3) it is clear that the factors cannot be interchanged and that theH-layersmust be preserved
because G is asymmetric. We now color the three G-layers such that one has no black vertex, the second one black vertex,
and the third two. This breaks all automorphisms and G × H is 2-distinguishable.

Now to productsG×H of type (3, 3). Suppose one factor, sayG, is 2-distinguishable. ThenG has a distinguishing 2-coloring
with one black and two white vertices. We use this coloring for one G-layer. In one of the two other G-layers we color the
two vertices black whose H-layer does not contain the black vertex of the first layer. In the third all vertices are left white.
Hence there is a G-layer with no black vertex, but allH-layers have a black vertex. This ensures that the set of G layers cannot
be mapped into the set of H-layers. It is easy to see now that this is an asymmetric 2-coloring.

The only case left is K3 × K3. Its automorphism group is the same as that of K3 □ K3, and it is well known (and easy to see)
that D(K3 □ K3) = 3.

We have thus shown that the direct product G × H of two thin, R|R̆- and R̆|R-connected digraphs that has at most nine
vertices and satisfies (2) is 2-distinguishable unless G × H = K3 × K3.

If we consider graphs instead of digraphs, we have the same exception. Combining thiswith Lemma 4 and the observation
that the lemma also holds for thin, connected non-bipartite graphs, we obtain the following theorem.

Theorem 5. Let G and H be thin, R|R̆- and R̆|R-connected digraphs, or thin, connected non-bipartite graphs, such that

|G| ≤ |H| ≤ 2|G|
− |G| + 1.

Then D(G × H) ≤ 2, unless G × H = K3 × K3. □

Strong product of digraphs and graphs.Herewe only have to observe that K3 is not S-thin. Hencewe have no exceptions
in this case. Together with the observation that Lemma 4 also holds with respect to the strong product for S-thin, connected
graphs and digraphs we obtain the following result.

Theorem 6. Let G and H be S-thin, connected digraphs or graphs such that

|G| ≤ |H| ≤ 2|G|
− |G| + 1.

Then D(G ⊠ H) ≤ 2. □

9 We will use this concept again in the next section.
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Powers of direct and strong products.Wewish to extend Theorem 4 to the direct and the strong product. The theorem
asserts that all powers of connected graphswith respect to the Cartesian product are 2-distinguishable, except for the graphs
K □,2
2 , K □,3

2 , K □,2
3 ,whose asymmetric coloring number is 3. It turns out that only one exception remains and that the following

theorem holds. It is new for digraphs, for graphs it has been shown in [18].

Theorem 7. Let G be a thin, R|R̆- and R̆|R-connected digraph, or a thin, connected non-bipartite graph. Then any power of G with
respect to the direct product that is different from K3 × K3 is 2-distinguishable.

If G is S-thin and connected, then all powers of G with respect to the strong product are 2-distinguishable.

Proof. By Lemma 4 we only have to consider the exceptional cases, that is, the second power of graphs on two and three
vertices, and the third power of graphs on two vertices. The first cases are already covered by Theorems 5, 6 and yield the
exception K3 × K3.

For the remaining case we recall that there are only two thin, R|R̆- and R̆|R-connected digraphs, namely a single edge
with a loop at one endpoint and a single arc with loops at both endpoints. We named them L and K . Let G be a product
of three factors G1, G2, G3 ∈ {K , L}. Let the vertex set of both K and L be {0, 1}, where vertex 1 carries the loop in K , and
where it is the origin of the arc in L. To obtain an asymmetric 2-coloring of G1 × G2 × G3 it suffices to color the vertices
(1, 0, 0), (0, 1, 0), (0, 1, 1) black and to leave the others white. Hence there is no further exception for the direct product,
and thus also not for the strong product as it can be considered as a subcase of the direct product. □

5. Graphs that are not thin

A graph G is not thin if it at least one equivalence class of≈ is nontrivial. If ũ is such a class, then any two elements x, y ∈ ũ
have the same neighbors, and the permutation of V (G) that interchanges x, y and fixes all other vertices is an automorphism.
In order to break it by a vertex coloring, x and y must be assigned different colors. Hence, the asymmetric coloring number
D(G) is at least maxx∈V (G) |x̃|. We denote this number by b(G).

Such a coloring may not break all automorphisms of G, because Aut(G) may permute equivalence classes of ≈. Hence we
need extra colors to distinguish the orbits of the action of Aut(G) on the equivalence classes of ≈. This number is clearly
bounded by D(G/≈), that is, by the asymmetric coloring number of the quotient of G by ≈. This is the graph whose vertices
are the equivalence classes of G by ≈, where x̃, ỹ ∈ E(G/≈) if xy ∈ E(G). Hence

b(G) ≤ D(G) ≤ b(G) + k,

where k is the smallest nonnegative integer for which

D(G/≈) ≤

(
b(G) + k
b(G)

)
.

If G is a strong or direct product of one of our classes of graphs, then D(G/≈) also is a direct or strong product. As D(G/≈)
is thin, we can use the above estimates of the asymmetric coloring number of D(G/≈) for an estimate of D(G).

Let us mention in passing that under our connectivity assumptions unique prime factorization of D(G/≈) implies unique
prime factorization of G.

6. Asymmetric colorings of Cartesian products of digraphs

For the definition of the Cartesian product of digraphs, with or without loops, we can verbatim use the definition of the
Cartesian product for undirected graphs given in Section 2. It has K1 as a unit, and is commutative and associative. Prime
factorization of connected graphs is unique, if they have at least one vertex without a loop, see [19].

Here we extend three theorems about the asymmetric coloring number of Cartesian products to Cartesian products of
digraphs. The first one is a theorem about the Cartesian product of infinite graphs [6, Theorem 9]: It asserts that the Cartesian
product of two countably infinite connected graphs is 2-distinguishable. The other two are Theorems 3 and 4.

The extension is based on two main properties of the Cartesian products of digraphs. The first is that the automorphism
group of a directed graph G is a subgroup of the automorphism of its shadow Gs, that is, Aut(G) ≤ Aut(Gs). Hence
D(G) ≤ D(Gs). The second that (G□H)s = Gs □Hs.

Combining these remarks we infer that D(G□H) ≤ D(Gs □Hs), which immediately yields Theorem 8 as a generalization
of [6, Theorem 9].

We wish to remark that the results we invoke use unique prime factorizations for the shadows Gs and Hs, but not of G
and H . Hence, we do not have to require that G and H have at least one vertex without a loop.

Theorem 8. Let G and H be countably infinite, connected digraphs with or without loops. Then D(G□H) ≤ 2.

For the extension of the other results it remains to investigate the cases when the shadow is K □,2
2 , K □,3

2 or K □,2
3 . It is

easily seen that a directed graph whose shadow is K2 or K3 is 2-distinguishable unless it is K2, K3, L(K2) or L(K3). One
also readily shows that products of these 2-distinguishable (and prime) graphs are also 2-distinguishable. This yields the
following theorems.
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Theorem 9. Let G and H be two digraphs (possibly with loops) such that

|G| ≤ |H| ≤ 2|G|
− |G| + 1.

Then D(G□H) ≤ 2 unless G,H ∈ {K2,L(K2)} or G,H ∈ {K3,L(K3)}.

Theorem 10. Let G be a connected digraph and k ≥ 2. Then D(G□,k) = 2 except for the second and third powers of the graphs
K2, L(K2) and the second power of the graphs K3, L(K3). In the exceptional cases the asymmetric coloring number is three.

We conclude with the remark that Theorem 4 was extended to countably infinite graphs and infinite powers in [6], and
that these generalizations hold verbatim for digraphs too, thereby extending Theorem 10.
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