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a b s t r a c t

The distinguishing number of a group A acting on a finite set Ω ,
denoted by D(A,Ω), is the least k such that there is a k-coloring
of Ω which is preserved only by elements of A fixing all points
in Ω . For a map M , also called a cellular graph embedding or
ribbon graph, the action of Aut(M) on the vertex set V gives
the distinguishing number D(M). It is known that D(M) ≤ 2
whenever |V | > 10. The action of Aut(M) on the edge set E
gives the distinguishing index D′(M), which has not been studied
before. It is shown that the only maps M with D′(M) > 2 are
the following: the tetrahedron; the maps in the sphere with
underlying graphs Cn, or K1,n for n = 3, 4, 5; a map in the
projective plane with underlying graph C4; two one-vertex maps
with 4 or 5 edges; one two-vertex map with 4 edges; or any map
obtained from these maps using duality or Petrie duality. There
are 39 maps in all.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The distinguishing number of a group A acting on a finite set Ω is the least number of colors
needed to color the elements of Ω such that the only color-preserving elements of A are those
that fix all elements of Ω . If A = Aut(G) is the automorphism group of a graph G, then the
distinguishing number of G, denoted by D(G), is the distinguishing number of the action of A
on the vertex set of G. Since its introduction by Albertson and Collins [1] more than 20 years
ago, there has developed an extensive literature on the distinguishing number of a graph (and
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actually, there is a much earlier, but less known, paper by Babai [3]). Albertson and Collins were
motivated by a recreational ‘‘necklace’’ problem equivalent to finding D(Cn) for the cycle Cn. The
distinguishing number, however, had an independent separate history in the theory of permutation
groups unknown to graph theorists until recently [4]. In particular, the case D(A,Ω) = 2 is
equivalent to the action of A onΩ having a regular orbit in the action of A on the set of subsets ofΩ .
Gluck [8] showed that D(A,Ω) = 2 when |A| > 1 is odd, and Cameron et al. [5,17]) showed all but
finitely many primitive permutation groups have D(A,Ω) = 2. For examples of the distinguishing
number of various other actions of automorphism groups of combinatorial structures see [6]. For
graphs G, when we look at the action of Aut(G) on edges instead of vertices, we get the distinguishing
index D′(G) introduced in [11].

A map M is an embedding of a connected graph G in a closed, possibly non-orientable, surface
S such that each component of the complement of G in S, called a face, is homeomorphic to the
interior of the unit disk in R2. The embedding is determined by a cyclic ordering (‘‘orientation’’) of
the edge-ends incident to each vertex, called a rotation system, together with an information on each
edge whether it preserves (type 0 or ‘‘untwisted’’) or reverses (type 1 or ‘‘twisted’’) the rotations
at its endpoints. This structure was called a band composition in [9] but more often now a ribbon
graph [7].

For a map M , the distinguishing number D(M), respectively the distinguishing index D′(M), come
from the action of Aut(M) on vertices, respectively edges. Tucker [18,19] has classified all finite maps
with D(M) > 2; they all have at most 10 vertices, but their structure is quite complicated, with 31
different underlying graphs and at least 70 different maps.

The classification for D′(M) > 2 given in this paper is much easier, but depends on duality
and Petrie duality. A formal description of duality and Petrie duality uses the monodromy of the
map [10]. We give here a more intuitive, pictorial description. The dual M∗ of map M is obtained
by placing a vertex at each face center and joining them by edges ‘‘perpendicular’’ to the original
edges. The underlying surface remains the same, but the underlying graph can change. For Petrie
dual MP , we imagine the map as a described by oriented small disk neighborhoods around each
vertex joined by thin rectangular neighborhoods (or ‘‘ribbons’’) for the edges. If the ribbon has an
orientation that agrees with the orientation of the disks at its endpoints, it is untwisted; if not, it is
twisted. The Petrie dual replaces untwisted edges by twisted edges, and twisted edges by untwisted
edges. The underlying graph is the same but the underlying surface, including its orientability, may
be changed.

Given any map M the number of different maps one can obtain by repeatedly taking duals and
Petrie duals is 1, 2, 3 or 6 [10,12,22]. The set of such maps we call the triality class of M . An important
observation is that the action of Aut(M∗) on the edges of M∗ and the action of Aut(MP ) on the edges
of MP (which are the same as the edges of M) are equivalent to the action of Aut(M) on its edges.
Thus D′(M) = D′(M∗) = D′(MP ), so the distinguishing index is constant on triality classes. For this
reason, our analysis of D′(M) is dominated by triality.

An edge of a graph is a loop if it has one endpoint, and proper otherwise. A proper edge is parallel
if there is another edge with the same endpoints, and simple otherwise. A graph is simple if all its
edges are simple. The graph with a single vertex and n edges is a bouquet, and denoted by Bn.
The graph with two vertices, n parallel edges, and no loops is a dipole, and denoted by Dn. A major
difficulty with the distinguishing index of a map is that, unlike the distinguishing number, one must
allow loops and parallel edges since they arise naturally in triality classes. In fact, for three of the
maps with D′(M) > 2, we use maps with underlying graph a bouquet or dipole, because none of
the maps in the triality class is simple. For the two bouquets, we describe the map simply by giving
the cyclic order of edge-ends (each edge is a loop) at the single vertex. For example for the bouquet
of two loops labeled 1, 2, there are two possible cyclic orders: 1122 and 1212.

Throughout this paper, we let Sg denote the orientable surface of genus g , and we let Nc denote
the non-orientable surface with c crosscaps (with Euler characteristic χ (Nc) = 2 − c). We list our
maps by first giving the surface and then the underlying graphs, so for example the tetrahedron is
S0K4. In only a very few cases are there two maps with the same surface and underlying graph.



M. Pilśniak and T. Tucker / European Journal of Combinatorics 84 (2020) 103034 3

Table 1
Triality classes of maps from Theorem 1.1.
M M∗ MP M∗P MP∗ M∗P∗

S0K4 M N1K4 MP N1Cd
3 MP∗

S0K1,n, n = 3, 4, 5 S0Bn M NnBn M∗ M∗P

S0C3 S0D3 N1C3 S1D3 N1BA
3 S1BA

3

S0C5 S0D5 N1C5 S2D5 N1BA
5 S2BA

5

S0C4 S0D4 M S1D4 M∗ M∗P

N1C4 N1BA
4 M S2BA

4 M∗ M∗P

S1B4 S1Bd
2 N4B4 M∗ MP M

N1D4 N1Bd
2 N2D4 M∗ MP M

S2B5 S2D5 N5B5 M∗ MP M

Theorem 1.1 (The Classification of Maps M with D′(M) > 2). Suppose that D′(M) > 2. Then M is in the
triality class of one of the following maps. All but the first have 5 or fewer edges, and all have D′(M) = 3.
(1) The tetrahedron S0K4;
(2) The map S0K1,n of the star K1,n in the sphere for n = 3, 4, 5;
(3) The map S0Cn of a cycle Cn in the sphere for n = 3, 4, 5 and the map N1C4 for the cycle C4 in the
projective plane;
(4) The one-vertex maps S1B4 and S2B5 with cyclic order of edge-ends, respectively 14213243 and
1521324354;
(5) A two-vertex map N1D4 in the projective plane.

There are 39 maps in all (see Table 1). All have a bouquet or dipole in their triality class except for
the tetrahedron S0K4, and even it has parallel edges in its triality class. All except S0C3, S0C5 have three
members in their triality class. The only simple graphs underlying a map with D′(M) > 2 are K4, Cn, K1,n
for n = 3, 4, 5.

Table 1 lists all maps with D′(M) > 2. We identify the map M as in the Theorem, while the
columns M∗,MP ,M∗P ,MP∗,M∗P∗ give the other members of the triality class of M . If there are only
three members of a triality class, then the other three entries indicate which earlier member of the
class the same map. For a bouquet, the superscript A denotes the antipodally symmetric cyclic order
of edge-ends: 123123, 12341234, or 1234512345.

We note that Petrie duality does not change the underlying graph, and duality does not change
the underlying surface. Finally, the Petrie dual of an orientable map is non-orientable if and only if
the underlying graph is not bipartite. In particular, for a bouquet in an orientable surface, the Petrie
dual is the same bouquet in a non-orientable surface, and for a dipole in an orientable surface,
the Petrie dual is the same dipole in an orientable surface. The only underlying graphs that are not
simple, a bouquet or a dipole are the doubled 3-cycle Cd

3 , and the graph Bd
2 obtained by inserting

a valence 2 vertex in each loop of B2.
Planar graphs were considered by Pilśniak in [14] in a context of a distinguishing index. In

particular, it was shown that D′(G) ≤ 2 for 4-connected planar graphs and D′(G) ≤ 3 for 3-connected
planar graphs. Theorem 1.1 implies the following corollary, confirming a conjecture that K4 is the
only 3-connected planar graph with the distinguishing index 3.

Corollary 1.2. If G is 3-connected planar graph, then D′(G) ≤ 2 except for D′(K4) = 3.

The organization of this paper is as follows. In Section 2, we address triality in more detail, and
describe the triality classes for each of the maps given in the classification theorem. In Section 3 we
discuss properties of vertex and edge stabilizers. In Section 4, we use these properties to show that
if M has a loop and D′(M) > 2, then M is a bouquet. We then classify bouquets with D′(M) > 2.
In Section 5, we show that if D′(M) > 2 and M has parallel edges, then with two exceptions, M
is a dipole. We then classify dipoles with D′(M) > 2. In Section 6, we show the only maps with
simple underlying graph and no vertex of valence 1 or 2 are the tetrahedron and its Petrie dual. In
Section 7, we discuss some alternative approaches to proving the classification.
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Fig. 1. Flags for the edge AB.

2. Triality and examples

If one views a map as a vertex–edge–face incidence structure represented by the flags of
a barycentric subdivision, one can give a purely algebraic description of a map as a permutation
group generated by three involutions x, y, z with x, y commuting, where the involutions provide
the gluing instructions, or monodromy, for the flags [10,20,21]. One can view each flag as a right
triangle with one leg a between a vertex and an edge midpoint, another leg b between an edge
midpoint and a face center on one side of the edge, and a hypotenuse c between a vertex and face
center (see Fig. 1). Four flags lie on each edge, even if the edge is a loop or lies on only one face.
Then x gives instructions for gluing together pairs of a legs, y gives instructions for gluing together
pairs of b legs, and z gives instructions for gluing together pairs of c hypotenuses. An orbit of ⟨x, y⟩
gives the four flags incident to an edge: in particular (xy)2 = 1. An orbit of ⟨y, z⟩ gives the flags
around a face, and an orbit of ⟨x, z⟩ gives the flags around a vertex. We note that in general, the
involutions may have singleton orbits, leading to maps with boundary and ‘‘semi-edges’’. In this
paper, we do not allow this.

The marking of generators x, y, z is as important as the group they generate. For example,
generators y, x, z (in that order) give the dual map M∗, and x, xy, z give the Petrie dual MP . Since
⟨x, y⟩ = Z2 × Z2, there are six possible ordered pairs of non-identity elements we can choose for
the marked generators x, y. These correspond to all the possible different maps one can obtain from
M by repeated application of duality and Petrie duality. We call this collection the triality class of
M; in particular it contains 1, 2, 3 or 6 maps.

The automorphism group Aut(M) for a map with underlying graph G is the centralizer of the
monodromy group in the full symmetric group on the flags: for a permutation of the flags to
be a map automorphism, it must respect the gluing and take adjacent flags to adjacent flags. The
most important observation about Aut(M) is that only the identity can fix a flag. It follows that
the stabilizer of an edge is a subgroup of the Klein four group V4 = Z2 × Z2. The most important
observation for D′(M) is that no matter what ordered pair of generators from ⟨x, y⟩ we choose,
the action of Aut(M) is the same on edges, which correspond to orbits of the subgroup ⟨x, y⟩. We
summarize:

Proposition 2.1. For any map M, we have D′(M) = D′(M∗) = D′(MP ). In particular, the distinguishing
index is constant on triality classes.

We note that one usually assumes the action of A on Ω is faithful, that is, A is a permutation
group on Ω . Then one requires that the only color-preserving element of A is the identity. In our
definition, we specify only that any color-preserving element of A acts as the identity, but is not
necessarily the identity in A. That is, we allow actions that are not faithful. The reason for this is
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Fig. 2. The Petrie dual of the tetrahedron in the projective plane.

Fig. 3. The Petrie dual of the cycle C3 in the projective plane.

that although Aut(M) acts semi-regularly (without fixed flags), it might not act faithfully on edges,
vertices or faces. As an extreme example, we have

Example 2.2. Let M be the map consisting of a single loop in the projective plane. Then MP has
one vertex, one edge, and one face, and yet Aut(M) = Z2 × Z2.

2.1. Explanation of table

Now we explain some of the entries in Table 1.

Example 2.3 (The Tetrahedron). The tetrahedronM = S0K4 is self-dual, so its triality class has at most
3 maps. The Petrie dual N1K4 is in the projective plane, as shown in Fig. 2. Its dual N1Cd

3 has the
doubled 3-cycle as the underlying graph. The automorphism group Aut(S0K4) is the full symmetric
group Σ4.

Example 2.4 (Stars). Let M = S0K1,n the map of the star K1,n in the sphere. Clearly MP
= M so the

triality class has three members. The dual M∗
= S0Bn is the bouquet Bn in the sphere. Its Petrie dual

NnBn has one vertex, and one face of size 2n in the non-orientable surface of Euler characteristic
χ = 1 − n + 1 = 2 − n.

Example 2.5 (Cycles). Let M = S0Cn be the map of a cycle of length n as the equator in the sphere.
Its dual S0Dn is the dipole in the sphere with one vertex at the north pole and one at the south
pole, joined by n longitudes. When n is odd, the Petrie dual MP

= N1Cn is a cycle of length n in the
projective plane with one face (see Fig. 3); its dual MP∗

= N1BA
n , again in the projective plane, has

one vertex and n faces of size two.
Also when n is odd, M∗P

= S1+(n−3)/2Dn is a map with one face and two vertices in the surface
of genus 1 + (n − 3)/2. Its dual, M∗P∗

= S1+(n−3)/2BA
n is a bouquet in the same surface viewed as

a 2n-gon with antipodal sides identified. The automorphism group Aut(S0Cn) is Din ×Z2, where Din
is the dihedral group of order 2n, and the Z2 action is the reflection interchanging the northern
and southern hemispheres, but fixing all vertices and edges. In particular, the action of Aut(S0Cn)
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Fig. 4. Maps of the bouquet B4 = 14213243 and its dual Bd
2 in the torus.

Fig. 5. Maps of the dipole D4 and its dual Bd
2 in the projective plane.

on either the vertex set or the edge set is not faithful. By the necklace problem, D′(S0Cn) = 2 for
n > 5, and D′(S0Cn) = 3 for n = 3, 4, 5.

When n is even, M = S0Cn is again a cycle of length n in the sphere, but now MP
= M and there

are only three members of the triality class. Again, M∗
= S0Dn is again a dipole in the sphere. The

third member of the triality class is M∗P
= S1+(n−4)/2Dn, a self-dual map with two vertices and two

faces in the orientable surface of genus 1+(n−4)/2. Also when n is even, there is another map N1Cn
in the projective plane, which looks just like N1Cn for odd n. Then M∗

= N1BA
n is a one-vertex map

again in the projective plane, and its Petrie dual M∗P
= SBA

n is a one-vertex map in an orientable
surface with viewed again as a 2n-gon with antipodal sides identified.

Example 2.6. Consider the map with the underlying graph the bouquet Bn with the cyclic rotation
1n213243 . . . n(n − 1). Fig. 4 shows S1B4, S1B∗

4, S1B
∗P
4 . Note that the underlying graph for S1B∗

4 has
one vertex of valence 4 and two of valence 2, giving us Bd

2. The same graph underlies the dual of
N1D4 (see Fig. 5).

Remark. For all of these maps, except for S0K P∗

4 , S2B
∗

4 and N1D∗

4, if there are parallel edges, then the
underlying graph is the dipole. If there are loops, the underlying graph is a bouquet. For S0Cn, the
automorphism group does not act faithfully on edges.

3. Edge stabilizers and vertex stabilizers

The distinguishing index of a map depends almost entirely on the way an edge stabilizer acts on
incident vertices and faces, and the way a vertex stabilizer acts on incident edges. We first consider
edge stabilizers. We recall at the outset that Aut(M) acts semi-regularly on flags, that is, the only
automorphism fixing a flag is the identity. On the other hand, as we see from Example 2.2, it is
possible for an edge-stabilizer to act trivially on edges (as well as vertices and faces).

Proposition 3.1. Let e be an edge of the map M. Then the stabilizer Stab(e) ⊂ Aut(M) acts faithfully
on the four flags incident to e as a subgroup of the Klein group V4 = Z2 × Z2. In particular, there is
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at most one element of Stab(e) that interchanges the edge-ends, but fixes the edge-sides; at most one
that interchanges edge-sides, but fixes edge-ends; and at most one that interchanges both edge-ends
and edge-sides. Each of these automorphisms can stabilize all other edges, so the action of Stab(e) on
the edges of M need not be faithful.

Next, we consider vertex stabilizers. Given a vertex v in a map M , choosing one of the two local
orientations at v defines a cyclic order or rotation of the edge-ends incident to v; we use the term
edge-ends because we allow loops in the graph underlying a map. The stabilizer of a vertex v of
valence n > 2 induces a faithful action of a subgroup of the dihedral group Din on the edge-ends
incident to v. On the other hand, since two ends can belong to the same edge, this action may not
extend to a faithful action on all edges (as happens with the map with one vertex, one face, and two
loops in the torus). Moreover, if v has valence 2, its stabilizer may not act faithfully on edge-ends:
there can be a reflection fixing the two incident edges but interchanging the two incident faces.

Given the rotation (1, 2, . . . n) at vertex v, we define the angle measure of edge-ends i, j, denoted
by m(i, j), as the smaller of |i − j| and n − |i − j|. If m(i, j) = 1, we call the pair of edge-ends i, j
a corner. If n is even and m(i, j) = n/2, we call i, j antipodal. The following proposition summarizes
what we need for the action of a vertex stabilizer on incident edges.

Proposition 3.2. Let v be a vertex of valence n > 2, and suppose ϕ ∈ Stab(v). Then
(1) m(ϕ(i), ϕ(j)) = m(i, j).
(2) If d, e are proper edges incident to v that are not antipodal, and ϕ fixes e and d, then ϕ is the identity.
(3) If D′(M) > 2 and ϕ stabilizes the proper edge e incident to v, then ϕ stabilizes every loop incident
to v.
(4) If e is a loop, and its edge-ends are not antipodal, then |Stab(e)| ≤ 2. If D′(M) > 2, then Stab(e) = 2.

Proof. The first two statements follow from the faithful action of Stab(v) on edge-ends as a subgroup
of Din. For (3), let d be any loop at v. If we color d, e black and all other edges white, the only non-
identity color-preserving automorphism must stabilize d since it is the only black loop. Therefore
it must fix v and e. The only possibility is that ϕ is the unique non-identity element of Stab(e) that
fixes v.

For (4), for the dihedral action of Din on (123 . . . n), only the identity fixes the edge-ends i, j if
they are not antipodal. Thus in the dihedral action |Stab(i, j)| ≤ 2. Since n > 2, the action of Stab(v)
is faithful, so |Stab(e)| ≤ 2. When D′(M) > 2, coloring e black and all other edges white, we must
have Stab(e) = 2. □

4. Loops and bouquets

Lemma 4.1. Suppose D′(M) > 2, and M has a loop. Then the underlying graph is a bouquet.

Proof. Suppose that M has more than one vertex, and that there is loop e at vertex v. Let G′ be the
graph obtained by removing all loops from the underlying graph G. Suppose that G′ has a vertex of
valence 3 or more. Let u be the closest such vertex to v, let R be the shortest path between v and u,
and let d be the edge of R incident to u. Since u has valence at least 3 in G′, there is a proper edge
c that is not antipodal to d at u (see Fig. 6). Color the loop e, the path R and the edge c with black
and all other edges with white. Any color-preserving automorphism ϕ must fix vertex v since the
only black loop is at v. Therefore it also fixes u and hence the non-antipodal edge-ends d and c at
u. By Proposition 3.2, ϕ is the identity. We conclude that D′(M) ≤ 2.

Therefore all vertices of the graph G′ have valence 1 or 2. Let d be a proper edge and e a loop
incident to one of the endpoints of d. If we color d, e with black and all other edges with white,
any color-preserving automorphism must fix d and its endpoints, and leave e invariant. Thus the
automorphism fixing d and its endpoints must leave invariant all loops incident to either endpoint.
Hence if we color with black one loop and the edges of G′ and all other edges with white, the only
color-preserving automorphism ϕ fixes all vertices of G′, and leaves all loops invariant, making ϕ
the identity on edges. It follows that if G has more than one vertex, then D(G′) ≤ 2. □
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Fig. 6. Situation from Lemma 4.1.

We now find all bouquets M with D′(M) > 2. If e is a loop incident to v, its angle measure m(e)
is the angle measure of its edge-ends. We call a loop antipodal if its edge-ends are antipodal. We
call a rotation consecutive if m(e) = 1 for every loop.

Lemma 4.2. If M has one vertex v, and D′(M) > 2, then the number of loops n is at most 5 and the
edge-ends of each loop have the same angle measure, which must be odd or antipodal. Thus the cyclic
order is antipodal, consecutive, or 14213243 for n = 4, or 1521324354 for n = 5. The antipodal ones
are in the triality class of S0Cn for n = 3, 5, and N1C4. The consecutive ones are in the triality class of
S0K1,n for n = 3, 4, 5. The last two cyclic orders give S1B4 and S2B5.

Proof. Suppose that the loop e is not antipodal. By item (4) of Proposition 3.2, there is exactly one
non-identity automorphism ϕ stabilizing e. If ϕ also stabilizes all other loops, then the coloring:
e with black and all other loops with white, is distinguishing. Therefore there is another loop d
such that ϕ(d) ̸= d. Coloring d, e with black and all others edges with white, we conclude there is
an automorphism interchanging e and d, since there is no automorphism fixing both e and d. Thus
m(d) = m(e) by item (1) of Proposition 3.2. Let c be any other loop, and suppose that m(c) ̸= m(e).
Then c must be stabilized by ϕ, and also by the non-identity element ψ of Stab(d). Since ϕ does
not stabilize d, we have ϕ ̸= ψ . So, |Stab(c)| > 2, contradicting item (4) of Proposition 3.2.

We conclude that all loops are antipodal, or have the same angle measure m(e) = a < n. Suppose
that a is even, and loop e has edge-ends i, j. Then there is a loop d with edge-end k exactly half-way
between i, j. The non-identity element ϕ of Stab(e) interchanges i, j, and fixes k, so it also stabilizes
d, and therefore fixes the other end of d, which can only happen if d is antipodal, a contradiction.

We must show n < 6. Imagine a unit circle with edge-ends at angles π/n around the circle. Each
edge-end pair iπ/n, (i+a)π/n determines a unique midpoint (i+a/2)π/n on the circle. There are n
of these, not necessarily equally spaced, and Aut(M) acts on them as a subgroup of the dihedral Di2n,
leaving them invariant. Suppose that i < j are the closest midpoints, either π/n or 2π/n apart, since
there are n midpoints. If the angle is 2π/n, then the midpoints are equally spaced around the circle
so the dihedral action on the midpoints is just the standard action of Din. By the necklace problem,
we have n < 6. If the angle is π/n, let k be any other midpoint other than i−π/n or j+π/n. Then
the coloring: i, j, k with black and all other possible midpoints with white distinguishes the action
of Di2n on the set of 2n possible midpoints, and hence the action of Aut(M) on the midpoints.

The angle measure a = 1 (consecutive) occurs with S0K ∗

n,1 for n = 3, 4, 5. The antipodal case for
n = 3, 5 occurs as S0CP∗

n , and for n = 4 is N1C∗

4 . For n = 3, the only possible common angle measures
are 1 (consecutive) or 3 (antipodal). For n = 4, 5 there is also the possibility that the common
measure is m(e) = 3. The resulting cyclic orders must be 14213243 for n = 4, and 1521324354 for
n = 5. □

5. Parallel edges and dipoles

Next, we handle parallel edges. Just as the presence of a loop in a map with D′(M) > 2 forces M
to be a bouquet, the presence of parallel edges forces a dipole, but this time with two exceptions.

Lemma 5.1. Suppose D′(M) > 2 and M has parallel edges. Then the graph underlying M is either
a dipole or the subdivided bouquet Bd

2 or the doubled 3-cycle Cd
3 .
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Fig. 7. Situation from Lemma 5.1.

Proof. Suppose that the underlying graph is not a dipole. Then there are vertices u, v with parallel
edges d, e between u and v, and there is an edge c between u and a vertex w ̸= v such that cd is
a corner (see Fig. 7). Color c, d, e with black and all other edges with white. Then there must be
an automorphism fixing the edge c and interchanging d, e. Thus ce is also a corner. Now color just
c , e with black and the other edges with white. Then there must be an automorphism ϕ fixing u
and interchanging c, e, so b = ϕ(d) is another edge between u and w. Applying the same argument
to b, c, e, we have a corner be. The same argument for b, c, d gives a corner bd. There is no room for
more edges at u so u has valence 4, with two edges to v and two edges to w. If v,w have valence 2,
we have a single vertex of valence 4, two of valence 2 and all edges parallel, giving us Bd

2. There are
only four maps with the underlying graph Bd

2. Two, namely S1Bd
2 and N1Bd

2, appear in our table. The
map of Bd

2 in the sphere has Z2 × Z2 symmetry, and therefore has the distinguishing index 2. The
same is true for the map with Bd

2 in the Klein bottle, since any automorphism interchanging the two
vertices of valence 2 would also interchange an orientation-preserving and orientation-reversing
closed curve.

If instead v,w are adjacent to vertices other than u, then as with u they must have valence
4 with another parallel edges. Continuing this way, we conclude that the graph G underlying M is
a doubled cycle. Suppose the cycle has length at least 4. Let u, v, w, x be consecutive vertices on the
cycle. Color both edges between u, v with black, one edge between v,w with black and the other
with white, and one edge between w, x with black and other with white. Color all other edges with
white. We observe that u has two incident parallel edges black, v has three black edges, w has two
non-parallel black edges, and x has one black. Thus any color-preserving automorphism ϕ must fix
u, v, w, x, and hence fix all vertices of the cycle. Since ϕ fixes w and its neighbors, but cannot fix
all edges incident to w, it must interchange the parallel pair vw or the parallel pair wx, but these
pairs are both colored with black–white. Therefore ϕ fixes all edges incident to w and hence fixes
all corners, making ϕ the identity.

It follows that if G is not a dipole or Bd
2, then it is a doubled 3-cycle, where the cyclic order at any

vertex v alternates between the two pairs of parallel edges 1212. The stabilizer of v must contain
an automorphism interchanging 1 and 2. Since this holds for every pair of consecutive edges at
every vertex, the map is edge-transitive. Since there are 6 edges, Aut(M) has order 6, 12, 24. Since
D′(M) > 2, the only possibility is Aut(M) = 24 so M is a regular (reflexible) map. If we trace out
the face with corner 12 at v, the corner involving 1 at vertex w, involves edges going to the third
vertex z. Similarly, for the corners involving 2 at z. Thus the faces have size either 3 or 6. If the faces
all have size 3, the dual is K4, giving us S0K P∗

4 . If the faces have size 6, the dual has two vertices,
and this map is handled in the next Lemma. □

We want to classify dipole maps M with D′(M) > 2.

Lemma 5.2. Suppose that the graph underlying M is a dipole with n edges, and D′(M) > 2. Then n ≤ 5.
For n = 3, 5, the only possibilities are in the triality classes of S0Cn. For n = 4, in addition to the class
of S0C4, there is map N1D4.

Proof. Suppose that n > 5. Look at e1, e2, e4 in the rotation e1e2e3e4 . . . at vertex u. Color them
with black and all other edges with white. Only the identity fixes u, and preserves colors, so any
non-identity color-preserving automorphism ϕ must interchange u, v, fix e4 (since it is the only one
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Fig. 8. Two situations from Lemma 6.1.

of the three not involved in a corner with one of the others), and either fix or interchange e1, e2.
Since e1, e2 forms a corner at u, we find that e1, e2 also form a corner at v. Since e1, e2 are arbitrary,
we conclude that the rotation at v is either the same, or the reverse of the rotation at u. But, if n > 5,
then the reverse does not fix e4, and leave e1, e2 invariant. Therefore ϕ preserves the rotation and,
since it fixes e1, e2, e4, it must fix all edges. Thus the only automorphism preserving the coloring of
e1, e2, e4 is the identity on the edge set, so D′(M) = 2.

We conclude that M has n < 6 edges. If n = 5, and there are two different face sizes, then the
stabilizer of each vertex is at most Z2, since no cyclic symmetry around a vertex is possible. Thus
Aut(M) is at most Z2 ×Z2, and any such action on 5 edges has the distinguishing index 2. Therefore
all faces have the same size. As the underlying graph is D5, no face has odd size. We conclude that
either all faces have size 2, or there is one face of size 10: both are in the class of S0C5. The same
argument shows for C3 that the only possible maps are again in the class of S0C3. For D4, when all
faces are the same size, we get maps in the class of S0C4. However, there is now the possibility of
one face of size 4 and two of size 2 with Z2 × Z2 stabilizing the vertices, allowing the possibility
of full dihedral symmetry on the four edges of D4. The resulting surface has Euler characteristic
2 − 4 + 3 = 1, giving us N1 and the map N1D4. □

6. Simple graphs

We now consider maps M with a simple underlying graph. If M has a vertex of valence 1 or 2,
then M∗ has a loop or parallel edges, and such maps with D′(M) > 2 have been classified.

Lemma 6.1. Suppose M has a simple underlying graph with no vertices of valence 1 or 2. If D′(M) > 2,
then M = S0K4 or M = S0K P

4 .

Proof. Let d = uv be any edge, and let xu = b and yu = c form the two corners at u involving d, and
let e = vw form a corner at v with uv (see Fig. 8). Suppose all five vertices are distinct. Then since v
is the only vertex of valence two in the subgraph H consisting of edges b, c, d, e, any automorphism
ϕ leaving H invariant fixes v and also fixes w, as it is the only neighbor of u of valence one in H .
Therefore ϕ fixes the corner cd, and must be the identity.

We conclude that the five vertices are not distinct. Since M has no parallel edges or loops, the
only possibility is thatw = x orw = y. Suppose thatw = x. Then the graph H consists of the triangle
uwv with an extra edge uy (see Fig. 8). The only non-identity symmetry of H is one interchanging
x = w and v, and fixing edge c . This means xuy is also a corner, so u has valence 3. The same
argument applies if w = y with the automorphism fixing edge b. If we apply the same argument
beginning with b or c playing the role of d, we find that there is another automorphism fixing
a second edge at u. Since u was arbitrary, we conclude that all vertices have valence 3, and that the
stabilizer of each vertex acts transitively on its three incident edges. Since we also found a triangle
incident to v, we conclude that the underlying graph is K4. The only edge-transitive maps with the
underlying graph K4 are the tetrahedron and its Petrie dual; note there is no such edge-transitive
map in the torus or in the Klein bottle since with only two faces some edges appear on two faces
and some do not. □
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7. Alternative approaches

When we first considered this problem, we thought of using the medial map M , denoted by
Med(M), since the action of Aut(M) on the edges of M is the same as the action of Aut(Med(M)) =

Aut(M) on the vertices of Med M (cf. [2,15]). Thus D′(M) = D(Med(M)), so we can use the
classification of mapsM with D(M) > 2 given in [19]. This approach does work, but there are various
difficulties with parallel edges and loops which can arise in Med(M), and [18,19] consider only maps
with simple underlying graphs. Moreover, this approach would mean that the classification of maps
with D′(M) > 2 would depend on [19], which is far, far more complicated than the self-contained
proof we have given here.

Another approach is to focus more on vertices of valence 1 or 2. Our proof concentrates on loops
and parallel edges. We did not have to worry about vertices of valence 1 or 2, because they lead to
loops or parallel edges in the dual graph. But we could have started by trying to get a direct proof
for maps with simple underlying graphs, which entail handling vertices of valence 1 (for S0K1,n) or
valence 2 (for S0Cn). Unfortunately the difficulty of bouquets cannot be avoided because the maps
S1B4 and S2B5 have no simple graphs in their triality class.

Finally, we could use the Motion Lemma [16]. For a group A acting on Ω , the motion, denoted
by m(A), is the least number of points moved by any element that does not fix all points of Ω (it
is also called the minimal degree of a permutation group). Then m(A) > 2 log2 |A| implies D(A). This
often leads to ‘‘all-but-finitely’’ many examples. For example, when Ω is a group G and A = Aut(G),
then it is easily shown [6] that D(Aut(G),G) ≤ 2 when |G| > 257, since the fixed points of Aut(G)
form a proper subgroup of G, forcing m(Aut(G)) ≥ |G|/2. One then uses a computer to consider all
|G| ≤ 256. For maps, the fact that an automorphism cannot fix the edge-ends of a corner creates
large motion. In [19], it is shown that D(M) ≤ 2, if the number of vertices is at least 87. But this
all-but-finitely result is not strong enough to allow machine computation, since a single graph, even
with 10 vertices, has many possible embeddings.

For edges, the motion is at least E/2, where E is the number of edges: adding up the number
of corners over all vertices gives the number 2E of edge-ends, and at least one edge-end must be
moved at every corner, so at least E edge-ends are moved (and every edge has two edge-ends).
Since edge stabilizers have order at most 4, we get |Aut(M)| ≤ 4E. By the Motion Lemma, we have
D′(M) ≤ 2 when E/2 > 2 log2(4E). Thus E ≥ 28 suffices. Then |Aut(M)| ≤ 4E = 107; this looks
feasible. For example, if one can establish that D′(M) > 2 implies M is edge transitive, one could
use the census in [13].
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