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Abstract

A vertex colouring of a graph is asymmetric if it is preserved only by the iden-
tity automorphism. The minimum number of colours needed for an asymmetric
colouring of a graph G is called the asymmetric colouring number or distinguish-
ing number D(G) of G. It is well known that D(G) is closely related to the least
number of vertices moved by any non-identity automorphism, the so-called motion
m(G) of G. Large motion is usually correlated with small D(G). Recently, Babai
posed the question whether there exists a function f(d) such that every connected,
countable graph G with maximum degree ∆(G) � d and motion m(G) > f(d) has
an asymmetric 2-colouring, with at most finitely many exceptions for every degree.

We prove the following result: if G is a connected, countable graph of maximum
degree at most 4, without an induced claw K1,3, thenD(G) = 2 wheneverm(G) > 2,
with three exceptional small graphs. This answers the question of Babai for d = 4
in the class of claw-free graphs.

Mathematics Subject Classifications: 05E15, 05C15

1 Introduction

We consider countable graphs, that is, graphs with finite or denumerable vertex sets, and
use standard graph theoretic notation. A colouring, not necessarily proper, of a graph G
is called asymmetric or distinguishing if it is preserved only by the identity automorphism
of G. The asymmetric colouring number or distinguishing number D(G) of a graph G
is the least number of colours in an asymmetric vertex colouring, and the distinguishing
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index D′(G) is the least number of colours in an asymmetric edge colouring of G. The
vertex invariant D(G) was defined in [1], and the edge invariant D′(G) in [11].

The motion m(ϕ) of an automorphism ϕ of a graph G is the number of vertices that
ϕ moves, that is, the number of vertices v for which ϕ(v) �= v (if Aut(G) = {id}, then
we set m(G) = 0). The motion m(G) of a graph G is the minimum motion of a non-
identity automorphism of G. A relationship between the distinguishing number and the
motion of a graph was observed 1998 by Russell and Sundaram in [19], who proved that
D(G) � d whenever m(G) � 2 logd |Aut(G)|, but we wish to observe that, essentially,
this was already shown 1986 in a different context by Cameron in [5].

Perhaps, the most intriguing open problem in this area is the Infinite Motion Con-
jecture of Tucker [20], who conjectured that D(G) � 2 for every connected, locally finite
graph G if every nontrivial automorphism of G moves infinitely many vertices. The con-
jecture is open, though it was proved to be correct for several classes of graphs. For
instance, Lehner, Piĺsniak and Stawiski [14] recently confirmed this conjecture for graphs
G of maximum degree ∆(G) � 5 (the case ∆(G) = 3 was independently proved in [7]).

In 2017, Lehner [13] settled affirmatively the Infinite Edge-Motion Conjecture of Broere
and Piĺsniak [4] that D′(G) � 2 for every countable, connected graph G if every non-
identity automorphism of G moves infinitely many edges. This implies the validity of the
Infinite Motion Conjecture of Tucker for line graphs. A classical theorem of Beineke [3]
characterizes line graphs by nine excluded induced subgraphs. One of them is the claw
K1,3. Hence, a natural extension of the result of Lehner would be a confirmation of the
Infinite Motion Conjecture for claw-free graphs.

Another motivation for our research was the following question posed by Babai in
2018.

Question 1. (Babai [2]) Does there exists a function f(d) such that D(G) = 2 for every
connected, countable graph G with maximum degree ∆(G) � d and motion m(G) > f(d).

This question for d = 3 was fully answered in a recent paper of Hüning, Imrich, Kloas,
Schreiber and Tucker [7], who gave a complete classification of all countable connected
graphs G of maximum degree ∆(G) = 3 and distinguishing number D(G) � 3. As
a consequence, they observed that the only subcubic graphs G with D(G) > 2 and
m(G) > 2 are the cube K2�K2�K2 and the Petersen graph, both containing an induced
claw. They also posed the question whether all but finitely many graphs G with the
property that m(G) > ∆(G) � 4 have distinguishing number 2.

For trees f(d) = 2�log2 d�, see [9].
Let us also mention that Lehner and Verret [16] recently determined all finite, 4-re-

gular, connected, vertex-transitive graphs G with D(G) > 2. These are K5, K3�K3,
K4�K2, K5 ×K2 and an infinite family of lexicographic products Cn[2K1], n � 3, called
wreath graphs.

The above-mentioned results were the motivation for the following theorem, which is
the main result of our paper.

Theorem 2. Let G be a countable, connected, claw-free graph of maximum degree ∆ � 4
and motion m(G), where 4 � m(G). Then D(G) = 2, unless G ∈ {C5, K3�K3, K4�K2}.
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Note that the condition m(G) � 4 is equivalent to m(G) > 2. In other words,
m(G) �= 3 for any graph G. Indeed, suppose m(ϕ) = 3 for some ϕ ∈ Aut(G), which
means that ϕ moves three vertices. By considering ϕ2, it is easily seen that the closed
neighbourhood of each of these three vertices is the same. Thus, a transposition of any
two of them is an automorphism of G. Hence, m(G) = 2.

Our result is sharp since there are infinitely many claw-free graphs G with D(G) = 3
while ∆(G) = 4 and m(G) = 2. For instance, consider a graph G obtained by attaching
a path of any length, also infinite, to one vertex of K4.

We conjecture that our result can be generalized to higher maximum degrees.

Conjecture 3. Let G be a countable, connected, claw-free graph with finite maximum
degree ∆(G) � m(G). Then D(G) = 2, unless G is one of finitely many exceptional
graphs.

2 Auxiliary results

In this section we present several known results which we use in the proof of Theorem 2.
We begin with the following general upper bound for the distinguishing number, proved

by Collins and Trenk [6], and independently by Klavžar, Wong and Zhu [12].

Theorem 4. ([6], [12]) If G is a finite, connected graph with maximum degree ∆(G), then
D(G) � ∆(G) + 1. Moreover, the equality is achieved if and only if G is a Kn, Kp,p or
C5.

For infinite graphs, Lehner, Piĺsniak and Stawiski [14] recently obtained a better,
sharp upper bound, thus improving a previous bound proved by Imrich, Klavžar and
Trofimov [8].

Theorem 5. ([14]) If G is an infinite, connected graph with finite maximum degree
∆(G) � 3, then D(G) � ∆(G) − 1.

A general upper bound for the distinguishing index was established by Kalinowski and
Piĺsniak [11].

Theorem 6. ([11]) If G is a finite, connected graph, then D′(G) � ∆(G) unless G is
a cycle of length at most five.

Next, Piĺsniak [17] characterized the graphs G satisfying the equality D′(G) = ∆(G).
A tree T is called symmetric if it has a central vertex v0, all leaves have the same distance
from v0, and all vertices that are not leaves have the same degree. Substituting a central
vertex v0 by a central edge e0 one obtains a bisymmetric tree.

Theorem 7. ([17]) For finite, connected graphs G, the equality D′(G) = ∆(G) holds only
for symmetric and bisymmetric trees, cycles of length at least six, for K4 and K3,3.
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For infinite graphs, Piĺsniak and Stawiski [18] showed that D′(G) � ∆(G)−1 whenever
G is connected and ∆(G) � 3.

It is worth mentioning that Lehner and Smith in [15] discussed recently the relation
between D(G) and D′(G).

Analogously to the vertex case, the edge motion of a graph G, denoted by m′(G), is
defined as the least number of edges moved by any non-identity automorphism.

The following generalization of Whitney’s theorem proved by Jung [10] exibits the
equivalence between distinguishing edge-colourings of a graph G and distinguishing vertex-
colourings of its line graph L(G).

Theorem 8. ([10]) If G is a connected graph of order greater than four, then the au-
tomorphism groups Aut(G) and Aut(L(G)) are isomorphic by means of the natural map
from Aut(G) onto Aut(L(G)).

This theorem is also valid for infinite graphs, and it clearly implies the subsequent
fact.

Corollary 9. If G is a connected graph of order greater than four, then D′(G) = D(L(G))
and m′(G) = m(L(G)).

The following characterization of line graphs is due to Beineke [3]. Although it was
stated for finite graphs, it is obviously true for infinite graphs, as well.

Theorem 10. ([3]) Let G be a graph. There exists a graph H such that G is a line graph
of H if and only if G contains no induced subgraph isomorphic to a claw nor to any of the
eight graphs Bi, i = 1, . . . , 8, presented in Figure 2 and Figure 3 in Section 4.

3 Distinguishing index of selected graphs of bounded degrees

In this section we prove a lemma that will be useful in the proof of our main result for
line graphs.

Lemma 11. Let H be a connected, countable graph of order at least five such that
∆(L(H)) = 4 and m′(H) > 2. Then D′(H) = 2, unless H is K3,3 or K4,2.

Proof. We colour the edges of H with two colours, blue and green. The assumption
∆(L(H)) = 4 implies that dH(x) + dH(y) � 6 for every edge xy in H . It follows that
∆(H) � 4 unless H = K1,5, but m′(K1,5) = 2. If ∆(H) � 3, then we infer from
Theorem 6 and Theorem 7 that D′(H) � 2 unless H = K3,3. Indeed, the edge motion
of any symmetric or bisymmetric tree T equals two whenever ∆(T ) � 3.

Let then ∆(H) = 4. If x is a vertex of degree 4 in H , then all its neighbours are
of degree one or two. Moreover, the four neighbours are independent and at most one
of them is a pendant vertex, because m′(H) > 2. Therefore, either there are four paths
of length 2 (called arms) going out from x, or only three such paths and one pendant
edge. In the first case we call such a vertex four-armed. Note that end-vertices of the
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arms may coincide. A four-armed vertex is fully coloured if its arms are coloured with
all four possible sequences of colours.

The idea of the proof is to recursively construct an asymmetric edge colouring c of the
graph H . We start by choosing a vertex v0 of degree 4 and colour its arms and a possible
incident pendant edge in such a way that v0 will be the only vertex of H with such
a colouring. Therefore, v0 will be fixed by every automorphism of H preserving the
colouring c (later on, we write fixed by c, for short). Thus, we consider an initial subgraph
F0 induced by all vertices of distance at most 2 from v0. We colour the edges of F0 in such
a way that each vertex of F0 will be fixed by c. Then, we consider a sequence of induced
subgraphs F1, F2, . . . of H such that Fi−1 is a proper subgraph of Fi for i = 1, 2, . . ..
Namely, Fi is a subgraph induced by the vertices of Fi−1, their neighbours and vertices
of arms incident to vertices of degree 4 of Fi−1. It is easily seen that if we have defined an
edge colouring of Fi−1 fixing each vertex of Fi−1, then Fi must be fixed setwise. We extend
the colouring to a suitable colouring of Fi leaving the colours of edges of Fi−1 unchanged,
and such that the subgraph Fi is fixed pointwise.

Case 1. Let us first assume that H contains a vertex v0 of degree 4 that is not
four-armed. We colour its three arms with distinct sequences of colours, and its incident
pendant edge we colour with blue. In our colouring c of edges of the whole graph H , we
ensure that v0 is a unique vertex of degree 4 with a blue incident pendant edge. Thus,
v0 will be fixed by c. Consequently, all the vertices of the subgraph F0 induced by v0, its
neighbours and end-vertices of its arms, are also fixed by c. We colour the edges joining
them arbitrarily.

We recursively define an edge colouring c of H as follows. Let i � 1, and assume
that we have already coloured edges of a connected induced subgraph Fi−1 of H such
that v0 is the only vertex of degree 4 in Fi−1 with a blue incident pendant edge, and
the only automorphism of Fi−1 preserving this colouring is the identity. Consequently,
each vertex of Fi−1 will be fixed by every automorphism of H preserving any extension
c of this partial colouring, provided v0 remains a unique vertex of degree 4 in H with
a blue incident pendant edge.

To extend this colouring we consecutively consider all vertices v ∈ V (Fi−1) having
neighbours outside Fi−1. At every stage of our colouring procedure, each vertex with
a coloured incident edge becomes fixed by c.

First we consider vertices v with d(v) = 2, i.e. with at most one neighbour u outside
Fi−1. Then u is also fixed by c since it is a unique neighbour outside Fi−1 of a fixed
vertex v. We can colour the edge vu arbitrarily. If d(v) = 3 and v has two incident edges
outside Fi−1, then we colour them with two different colours. If v has only one neighbour
u outside Fi−1, then u is fixed, and we colour vu arbitrarily. In both cases, the neighbours
of v are fixed. At last, we consider vertices v with d(v) = 4. If v has a pendant edge
vu, then u /∈ V (Fi−1), and we colour uv with green. If v has arms outside Fi−1, then we
colour them with distinct pairs of colours.

In all the above situations, our colouring fixes all considered (not yet fixed) vertices,
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i.e. vertices of Fi − V (Fi−1) with at least one coloured incident edge. At the end of this
stage, we colour each yet uncoloured edge between these vertices arbitrarily.

Thus we have coloured the edges of a larger subgraph Fi which in the next step plays
the role of Fi−1. After a countable number of steps, we get a desired asymmetric edge
colouring c of the whole graph H (where v0 is the only vertex of degree 4 with a blue
pendant edge).

Case 2. Assume now that all vertices of degree 4 in H are four-armed. We choose
any such vertex v0 of degree 4 and fully colour its arms. In our colouring c of all edges
of H , we ensure that v0 is the only fully coloured vertex of degree 4. This guarantees that
v0 will be fixed by the colouring c. Note that then also the vertices lying on the arms
of v0 will be fixed by c. Now we have to colour the remaining edges of the graph F0,
induced by v0 and the vertices on its arms. All vertices of the graph F0 are fixed, so the
colour of these edges does not matter for asymmetry, but it may happen that some edges
are incident with another vertex of degree 4, and we must ensure that this vertex is not
fully coloured. We shall call each such edge a finishing edge. Figure 1 shows all three
possible such situations with suitable colourings. If four arms of v0 meet at one vertex,
then F0 = H = K4,2, an excluded graph with D′(K4,2) = 3. In all other cases, v0 is the
only fully coloured vertex of degree 4 in F0. Hence, since v0 is fixed by c, the subgraph
F0 is also fixed pointwise.

v0 v0 v0

Figure 1: The vertex v0 is the only fully coloured vertex of degree 4 in F0.

We recursively colour all edges of H similarly as in Case 1. However, now our task
is a bit more difficult because we have to be careful not to create any new fully coloured
vertex of degree 4. If a colouring of an arm may cause that some vertex of degree 4
becomes fully coloured, we call it a finishing arm.

Again, assume that we have already coloured edges of a connected induced subgraph
Fi−1 such that v0 is the only fully coloured vertex in Fi−1, and the only automorphism
of Fi−1 preserving this colouring is the identity. Consequently, each vertex of Fi−1 will be
fixed by every automorphism of H preserving any extension c of this partial colouring,
provided v0 remains a unique fully coloured vertex in H .

Suppose that a vertex v of degree 2 has a neighbour u outside Fi−1. If the edge uv is
finishing for u, then we colour uv such that u is not a fully coloured vertex. Otherwise,
we can colour uv arbitrarily, and u is fixed by c. If d(v) = 3, then none of its incident
edges can be finishing, and we proceed in the same way as in Case 1.

Finally, we consider vertices v with d(v) = 4. If v has only one arm outside Fi−1, say
vxu, the three other arms incident to v are already coloured. If this arm is not finishing
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for u, then we colour it using a sequence of colours already used for another arm of v.
If this arm is finishing, then we have to use a sequence of colours which is already used
for an arm of v as well as for an arm of u. This is always possible since at most two
colourings of the arm vxu may create a fully coloured vertex, v or u, and there are four
possible colourings of this arm.

Now, let v have two arms outside Fi−1, say vx1u1 and vx2u2. Let us consider first the
case when both arms are finishing. If u1 �= u2, we first colour the arm vx1u1 in such a way
that the vertex u1 is not fully coloured, which is again an easy task. Thus, only one arm
vx2u2 is left, and we proceed with this arm as in the previous paragraph. If u1 = u2, then
we colour the arm vx1u1 with a colouring used for another already coloured arm incident
to v. Hence, v will not be fully coloured. Next, we colour the arm vx2u1 with a colouring
of an already coloured arm incident to u which is different from that of vx1u1. Thus, u is
also not fully coloured.

If at least one these two arms, say vxu2, is not finishing, then we first colour the arm
vxu1 as above, such that u1 is not fully coloured. Next, we colour the arm vxu2 with
a colouring already used for another arm incident to v. Hence, v is not fully coloured. If
none of these two arms is finishing we colour them with two distinct colourings, using at
least one colouring already used.

Finally, consider the case when v has three arms outside Fi−1, say vx1u1, vx2u2 and
vx3u3, and let us suppose that all arms are finishing. If u1 �= u2 and u1 �= u3, we first
colour the arm vx1u1 in such a way that the vertex u1 is not fully coloured, i.e. with an
already used colouring of an arm at u1. Thus, two arms incident to v are uncoloured, and
we proceed with them as in the previous paragraph. If u1 = u2 = u3 we need to ensure
that the colouring of these three arms is different and neither v nor u are fully coloured.
One can easily check that it is always possible.

To complete the recursive step, we have to colour every uncoloured edge uw between
two vertices u, w, each with at least one incident newly coloured edge. If uv is a finishing
edge for one of these vertices, say u, then we colour it in such a way that u is not fully
coloured, i.e. it has at least two arms coloured identically. Otherwise, u and v are already
fixed by c, and we can colour them arbitrarily.

This completes the recursive step. Finally, we get a desired asymmetric 2-colouring
of edges of the whole graph H because v0 is the only fully coloured vertex in the colouring
c of H . Observe that this recursive procedure clearly also works for infinite graphs because
H =

⋃∞
i=0 Fi, since H is connected.

4 Proof of the Main Theorem

In this section we complete the proof of Theorem 2.

Proof of Theorem 2. Let G be a countable, connected claw-free graph with maximum
degree ∆(G) � 4 and motion m(G) � 4. If ∆(G) = 2, then, by Theorem 4, D(G) � 2,
unless G is a cycle C5, because m(K3) = m(K2,2) = 2. As mentioned in the Introduction,
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it was proved in [7] that the only graphs G with ∆(G) = 3, m(G) > 2 and D(G) > 2, are
the cube and the Petersen graph. Both of these exceptional graphs contain a claw.

Let ∆(G) = 4. Suppose first that G is the line graph of a graph H . If |H| � 4, then
H ∈ {K4, K4 − e}, because ∆(L(H)) = 4. However, both graphs L(K4) and L(K4 − e)
have motion 2. If |H| � 5, then Lemma 11 implies that D(G) = 2, unless G = L(K3,3) =
K3�K3 or G = L(K4,2) = K4�K2.

To complete the proof, we have to show that D(G) = 2 for every countable claw-free
graph G such that ∆(G) = 4, m(G) � 4, and G is not the line graph of any graph.

Figure 2: Beineke graphs B1, B2, B3, B4.

Figure 3: Beineke graphs B5, B6, B7, B8.

As G is claw-free, it follows from Beineke’s Theorem 10 that G contains at least one
of the eight graphs Bi, i = 1, . . . , 8, shown in Figure 2 and Figure 3, as induced subgraphs.
The graphs B7 and B8 have vertices of degree 5, so they cannot be subgraphs of G. Also,
G cannot contain any of the graphs B5, B6 since each of them has a pair of vertices
of degree four whose transposition is an automorphism of Bi, and thus of any supergraph
of maximum degree 4. This contradicts the assumption that m(G) > 2.

It follows that G has to contain at least one of the four graphs Bi, i = 1, 2, 3, 4. We
examine each of them as induced subgraphs of the claw-free graph G with ∆(G) = 4 and
m(G) � 4. It easily turns out for every i = 1, 2, 3, 4, that if G contains Bi as an induced
subgraph, then G has to contain a subgraph Ii, called a basic initial subgraph. All four
basic initial subgraphs are presented in Figure 4.

As an example, we describe a method how to obtain I1 (see Figure 5). Denote the ver-
tex set of B1 as {x0, x1, x2, x3, y1}. The transposition of vertices x0, x2 is an automorphism
with motion 2. Hence, one of these two vertices, say x0, has to have another neighbour.
It cannot be y1, because B1 has to be an induced subgraph. Then we join x0 with a new
vertex x4. To avoid a claw x0; x1, x3, x4 (i.e. with x0 as the center and x1, x3, x4 as the
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x0

x1

x2 x3

x4

y1

x0

x1

x2 x3

x4

y1z

x0

x1

x2 x3

x4

y1z

x0

x1

x2 x3

x4

y1

Figure 4: Four basic initial subgraphs I1, I2, I3, I4 rooted at x0, obtained from B1, B2,
B3, B4, respectively. Subgraphs with bold edges are induced.

leaves), we have to join x4 with x1 or x3. Without loss of generality, we join x4 with
x3. Again, we get a claw x3; x4, x2, y1. If we added the edge x4x2, we would obtain two
vertices x0, x2 of degree 4 with equal closed neighbourhoods. Hence, their transposition
would yield the motion of this graph, and thus of any supergraph G. It would be 2, be-
cause ∆(G) = 4. Therefore, we have to add the edge x4y1, thus obtaining the initial basic
subgraph I1. Similar arguments lead to the other three initial basic subgraphs I2, I3, I4.

x0 x4

x1

x2

x3

y1

x0

x1 x2 x3 x4

y1

Figure 5: How we get the basic initial subgraph I1 from B1.

The basic initial graphs Ii, i = 1, 2, 3, 4, will be considered as rooted at the vertex x0

(see Figure 4). A connected induced subgraph H of the graph G is called an initial graph
if it can be obtained from one of the basic initial graphs Ii by adding some edges and
vertices in such a way that:
– the root x0 is of degree 4 in H ,
– a vertex v belongs to V (H) if and only if v is at distance at most 2 from x0 in G,
– the induced bold subgraph of Ii is still induced in H .

Lemma 12. Let H be an initial graph rooted at x0. Then the graph induced by the
neighborhood of x0 is a path P = x1x2x3x4.

Proof. Let H be an initial graph obtained from some Ii. Without loss of generality, it
suffices to show that neither x2x4 nor x1x4 is an edge of H .

The edge x2x4 does not belong to the graph H , because then the vertices x3 and x4

would be two vertices of degree 4 having the same neighbours in the graph H − x3x4.
Their transposition would be a graph automorphism, which is contrary to the condition
that the graph motion is greater than 2. Observe that this argument remains valid for all
basic initial subgraphs Ii.
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Similarly, in the case i = 1, the edge x1x4 does not belong to the graph, because then
the vertices x1 and x3 would be two vertices of degree 4 having the same neighbours in
the graph H .

In the case i = 2, 3, if x1x4 ∈ E(H), then either we have the claw x1; x2, x4, z or
zx4 ∈ E(H). But then d(x4) � 5, a contradiction.

In the case i = 4, the edge x1x4 does not belong to the graph, because both of its ends
belong to the bold subgraph.

The idea of the next part of the proof of the Main Theorem is the following. First, we
show that every initial graph H can be coloured with two colours, white and red, in such
a way that
– H has a red vertex with four red neighbours,
– the only automorphism of H preserving this colouring is the identity.
Then we recursively extend this colouring to an asymmetric colouring c of the whole graph
G such that each red vertex outside the initial graph H has at most three red neighbours.

An initial subgraph H rooted at x0 is called symmetric if there exists a non-identity
automorphism α ∈ Aut(H) such that α(x0) = x0. If H is an initial subgraph that is
not symmetric, then we colour x0 and all four neighbours red, while the vertices of the
second sphere at x0 white. Hence, H will be fixed by every automorphism of the graph G
preserving any colouring of vertices of G satisfying the property that x0 is the only red
vertex of G with four red neighbours.

Lemma 13. Let H be a symmetric initial graph rooted at x0. Then H is isomorphic to
one of the following twelve graphs H1, H2, H

+
2 , H3, H4, H5, H

+
5 , H6, H7, H8, H9, H

+
9

presented in Figure 6.

Proof. Recall that x0 is of degree 4 and its neighbours (i.e. its first sphere) induce a path
P = x1x2x3x4. The vertices at distance 2 from x0 (i.e. its second sphere) will be denoted
by yj . Let α be a non-identity automorphism of H such that α(x0) = x0. Since the image
of the first sphere of a fixed vertex is again its first sphere, we have two possibilities for
the realization of the fact that α(P ) = P . We shall consider these two cases separately.

Case A. The automorphism α is not the identity on the path P , that is, α|P =
(x1x4)(x2x3).

This condition implies that the second sphere contains another vertex, say y2, such
that α(y1) = y2 (see Figure 4 and Figure 6). In consequence, the edges y2x1, y2x2 belong
to H . We will consider some cases depending on the number of vertices belonging to the
second sphere.

Subcase (1). There are only two vertices in the second sphere.
Let us note that in this case, H is a supergraph of the graph I1 or of the graph I4.

If H is a supergraph of I1, then in order to avoid the claw with vertices x1; x0, y1, y2, we
have y1y2 ∈ E(H). Since α(x1) = x4 and α(y1) = y2, the edge x4y2 also belongs to E(H),
and H is isomorphic to H1 (see Figure 6).
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x0

x1 x2 x3 x4

y1y2

H1 x0

x1 x2 x3 x4

y1y2

H
(+)
2 x0

x1 x2 x3 x4

y1y2 y3

H3

x0

x1 x2 x3 x4

y1y2 y3

H4 x0

x1 x2 x3 x4

y1y3 y2
y4

H
(+)
5 x0

x1 x2 x3 x4

y1y3 y2
y4

H6

x0

x1 x2 x3 x4

y1y2 y3

H7 x0

x1 x2 x3 x4

y1y2 y3

H8 x0

x1 x2 x3 x4

y1y2 y3 y4

H
(+)
9

Figure 6: Initial symmetric subgraphs with adequate vertex colourings. Bold subgraphs
are induced. A graph having dashed edges stands actually for two graphs, one without
and the second one with dashed edges.

If H is a supergraph of I4 and there is no additional edge, then we get H2. The
additional edge y1y2 changes it into H+

2 = H + y1y2.
Subcase (2). There are exactly three vertices in the second sphere.
Let us denote this third vertex by y3. It is easy to see that this vertex should be fixed

by α. Since the vertices x2 and x3 are already of degree 4, then y3 has to be attached by
an edge to x1 and x4. Next, in order to avoid the claw x1; y3, y2, x0, we have y3y2 ∈ E(H).
By symmetry, also y3y1 ∈ E(H), and we get the graph H3 (see Figure 6). If additionally,
the edge y1y2 belongs to H , we get H4. Observe that H3 and H4 are supergraphs of the
graph I3 or I4.

Subcase (3). There are four vertices in the second sphere.
Denote by y3 and y4 two new vertices belonging to the second sphere and adjacent to

x1 and x4, respectively. Then also y3y2 ∈ E(H). For, we would have the claw induced
by x1; y3, y2, x0. By symmetry, also y1y4 ∈ E(H). This graph is denoted by H5. It can
be considered as a supergraph of I2 or I4, and the same applies to the graph with an
additional edge between y3y4, i.e. the graphs H+

5 = H5 + y3y4.
However, if we would like to add another edge to H5, e.g. y3y1, we would have to

consider a graph H as a supergraph of the graph I3 or I4. By symmetry, our graph would
also have the edge y2y4, and also y3y4 to avoid the claw y2; y4, y3, x2. This way we arrive
at the graph H6.

Observe that the edge y2y1 cannot be added do H5. For, either we would have the
claw y2; y1, y3, x2, or the edge y3y1 would make the degree of the vertex y1 greater than 4.

Case B. The automorphism α fixes the path P .
Because x3 is fixed, the vertex y1, belonging to the second sphere, is also fixed by α,
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for, there is only one edge going out of x3 to the second sphere. This implies that if x4 is
adjacent to a vertex on the second sphere, that this vertex is also fixed by α.

Because α ∈ Aut(H) \ {id}, the graph H has to contain two vertices of the second
sphere, say y2, y3, with α(y2) = y3 and α(y3) = y2. None of them is adjacent to x2, since
then there would be only one edge joining x2 to the second sphere and the neighbour of x2

in the second sphere would be fixed.
So, both vertices y2, y3 are adjacent to x1, and, because of the possible claw x1; y2, y3,

x0, the graph H should contain the edge y2y3.
If H does not contain other edges anymore, we get a graph isomorphic to H7 with I2

(or I4) as an initial subgraph.
If H contains the edge y1y3, then it contains also the edge y1y2 = α(y1y3) and we get

a graph isomorphic to H8. This time, however, our graph is not a supergraph of I2 but
of I3 or I4.

Finally, if H has another vertex adjacent to x4, say y4, then it also has the edge y1y4.
If we do not have any other edges then we get H9 (see Figure 6). It is possible, however,
that H also has edges connecting y4 with y2 and y3. Then our graph takes the form
of H+

9 = H9 + y2y4 + y3y4. Both H9 and H+
9 can be treated as graphs created from I2

or I4.

Let H be an initial subgraph. If H is symmetric, then H is one of the twelve graphs
specified in Lemma 13. Note that the graphs H1 and H4 are 4-regular, so none of them
can be a proper subgraph of a graph G with ∆(G) � 4. H1 is the complement of the
cycle C7 = x0y1x2x4x1x3y2x0 and it is easy to see that the colouring shown in Figure 6
stabilizes this cycle (and thus its complement).

As for H4, observe that x2 is the only white vertex with four red neighbours inducing
a path P4. This vertex and its neighbours are fixed because the path P4 cannot be reversed.
Indeed, the end-vertices of P4 have different numbers of white neighbours. Then it is easily
seen that also the remaining vertices of the second sphere at x2 cannot be permuted.

This reasoning can be repeated in the case of graphs H2, H
+
2 , H3. There x2 is the

only red vertex with four red neighbours inducing a path x3x0x1y2. Hence, x2 is fixed.
Furthermore, the path x3x0x1y2 cannot be reversed, since x0 cannot be mapped into x1.
Indeed, x0 has a white neighbour in the graphs H2 and H+

2 while x1 does not. In the
graph H3, the vertex x3 cannot be mapped into y2 because x3 has only one red neighbour
while y2 has at least two red neighbours in the graph G.

Observe that for each of the remaining seven initial subgraphs, the colouring presented
in Figure 6 is also an asymmetric colouring of H . There, x0 is the only red vertex with four
red neighbours inducing a path. This red vertex and its neighbours are fixed because the
path P4 cannot be reversed. Indeed, in each case, the end-vertices of P4 have different pairs
of numbers of white and red neighbours. Then it is easily seen that also the remaining
vertices of the second sphere cannot be permuted.

We recursively extend the colouring of an initial subgraph H to obtain an asymmetric
colouring c of vertices of the graph G with a unique red vertex with four red neighbours,
the one contained in the initial subgraph H . In our procedure, every coloured vertex
becomes fixed by c at once. Moreover, every vertex coloured red gets a white neighbour.
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Suppose we have already coloured vertices of a certain connected induced subgraph H
of the graph G such that the only automorphism of H preserving this colouring is the
identity. Consequently, each vertex of H will be fixed by every automorphism of H
preserving any extension c of this partial colouring, provided there will be no other red
vertex with four red neighbours.

Let ∂H denote the set of vertices of H having a neighbour outside H . In our procedure,
each vertex of ∂H has also a neighbour in H − ∂H . In particular, this is the case for any
initial subgraph H . Hence, each pair of vertices outside H with a common neighbour in
∂H have to be adjacent to avoid a claw.

We now colour all vertices of distance one from H , and in some special cases, some
vertices of distance 2 from H .

First, we consider the vertices of H that have exactly one neighbour outside H . These
neighbours are already fixed by c, and we colour them white. Next, we consider all vertices
v ∈ V (H) that have exactly two neighbours u1, u2 /∈ V (H). It follows that u1u2 ∈ E(G),
because G is claw-free, while v has a neighbour in H−∂H . If u1 or u2 is already coloured,
then both of these two vertices are fixed. We colour the possibly uncoloured vertex white.
Otherwise, we colour u1, u2 with two different colours. Note that every vertex we colour
is either white or has a white neighbour.

Finally, let a vertex v ∈ V (H) have three neighbours u1, u2, u3 outside H . They induce
a triangle K3, because G is claw-free. At least two of them are of degree 4, and no two
of them have a common neighbour outside the clique K4 = G[{v, u1, u2, u3}], because
m(G) > 2. If three of the vertices u1, u2, u3 are already coloured, then all three are fixed
by c and we have nothing to do. If two of the vertices u1, u2, u3 are already coloured,
then again all three of them are fixed. The only uncoloured vertex gets colour white. If
only one of them is already coloured, then it is fixed and we colour the two other vertices
white and red. Suppose now that all three vertices u1, u2, u3 are still uncoloured. Observe
that they do not have neighbours in H other than v. We colour two of them that have
degree 4 with two distinct colours, and the third one, say u3, we colour white. If u3 is also
of degree 4, then we colour the neighbours of white vertices (possibly they are of distance
two from H) with two distinct colours. Thus all three vertices u1, u2, u3 are fixed.

Observe that in our procedure of extending the colouring, every new red vertex obvi-
ously gets a white neighbour. Moreover, if H is an initial subgraph that is not symmetric,
then every vertex having a neighbour outside H is white because the second sphere at
x0 is white. If H is a symmetric initial graph, then the only red vertex that may have
neighbours outside H and does not have a white neighbour yet, is the vertex y2 of degree
2 in H2. In our procedure, y2 cannot have two new red neighbours.

We thus obtained an asymmetric colouring of a new larger subgraph of G that in the
next stage plays the role of H . Finally, after a countable number of stages, we obtain
a distinguishing colouring of G with two colours.
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[18] M. Piĺsniak and M. Stawiski, The Optimal General Upper Bound for the Distinguish-
ing Index of Infinite Graphs. J. Graph Theory, 93:463–469, 2020.

[19] A. Russell and R. Sundaram, A note on the asymptotics and computational complex-
ity of graph distinguishability. Electron. J. Combin., 5:#R23, 1998.

[20] T. Tucker. Distinguishing maps. Electron. J. Combin., 18(1):#P50, 2011.

the electronic journal of combinatorics 28(3) (2021), #P3.25 14


