# Bounds on the paired domination number of graphs with minimum degree at least three 

Michael A. Henning ${ }^{\text {a,1 }}$, Monika Pilśniak ${ }^{\text {b,*, }}$ Elżbieta Tumidajewicz ${ }^{\text {a,b }}$<br>${ }^{\text {a }}$ Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park 2006, South Africa<br>${ }^{\mathrm{b}}$ AGH University, Department of Discrete Mathematics, al. Mickiewicza 30, Krakow 30-059, Poland

## ARTICLE INFO

## Article history:

Received 20 July 2021
Revised 29 October 2021
Accepted 31 October 2021

## MSC:

05C69

## Keywords:

Paired domination
Bounds


#### Abstract

A set $S$ of vertices in a graph $G$ is a paired dominating set if every vertex of $G$ is adjacent to a vertex in $S$ and the subgraph induced by $S$ contains a perfect matching (not necessarily as an induced subgraph). The minimum cardinality of a paired dominating set of $G$ is the paired domination number $\gamma_{\mathrm{pr}}(G)$ of $G$. In this paper, we show that if $G$ is a graph of order $n$ and $\delta(G) \geq 3$, then $\gamma_{\operatorname{pr}}(G) \leq \frac{19037}{30000} n<0.634567 n$.


© 2021 Elsevier Inc. All rights reserved.

## 1. Introduction

A set $S$ of vertices in a graph $G$ is a dominating set if every vertex in $V(G) \backslash S$ is adjacent to a vertex of $S$. A paired dominating set, abbreviated PD-set, of $G$ is a dominating set $S$ of $G$ such that the induced subgraph $G[S]$ contains a perfect matching $M$ (not necessarily induced). Two vertices are paired in $S$ if they form an edge of $M$. The paired domination number, $\gamma_{\mathrm{pr}}(G)$, of $G$ is the minimum cardinality of a PD-set of $G$. A $\gamma_{\mathrm{pr}}$-set of $G$ is a PD-set of $G$ of minimum cardinality. Necessarily, the paired domination number of a graph is an even integer. Paired domination in graphs is well studied in the literature, and was first studied by Haynes and Slater [6,7] in 1995. A recent survey paper on paired domination in graphs can be found in $[3,5]$ ).

For graph theory notation and terminology, we follow [9]. The vertex set and edge set of $G$ are denoted by $V(G)$ and $E(G)$, respectively. The order and size of $G$ are given by $n(G)=|V(G)|$ and size $m(G)=|E(G)|$. If two vertices are adjacent, they are called neighbors. The set of neighbors of a vertex $v$ in $G$ is the set $N_{G}(v)$, called the open neighborhood of $v$. The degree, $d_{G}(v)$, of $v$ is the number of neighbors of $v$ in $G$. Moreover, if $X$ is a set of vertices of $G$, then $d_{X}(v)$ is the number of neighbors of $v$ in $G$ that belong to the set $X$. In the special case when $X=V(G)$, we note that $d_{X}(v)=d_{G}(v)$. The minimum and maximum degree among the vertices of $G$ is $\delta(G)$ and $\Delta(G)$, respectively. A graph is $k$-regular if every vertex has degree $k$. A 3-regular graph is commonly referred to a cubic graph in the literature. The set consisting of $v$ and its neighbors is its closed neighborhood $N_{G}[v]$. For a set $S$ of vertices, the open (resp., closed) neighborhood of $S$ is union of the open (resp., closed) neighborhoods of vertices in $S$, denoted by $N_{G}(S)$ (resp., $\left.N_{G}[S]\right)$. For simplicity, we sometimes write $N(v)$ and $N[S]$ in place of $N_{G}(v)$ and $N_{G}[S]$, respectively.

[^0]If $S$ is a set of vertices in $G$, by $G-S$ we mean the graph obtained from $G$ by removing the vertices (and their incident edges) from $S$. If $S=\{v\}$, then we simply write $G-v$ rather than $G-\{v\}$. The subgraph induced by the set $S$ is given by $G[S]$. A path, cycle and complete graph on $n$ vertices is given by $P_{n}, C_{n}$ and $K_{n}$, respectively.

## 2. Known results

The paired domination number of a graph with minimum degree at least 2 is known to be at most two-thirds its order.
Theorem 1. ([7, 10]) If $G$ is a connected graph of order $n \geq 6$ with $\delta(G) \geq 2$, then $\gamma_{\mathrm{pr}}(G) \leq \frac{2}{3} n$.
The graphs achieving equality in Theorem 1 are characterized in [8]. Chen et al. [2] in 2007 established the best possible upper bound on the paired domination number of a cubic graph.
Theorem 2. ([2]) If $G$ is a cubic graph of order $n$, then $\gamma_{\mathrm{pr}}(G) \leq \frac{3}{5} n$.
Goddard and Henning [4] in 2009 showed that the only connected graph achieving equality in Theorem 2 is the Petersen graph, and conjectured that if we exclude this exceptional graph, then the bound can be improved to $\gamma_{\mathrm{pr}}(G) \leq \frac{4}{7} n$. This conjecture has yet to be resolved in general. However, Lu et al. [11] in 2019 proved the conjecture in the special case of claw-free graphs.

## 3. Main result

It remains an open problem to determine a best possible upper bound on the paired domination number of a connected graph with minimum degree at least 3 in terms of its order $n$. By Theorem 1 , we have $\gamma_{\mathrm{pr}}(G) \leq \frac{2}{3} n$. However, this $\frac{2}{3}$-bound has yet to be improved. A best possible upper bound on the paired domination of a non-regular graph with minimum degree at least 3 is considerable more challenging to determine than in the case of 3-regular graphs. In this paper, we present such a bound that is an improvement of the $\frac{2}{3}$-upper bound, a proof of which is given in Section 4.

Theorem 3. If $G$ is a graph of order $n$ with $\delta(G) \geq 3$, then $\gamma_{\mathrm{pr}}(G) \leq \frac{19,037}{30,000} n<0.634567 n$.

## 4. Proof of Theorem 3

We define the boundary $\partial_{G}(D)$ of a set $D \subseteq V(G)$ in a graph $G$ as all neighbors of vertices of $D$ that belong outside the set $D$, that is, $\partial_{G}(D)=N_{G}[D] \backslash D$. We define the concept of a colored graph, which has a similar flavor to a residual graph defined by Bujtás [1].

Definition 1. Let $G$ be a graph and let $S$ be a set of vertices such that $G[S]$ contains a perfect matching. The colored graph $G_{S}$ of $G$ associated with the set $S$ is the graph obtained from $G$ as follow:

1. A vertex is colored amber if it has no neighbor in $S$.
2. A vertex is colored beige if it has a neighbor in $S$ and a neighbor not dominated by $S$.
3. A vertex is colored cyan if it and all its neighbors are dominated by $S$.
4. All edges of $G$ are removed from $G_{S}$, except for edges that join two amber vertices or an amber and a beige vertex.

Thus, each vertex in the colored graph $G_{S}$ is colored amber, beige or cyan. In particular, a vertex in $S$ is colored cyan. We let $A, B$, and $C$ be the set of amber, beige, and cyan vertices, respectively, in $G_{S}$, and so $(A, B, C)$ is a partition of $V(G)$. The amber graph is defined as the graph $G[A]$ induced by the set $A$ of amber vertices. The number of amber and beige vertices adjacent to a vertex $v$ in $G_{S}$ is the amber-degree and beige-degree, respectively, of $v$, and is denoted by $d_{A}(v)$ and $d_{B}(v)$, respectively. The maximum amber-degree of a vertex in $A$ (resp., $B$ ) is denoted by $\Delta_{A}(A)$ (resp., $\Delta_{A}(B)$ ). If $v$ is an amber vertex, then its amber and beige neighbors are given by $N_{A}(v)$ and $N_{B}(v)$, respectively. We let $N_{A}[v]=N_{A}(v) \cup\{v\}$.

Throughout the proof we use the observation that an amber vertex has no cyan neighbor, and therefore its degree in $G$ is the sum of its amber-degree and beige-degree in the colored graph $G_{S}$. Hence, the number of amber and beige neighbors of an amber vertex in $G_{S}$ is precisely its degree in $G$, which is at least $\delta(G) \geq 3$. By construction of the colored graph, a beige vertex has at least one amber neighbor, but no beige or cyan neighbors in $G_{S}$. Moreover, if $v$ is colored beige in $G_{S}$, then it has at least one neighbor in $G$ that is colored cyan in $G_{S}$.

We are now in a position to prove Theorem 3. Recall its statement.
Theorem 3 If $G$ is a graph of order $n$ with $\delta(G) \geq 3$, then $\gamma_{\mathrm{pr}}(G) \leq \frac{19,037}{30,000} n<0.634567 n$.
Proof. Let $G$ be a graph of order $n$ with $\delta(G) \geq 3$. Removing edges from a graph in such a way that no isolated vertices are created, cannot decrease its paired-domination number. Hence, we may assume that the graph $G$ is edge-minimal with respect to the condition that $\delta(G) \geq 3$, that is, if $u$ and $v$ are adjacent vertices, then at least one of $u$ and $v$ has degree 3 in $G$ (or, equivalently, at most one of $u$ and $v$ has degree 4 or more in $G$ ).

For a set $S$ of vertices in $G$, we define a weak partition (where some of the sets may be empty) of the set of beige vertices in $G_{S}$ by $B=\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$, where $B_{i}$ is the set of beige vertices having $i$ amber neighbors in $G_{S}$ for $i \in[3]$ and where $B_{4}$ is

Table 1
The weight $\mathrm{w}(v)$ of a vertex $v$.

| set containing $v$ | $A$ | $B_{4}$ | $B_{3}$ | $B_{2}$ | $B_{1}$ | $C$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{w}(v)$ | 57,111 | 46,964 | 42,889 | 41,926 | 40,963 | 0 |

the remaining set of beige vertices. Thus, each vertex in $B_{4}$ has four or more amber neighbors. The weight $\mathrm{w}(v)$ of a vertex $v$ in the colored graph $G_{S}$ is defined by the values given in Table 1.

The weight $\mathrm{w}\left(G_{S}\right)$ of the colored graph $G_{S}$ is the sum of the weights of the vertices, that is,

$$
\mathrm{w}\left(G_{S}\right)=\sum_{v \in V(G)} \mathrm{w}(v)=57,111|A|+46,964\left|B_{4}\right|+42,889\left|B_{3}\right|+41,926\left|B_{2}\right|+40,963\left|B_{1}\right| .
$$

The set $S$ is a PD-set in $G$ if and only if all vertices are colored cyan in $G_{S}$, in which case $w\left(G_{S}\right)=0$. Given a subset $S \subseteq V(G)$ such that $G[S]$ contains a perfect matching and given a subset $R \subseteq V(G) \backslash S$ where $G[R]$ contains a perfect matching, we define

$$
\xi(R)=\mathrm{w}\left(G_{S}\right)-\mathrm{w}\left(G_{R \cup S}\right),
$$

that is, $\xi(R)$ represented the total weight decrease when growing the set $S$ to the set $R \cup S$. Such a set $R$ is an $S$-desirable set if $G[R]$ contains a perfect matching and

$$
\xi(R) \geq 90,000|R|
$$

Letting $S^{\prime}=R \cup S$, we denote the resulting set of amber, beige and cyan vertices, respectively, in $G_{S^{\prime}}$ by $A^{\prime}, B^{\prime}$ and $C^{\prime}$ respectively. Associated with the resulting set $S^{\prime}$, we define the weak partition $B^{\prime}=\left(B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, B_{4}^{\prime}\right)$ of the beige vertices in $G_{S^{\prime}}$ in the natural way, where $B_{i}^{\prime}$ is the set of beige vertices having $i$ amber neighbors in $G_{S^{\prime}}$ for $i \in[3]$ and where $B_{4}^{\prime}$ is the remaining set of beige vertices. Our key claim is that if the weight of the colored graph $G_{S}$ is positive, then there exists an $S$-desirable set.

Claim 1. If $\mathrm{w}\left(G_{S}\right)>0$, then there exists an $S$-desirable set in $G_{S}$.
Proof. Let $w\left(G_{S}\right)>0$, and suppose that there is no $S$-desirable set in $G_{S}$. We proceed with a series of claims describing some structural properties of $G_{S}$ which culminate in the implication of its nonexistence.

Claim 1.1. The following hold in the amber graph $G[A]$.

1. There is no component of order 3 in $G[A]$.
2. Every component of order at least 4 in $G[A]$ has minimum degree at least 2.

Proof. (a) Assume that $C$ is a component of order 3 in $G[A]$. Thus, $C$ contains a path $P_{3}$ given by $v_{1} v_{2} v_{3}$, where possibly $v_{1} v_{3}$ is an edge. Let $u_{2}$ be a beige neighbor of $v_{2}$, and let $R=\left\{u_{2}, v_{2}\right\}$. In the graph $G_{S^{\prime}}$, the four vertices $v_{1}, v_{2}, v_{3}$, $u_{2}$ are all colored cyan, implying that $\xi(R) \geq 3 \times 57,111+1 \times 40,963=212,296>180,000=90,000|R|$, a contradiction. Hence, no component in $G[A]$ has order 3 .
(b) Suppose that $C$ is a component in the amber graph $G[A]$ such that $|V(C)| \geq 4$ and $\delta(C)=1$. Let $a_{1}$ be a vertex of minimum (amber) degree in $C$, and so let $a_{2}$ be the only amber neighbor of $a_{1}$. Let $a_{3}$ be a neighbor of $a_{2}$ distinct from $a_{1}$ in $C$. Since $C$ has order greater than 3, there is an (amber) vertex $p \notin\left\{a_{1}, a_{2}, a_{3}\right\}$ that is adjacent to at least one of $a_{2}$ or $a_{3}$. Letting $R=\left\{a_{2}, a_{3}\right\}$, the vertices $a_{1}, a_{2}, a_{3}$ are colored cyan in $G_{S^{\prime}}$, while the vertex $p$ is colored beige or cyan in $G_{S^{\prime}}$. Each of $a_{1}, a_{2}, a_{3}$ therefore decreases the weight by 57,111 , while the weight decrease of $p$ is at least 10,147 . Therefore, $\xi(R) \geq 57,111 \times 3+10,147=181,480>180,000=90,000|R|$, a contradiction.

Claim 1.2. $\Delta_{A}(A) \leq 3$.
Proof. Suppose that $\Delta_{A}(A) \geq 4$. Let $v$ be an amber vertex with $d_{A}(v)=\Delta_{A}(A) \geq 4$. By the edge-minimality of $G$, every neighbor of $v$ has degree 3 in $G$. Let $X=\partial\left(N_{A}[v]\right)$ be the boundary of the set $N_{A}[v]$ in the amber graph $G[A]$, and so $X$ is the set of amber vertices that do not belong to $N_{A}[v]$ but have a neighbor in $N_{A}(v)$. Among all amber neighbors of $v$, let $v^{\prime}$ be chosen so that the number, $d_{X}\left(v^{\prime}\right)$, of neighbors of $v^{\prime}$ that belong to the set $X$ is a maximum. Since the vertex $v^{\prime}$ has degree 3 in $G$, we have $d_{X}\left(v^{\prime}\right) \leq 2$. Let $R=\left\{v, v^{\prime}\right\}$.

Suppose that $d_{X}\left(v^{\prime}\right)=0$. Thus the vertex $v$ and its amber neighbors are colored cyan in the colored graph $G_{S^{\prime}}$, and therefore result in a weight decrease of $57,111 \times\left(1+d_{A}(v)\right) \geq 57,111 \times 5=285,555$. Hence, $\xi(R) \geq 285,555>180,000=$ $90,000|R|$. Thus, the set $R$ is a $S$-desirable set, a contradiction. Therefore, $d_{X}\left(v^{\prime}\right) \geq 1$.

Suppose that $d_{X}\left(v^{\prime}\right)=2$. Thus, $v$ and $v^{\prime}$ are colored cyan in $G_{S^{\prime}}$. Every amber neighbor $u$ of $v$ different from $v^{\prime}$ has degree 3 in $G$ and therefore has degree at most 2 in $G_{S^{\prime}}$, implying that $u \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, resulting in a weight decrease of at least $57,111-41,926=15,185$. Further, the two amber neighbors of $v^{\prime}$ in $X$ are colored beige or cyan in $G_{S^{\prime}}$, and therefore their weight decreases by at least $57,111-46,964=10,147$. Hence, $\xi(R) \geq 57,111 \times 2+15,185 \times\left(d_{A}(v)-1\right)+$ $10,147 \times d_{A^{\prime}}\left(v^{\prime}\right) \geq 2 \times 57,111+3 \times 15,185+2 \times 10,147=180,071>180,000=90,000|R|$. Thus, the set $R$ is a $S$-desirable
set, a contradiction. Hence, $d_{X}\left(v^{\prime}\right)=1$. By our choice of the vertex $v^{\prime}$, every amber neighbor of $v$ has at most one neighbor in $X$.

Suppose that some neighbor of $v$, say $v^{\prime \prime}$, has no amber neighbor in $X$, that is, $d_{X}\left(v^{\prime \prime}\right)=0$. Thus, the vertices $v, v^{\prime}$ and $v^{\prime \prime}$ are colored cyan. Moreover, the neighbors of $v$ distinct from $v^{\prime}$ and $v^{\prime \prime}$ belong to the set $B_{1}^{\prime} \cup C^{\prime}$. Hence, $\xi(R) \geq 57,111 \times$ $3+16,148 \times\left(d_{A}(v)-2\right) \geq 57,111 \times 3+16,148 \times 2=203,629>90,000|R|$, a contradiction. Thus, every amber neighbor of $v$ has exactly one amber neighbor in $X$. Thus, for every amber neighbor $u$ of $v$ different from $v^{\prime}$ we have $u \in B_{1}^{\prime} \cup C^{\prime}$, and therefore the vertex $u$ decreases the weight by at least $57,111-40,963=16,148$. As before, the decrease of weight of the amber neighbor of $v^{\prime}$ outside the set $N[v]$ is at least 10,147 . Hence if $d_{A}(v) \geq 5$, then $\xi(R) \geq 57,111 \times 2+16,148 \times 4+$ $10,147=188,961>90,000|R|$, a contradiction. Therefore, $\Delta_{A}(A)=4$. Let $N_{A}(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where $v^{\prime}=v_{1}$.

Suppose that two amber neighbors of $v$ have a common amber neighbor in $X$. Without loss of generality, we may assume that $v_{1}$ and $v_{2}$ are two such neighbors of $v$. In this case, the vertices $v, v_{1}$ and $v_{2}$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 57,111 \times 3+16,148 \times 2+10,147=213,776>90,000|R|$, a contradiction. Hence, no two amber neighbors of $w$ have a common (amber) neighbor in $X$. Let $x_{i}$ be the (amber) neighbor of $v_{i}$ in $X$ for $i \in[4]$. By our earlier observations, the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct. Thus, $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Let $C_{v}$ be the component in the amber graph $A$ that contains the vertex $v$. Thus, $N_{A}[v] \cup X \subseteq V\left(C_{v}\right)$, implying that the component $C_{v}$ has order at least 9 . Hence by Claim 1.1, we have $\delta\left(C_{v}\right) \geq 2$, and so every vertex in $X$ has amber degree at least 2.

Suppose that $x_{i} x_{j}$ is an edge for some $i, j \in[4]$ where $i \neq j$. We may assume that $x_{1} x_{2}$ is an edge. Let $R=\left\{v, v_{3}, x_{1}, x_{2}\right\}$ (with $v$ and $v_{3}$ paired, and with $x_{1}$ and $x_{2}$ paired). All vertices in $\left\{v, v_{1}, v_{2}, v_{3}, x_{1}, x_{2}\right\}$ are colored cyan in $G_{S^{\prime}}$, while the vertex $v_{4} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertex $x_{3}$ is colored beige or cyan in $G_{S^{\prime}}$. This implies that $\xi(R) \geq 6 \times 57,111+1 \times 16,148+1 \times$ $10,147=368,961>360,000=90,000|R|$. Thus, $R$ is a $S$-desirable set, a contradiction. We deduce that $X$ is an independent set in $G$.

Let $Y$ be the set of all amber vertices that are not neighbors of $v$ but have a neighbor in the set $X$. Each vertex in $X$ has degree at least 2 and therefore has at least one (amber) neighbor in $Y$.

Suppose that two vertices in $X$, say $x_{1}$ and $x_{2}$, have a common amber neighbor, say $y$, in $Y$. Let $R=\left\{v, v_{3}, x_{1}, y\right\}$ (with $v$ and $v_{3}$ paired, and with $x_{1}$ and $y$ paired). All vertices in $\left\{v, v_{1}, v_{2}, v_{3}, x_{1}, y\right\}$ are colored cyan in $G_{S^{\prime}}$. Further, the vertex $v_{4} \in B_{1}^{\prime} \cup C^{\prime}$, and the vertices $x_{2}$ and $x_{3}$ are recolored beige or cyan. This implies that $\xi(R) \geq 6 \times 57,111+1 \times 16,148+2 \times$ $10,147=368,961>360,000=90,000|R|$. Thus, $R$ is a $S$-desirable set, a contradiction. We deduce that no two vertices in $X$ have a common neighbor in $Y$.

Suppose that a vertex in $X$ has only one (amber) neighbor in $Y$. We may assume that the vertex $x_{1}$ has a unique neighbor $y_{1}$ in $Y$. Thus, the vertex $x_{1}$ has amber-degree 2. Let $z_{1}$ be an amber neighbor of $y_{1}$ distinct from $x_{1}$. Thus, $z_{1} \notin X$. Letting $R=\left\{v, v_{2}, y_{1}, z_{1}\right\}$ (with $v$ and $v_{2}$ paired, and with $y_{1}$ and $z_{1}$ paired), the six vertices in $\left\{v, v_{1}, v_{2}, x_{1}, y_{1}, z_{1}\right\}$ are colored cyan in the colored graph $G_{S^{\prime}}$, while the vertices $v_{3}, v_{4} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertex $x_{2}$ is recolored beige or cyan, implying that $\xi(R) \geq 6 \times 57,111+2 \times 16,148+1 \times 10,147=385,109>90,000|R|$. Thus, $R$ is a $S$-desirable set, a contradiction, implying that each vertex in $X$ has at least two amber neighbors in $Y$.

Let $y_{i}$ and $y_{i}^{\prime}$ be two distinct (amber) neighbors of $x_{i}$ for $i \in[4]$. By our earlier observations, the vertices $y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}, y_{3}, y_{3}^{\prime}, y_{4}, y_{4}^{\prime}$ are distinct. Let $R=\left\{v_{1}, x_{1}, x_{2}, x_{3}, x_{4}, y_{2}, y_{3}, y_{4}\right\}$ (with $v_{1}$ and $x_{1}$ paired, and with $x_{i}$ and $y_{i}$ paired for $i \in\{2,3,4\}$ ). All 12 vertices in the set $N_{A}[v] \cup X \cup\left\{y_{2}, y_{3}, y_{4}\right\}$ are colored cyan in $G_{S^{\prime}}$, and the vertices $y_{1}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, y_{4}^{\prime}$ are recolored beige or cyan. This implies that $\xi(R) \geq 12 \times 57,111+5 \times 10,147=736,067>720,000=90,000|R|$, and so the set $R$ is a $S$-desirable set, a contradiction.

Claim 1.3. $\Delta_{A}(B) \leq 3$.
Proof. Suppose that $\Delta_{A}(B) \geq 4$. Let $w$ be a beige vertex with $d_{A}(w)=\Delta_{A}(B)$. By the edge-minimality of $G$, every neighbor of $w$ has degree 3 in $G$. Let $X=\partial\left(N_{A}[w]\right)$ be the boundary of the set $N_{A}[w]$ in the amber graph $G[A]$, and so $X$ is the set of amber vertices that do not belong to $N_{A}[v]$ but have a neighbor in $N_{A}(v)$. Among all amber neighbors of $w$, let $w^{\prime}$ be chosen so that $d_{A}\left(w^{\prime}\right)$ is a maximum. Since the vertex $w^{\prime}$ has degree 3 in $G$, we have $d_{A}\left(w^{\prime}\right) \leq 2$. Let $R=\left\{w, w^{\prime}\right\}$.

If $d_{X}\left(w^{\prime}\right)=0$, then the vertex $w$ and all its amber neighbors in $G$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 46,964+$ $4 \times 57,111 \geq 275,408>180,000=90,000|R|$, a contradiction. Hence, $d_{X}\left(w^{\prime}\right) \geq 1$.

Suppose that $d_{X}\left(w^{\prime}\right)=2$. The vertices $w$ and $w^{\prime}$ are colored cyan in $G_{S^{\prime}}$. Every amber neighbor $u$ of $v$ distinct from $v^{\prime}$ has degree 3 in $G$ and therefore has degree at most 2 in $G_{S^{\prime}}$, and so $u \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$. Thus, the vertex $u$ decreases the weight by at least 15,185 . Further, every amber neighbor of $w^{\prime}$ in $X$ is colored beige or cyan in $G_{S^{\prime}}$ and, by Claim 1.2, has at most two amber neighbors in $G_{S^{\prime}}$, implying that it belongs to the set $B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$ and therefore its weight decrease is also at least 15,185 . Hence, $\xi(R) \geq 46,964+57,111+15,185 \times\left(d_{A}(w)-1+d_{X}\left(w^{\prime}\right)\right) \geq 46,964+57,111+15,185 \times 5=180,000=$ $90,000|R|$. This contradicts our assumption, therefore, $d_{X}\left(w^{\prime}\right)=1$.

Suppose that $\Delta_{A}(B) \geq 5$. The weight decrease of every amber neighbor of $w$ different from $w^{\prime}$ is at least 15,185 , as is the weight decrease of the amber neighbor of $w^{\prime}$ in $X$. Hence, $\xi(R) \geq 46,964+57,111+5 \times 15,185=90,000|R|$, a contradiction. Thus, $\Delta_{A}(B) \leq 4$. By supposition, $\Delta_{A}(B) \geq 4$. Consequently, $d_{A}(w)=\Delta_{A}(B)=4$. Let $w_{1}, w_{2}, w_{3}, w_{4}$ be the amber neighbors of $w$.

By our earlier observations, $d_{X}\left(w^{\prime}\right)=1$, implying that every amber neighbor of $w$ has at most one neighbor in $X$. If an amber neighbor of $w$ has no neighbor in $X$, then such a vertex is recolored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 46,964+2 \times$
$57,111+3 \times 15,185=206,741>90,000|R|$, a contradiction. Hence, every amber neighbor of $w$ has exactly one neighbor in $X$, that is, $d_{X}\left(w_{i}\right)=1$ for all $i \in[4]$. We can therefore choose the vertex $w^{\prime}$ (which has the maximum number of neighbors in $X$ ) as an arbitrary vertex among $w_{1}, w_{2}, w_{3}, w_{4}$.

Suppose that two amber neighbors, say $w_{1}$ and $w_{2}$, of $w$ have a common amber neighbor in $X$. We may assume that $w^{\prime}=w_{1}$. The vertices $w, w_{1}, w_{2}$ are colored cyan in $G_{S^{\prime}}$, implying once again that $\xi(R) \geq 46,964+2 \times 57,111+3 \times 15,185>$ $90,000|R|$, a contradiction. Hence, no two amber neighbors of $w$ have a common (amber) neighbor in $X$. Let $x_{i}$ be the (amber) neighbor of $w_{i}$ in $X$ for $i \in[4]$. The vertices $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct. Thus, $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Suppose that $x_{i} x_{j}$ is an edge for some $i, j \in[4]$ where $i \neq j$. We may assume that $x_{1} x_{2}$ is an edge. Let $R=\left\{w, w_{3}, x_{1}, x_{2}\right\}$ (with $w$ and $w_{3}$ paired, and with $x_{1}$ and $x_{2}$ paired). All vertices in $\left\{w, w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$ are colored cyan in $G_{S^{\prime}}$, while the vertex $w_{4} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertex $x_{3} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$. This implies that $\xi(R) \geq 46,964+5 \times 57,111+16,148+15,185=$ $363,852>360,000=90,000|R|$. Thus, $R$ is a $S$-desirable set, a contradiction. We deduce that $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an independent set in $G$.

Let $Y$ be the set of all amber vertices that are not neighbors of $w$ but have a neighbor in the set $X$. Each vertex in $X$ has amber degree at least 2, and therefore has at least one neighbor in $Y$. Suppose that two vertices in $X$, say $x_{1}$ and $x_{2}$, have a common amber neighbor, say $y$, in $Y$. Let $R=\left\{w, w_{3}, x_{1}, y\right\}$ (with $w$ and $w_{3}$ paired, and with $x_{1}$ and $y$ paired). The six vertices in $\left\{w, w_{1}, w_{2}, w_{3}, x_{1}, y\right\}$ are colored cyan in $G_{S^{\prime}}$. Moreover, $w_{4}, x_{2} \in B_{1}^{\prime} \cup C^{\prime}$ and $x_{3} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$. This implies that $\xi(R) \geq 46,964+5 \times 57,111+2 \times 16,148+15,185=380,000>90,000|R|$. Thus, $R$ is a $S$-desirable set, a contradiction. We deduce that for any two vertices $x_{1}, x_{2} \in X$ there is no vertex $y \in Y$ that is a neighbor of both $x_{1}$ and $x_{2}$.

Let $y_{i}$ be an (amber) neighbor of $x_{i}$ that belongs to the set $Y$ for $i \in[4]$. The vertices $y_{1}, y_{2}, y_{3}, y_{4}$ are distinct. Let $R=X \cup$ $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. The vertex $w$ is colored cyan in $G_{S^{\prime}}$, as are the vertices $w_{i}, x_{i}, y_{i}$ for all $i \in[4]$, implying that $\xi(R) \geq 46,964+$ $12 \times 57,111=732,296>720,000=90,000|R|$, and so the set $R$ is a $S$-desirable set, a contradiction.

As a consequence of Claim 1.2, we have $\Delta_{A}(A) \leq 3$, and by Claim 1.3, we have $\Delta_{A}(B) \leq 3$. Thus, $B=B_{1} \cup B_{2} \cup B_{3}$, where we recall that if $w \in B_{i}$ for $i \in[3]$, then $d_{A}(w)=i$.

Claim 1.4. There is no subgraph isomorphic to $K_{4}$ or $K_{4}-e$ in $G[A]$.
Proof. Assume that $F$ is an (amber) subgraph in $G[A]$ isomorphic to $K_{4}$. Since $\Delta_{A}(A) \leq 3, F$ is an (amber) component in $G[A]$. Let $V(F)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let $R=\left\{v_{1}, v_{2}\right\}$. All four (amber) vertices in $F$ are colored cyan in $G_{S^{\prime}}$, and so $\xi(R) \geq$ $4 \times 57,111=228,444>90,000|R|$, a contradiction. Hence, there is no subgraph isomorphic to $K_{4}$ in $G[A]$.

Assume that $F$ is an (amber) subgraph in $G[A]$ isomorphic to $K_{4}-e$. Let $V(F)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where $v_{2}$ and $v_{3}$ have degree 3 in $F$. By Part (a), we note that $v_{1} v_{4}$ is not an edge. Letting $R=\left\{v_{1}, v_{2}\right\}$, the vertices $v_{1}, v_{2}, v_{3}$ are colored cyan in $G_{S^{\prime}}$ and $v_{4} \in B_{1}^{\prime} \cup C^{\prime}$. Thus, $\xi(R) \geq 3 \times 57,111+16,148=187,481>90,000|R|$, a contradiction.

Claim 1.5. The removal of an edge that joins a beige vertex $v$ to an amber vertex results in a decrease in the weight of $v$ by at least 963.

Proof. Let $e$ be an edge of $G_{S}$ joining a beige vertex $v$ to an amber vertex $u$. If the vertex $u$ is added to the set $S$ and the edge $e$ is removed, then the vertex $v$ has $i-1$ amber neighbors, whence $i \in\{2,3\}$ and $v \in B_{i-1}$ in $G_{S}$ or $i=1$ and $v$ is recolored cyan in $G_{S}$. This implies (see, Table 1) that the removal of the edge $e$ decreases the weight of $v$ by 963 if $i \in\{2,3\}$, and by 40963 if $i=1$.

Since we frequently use Claim 1.5 in the remaining part of the proof, we often omit the reference to this claim when we apply it.

## Claim 1.6. There is no subgraph isomorphic to $K_{3}$ in $G[A]$.

Proof. Assume that $T$ is an (amber) triangle in $G[A]$, where $V(T)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $C$ be the (amber) component in $G[A]$ that contains the triangle $T$. By Claim 1.1(a), the subgraph $T$ is not a component in $G[A]$, and so the component $C$ has order at least 4. Thus by Claim 1.1(b), every vertex that belongs to the component $C$ has degree at least 2 . Let $X=\partial(V(T))$ be the boundary of the set $V(T)$ in the amber graph $G[A]$. Thus, $X$ consists of all amber vertices not in $T$ that have a neighbor in $T$. Since the component $C$ has order at least 4 , we note that $X \neq \emptyset$. We may assume that $v_{1}$ has an (amber) neighbor in $X$, say $x_{1}$.

Suppose that a vertex in $T$, say $v_{3}$, has no (amber) neighbor in $X$. In this case, we let $R=\left\{v_{1}, v_{2}\right\}$. All three vertices in $T$ are colored cyan in $G_{S^{\prime}}$, while the vertex $x_{1} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C$, implying that $\xi(R) \geq 3 \times 57,111+15,185=186,518>90,000|R|$, a contradiction. Hence, each vertex in the triangle $T$ has an amber neighbor in $X$. Let $x_{i}$ be the (amber) neighbor of $v_{i}$ that belongs to $X$ for $i \in[3]$. By Claim 1.4, the vertices $x_{1}, x_{2}, x_{3}$ are distinct. Hence, $X=\left\{x_{1}, x_{2}, x_{3}\right\}$.

Suppose that $x_{i} x_{j}$ is an edge for some $i, j \in[3]$ where $i \neq j$. We may assume that $x_{1} x_{2}$ is an edge. We now consider the set $R=\left\{v_{1}, x_{1}\right\}$. The vertices $v_{1}, v_{2}, x_{1}$ are colored cyan in $G_{S^{\prime}}$, while $v_{3}, x_{2} \in B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 3 \times 57,111+2 \times$ $16,148>90,000|R|$, a contradiction. The set $X$ is therefore an independent set.

Let $Y$ be the set of all amber vertices that do not belong to the triangle $T$ but have a neighbor in the set $X$. Every vertex in $X$ has at least two amber neighbors, and therefore has either one or two neighbors in $Y$.

Suppose that two vertices, $x_{1}$ and $x_{2}$, in $X$ have a common amber neighbor, say $y$, in $Y$. If $x_{1}$ has amber degree 2 , then letting $R=\left\{v_{3}, x_{2}, x_{3}, y\right\}$ (with $x_{2}$ and $y_{1}$ paired, and $v_{3}$ and $x_{3}$ paired), the seven vertices in $V(T) \cup X \cup\{y\}$ are colored
cyan in the colored graph $G_{S^{\prime}}$, implying that $\xi(R) \geq 7 \times 57,111=399,777>360,000=90,000|R|$, a contradiction. Hence, $x_{1}$ has amber degree 3. Let $y_{1}$ be the amber neighbor of $x_{1}$ different from $v_{1}$ and $y$. Letting $R=\left\{x_{1}, y, v_{3}, x_{3}\right\}$ (with $x_{1}$ and $y$ paired, and $v_{3}$ and $x_{3}$ paired), the six vertices $v_{1}, v_{2}, v_{3}, x_{1}, x_{3}, y$ are all colored cyan in $G_{S^{\prime}}$, while $x_{2} \in B_{1}^{\prime} \cup C^{\prime}$ and $y_{1} \in$ $B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+16,148+15,185=373,999>360,000=90,000|R|$, a contradiction. Hence, no two vertices in $X$ have a common neighbor in $Y$. Let $y_{i}$ be an (amber) neighbor of $x_{i}$ for $i \in[3]$. By our earlier observations, the vertices $y_{1}, y_{2}, y_{3}$ are distinct.

Suppose that $y_{i} y_{j}$ is an edge for some $i, j \in[3]$ where $i \neq j$. We may assume that $y_{1} y_{2}$ is an edge. Let $R=\left\{v_{3}, x_{3}, y_{1}, y_{2}\right\}$ (with $v_{3}$ and $x_{3}$ paired, and $y_{1}$ and $y_{2}$ paired). In the colored graph $G_{S^{\prime}}$, the six vertices $v_{1}, v_{2}, v_{3}, x_{3}, y_{1}, y_{2}$ are colored cyan, while the vertices $x_{1}, x_{2} \in B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+2 \times 16,148=374,962>90,000|R|$, a contradiction. Hence, the set $\left\{y_{1}, y_{2}, y_{3}\right\}$ is an independent set in $G$.

Suppose that a vertex in $X$ has at least two (amber) neighbors in $Y$. We may assume that $x_{1}$ has two neighbors in $Y$. Let $y_{1}^{\prime}$ be a neighbor of $x_{1}$ in $Y$ different from $y_{1}$. Interchanging the roles of $y_{1}$ and $y_{1}^{\prime}$, the vertex $y_{1}^{\prime}$ is not adjacent to $y_{2}$ or $y_{3}$. Let $z_{2}$ be an (amber) neighbor of $y_{2}$ different from $x_{2}$. By our earlier observations, $z_{2} \notin X \cup\left\{y_{1}, y_{1}^{\prime}, y_{3}\right\}$. Letting $R=$ $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$ (with $x_{i}$ and $y_{i}$ paired for $i \in[3]$ ), all nine vertices in the set $V(T) \cup X \cup\left\{y_{1}, y_{2}, y_{3}\right\}$ are colored cyan in $G_{S^{\prime}}$, while the vertices $y_{1}^{\prime}, z_{2} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 9 \times 57,111+2 \times 15,185=544,369>540,000=90,000|R|$. Thus, $R$ is a $S$-desirable set, a contradiction. Every vertex in $X$ therefore has exactly one (amber) neighbor in $Y$, implying by our earlier observations that $N_{A}\left(x_{i}\right)=\left\{v_{i}, y_{i}\right\}$ for $i \in[3]$.

Let $Z$ be the set of amber vertices not in $X$ but having a neighbor in the set $Y$. Every vertex in $Y$ has at least two amber neighbors, and therefore has either one or two neighbors in $Z$. Letting $R=X \cup Y$ (with $x_{i}$ and $y_{i}$ paired for $i \in[3]$ ), the vertices in $V(T) \cup X \cup Y$ are all colored cyan in $G_{S^{\prime}}$, while the vertices in $Z$ belong to the set $B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$. If $|Z| \geq 2$, then $\xi(R) \geq 9 \times 57,111+2 \times 15,185=544,369>540,000=90,000|R|$, a contradiction. Hence, $|Z|=1$. Let $Z=\{z\}$. By our earlier observations, every vertex in $Y$ has a neighbor in $Z$, and so $z$ is adjacent to all three vertices in $Y$. Thus, $z \in C^{\prime}$ and $\xi(R) \geq 10 \times 57,111=571,110>90,000|R|$, a contradiction.

Claim 1.7. There is no 4-cycle in $G[A]$.
Proof. Suppose that $C: v_{1} v_{2} v_{3} v_{4} v_{1}$ is an amber 4-cycle in $G[A]$. Let $X=\partial(V(C))$ be the boundary of the set $V(C)$ in the amber graph $G[A]$. Thus, $X$ consists of all amber vertices not in $C$ that have a neighbor in $C$. By Claim 1.6, there is no amber triangle, implying that the cycle $C$ is an induced cycle in $G[A]$. By Claim 1.1, every vertex in the (amber) component in $G[A]$ containing the cycle $C$ has degree at least 2 .

Suppose that a vertex in $C$, say $v_{1}$, has no (amber) neighbor in $X$. In this case, we let $R=\left\{v_{2}, v_{3}\right\}$. All three vertices $v_{1}, v_{2}, v_{3}$ are colored cyan in $G_{S^{\prime}}$, while the vertex $v_{4} \in B_{1}^{\prime} \cup C$, implying that $\xi(R) \geq 3 \times 57,111+16,148=187,481>$ $90,000|R|$, a contradiction. Hence, each vertex in the cycle $C$ has an amber neighbor in $X$. Let $x_{i}$ be the (amber) neighbor of $v_{i}$ that belongs to $X$ for $i \in[4]$.

Suppose that $x_{i}=x_{j}$ for some $i$ and $j$ where $1 \leq i<j \leq 4$. Since there is no (amber) triangle in $G[A]$, we have $j=i+2$. For notational simplicity, we may assume that $x_{1}=x_{3}$. Let $R=\left\{x_{1}, v_{3}\right\}$ (with $x_{1}$ and $v_{3}$ paired). All three vertices $v_{1}, v_{3}, x_{1}$ are colored cyan in $G_{S^{\prime}}$, while the vertices $v_{2}, v_{4} \in B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 3 \times 57,111+2 \times 16,148=203,629>90,000|R|$, a contradiction. Hence, the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct. Thus, $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Suppose that $x_{i} x_{i+1}$ is an edge for some $i \in[4]$ (where addition is taken modulo 4). By symmetry, we may assume that $x_{1} x_{2}$ is an edge. Letting $R=\left\{x_{1}, x_{2}, v_{3}, v_{4}\right\}$ (with $x_{1}$ and $x_{2}$ paired, and $v_{3}$ and $v_{4}$ paired), all six vertices in $V(C) \cup\left\{x_{1}, x_{2}\right\}$ are colored cyan in $G_{S^{\prime}}$, while the vertices $x_{3}, x_{4} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+2 \times 15,185=373,036>$ $360,000=90,000|R|$, a contradiction. Hence, $x_{i} x_{i+1}$ is not an edge for all $i \in[4]$.

Suppose that $x_{i} x_{i+2}$ is an edge for some $i \in[4]$ (where addition is taken modulo 4). By symmetry, we may assume that $x_{1} x_{3}$ is an edge. If $x_{2} x_{4}$ is an edge, then letting $R=X$ (with $x_{1}$ and $x_{3}$ paired, and $x_{2}$ and $x_{4}$ paired), all eight vertices in $V(C) \cup X$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 8 \times 57,111=456,888>90,000|R|$, a contradiction. Hence, $x_{2} x_{4}$ is not an edge, implying by our earlier observations that neither $x_{2}$ nor $x_{4}$ has a neighbor in $X$.

Let $y_{2}$ and $y_{4}$ be amber neighbors of $x_{2}$ and $x_{4}$, respectively, that lie outside the cycle $C$. Further, let $y_{2}$ and $y_{4}$ be chosen, if possible, to be distinct. If $y_{2} \neq y_{4}$, then letting $R=X \cup\left\{y_{2}, y_{4}\right\}$ (with $x_{1}$ and $x_{3}$ paired, $x_{2}$ and $y_{2}$ paired, and $x_{4}$ and $y_{4}$ paired), all 10 vertices in $V(C) \cup X \cup\left\{y_{2}, y_{4}\right\}$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 10 \times 57,111=571,110>$ $540,000=90,000|R|$, a contradiction. Hence, $y_{2}=y_{4}$, implying by our choice of $y_{2}$ and $y_{4}$ that the vertices $x_{2}$ and $x_{4}$ both have (amber) degree 2 in $G[A]$. In this case, letting $R=\left\{v_{1}, v_{4}, x_{4}, y_{4}\right\}$ (with $v_{1}$ and $v_{4}$ paired, and $x_{4}$ and $y_{4}$ paired), all six vertices in $\left\{v_{1}, v_{2}, v_{4}, x_{2}, x_{4}, y_{4}\right\}$ are colored cyan in $G_{S^{\prime}}$, while the vertex $v_{3} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertex $x_{1} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+16,148+15,185=373,999>360,000=90,000|R|$, a contradiction. Hence, $x_{i} x_{i+2}$ is not an edge for all $i \in[4]$, implying by our earlier observations that $X$ is an independent set.

Let $Y$ be the set of all amber vertices that do not belong to the 4 -cycle $C$ but have a neighbor in the set $X$. Every vertex in $X$ has either one or two (amber) neighbors in $Y$. Suppose that $x_{i}$ and $x_{i+1}$ have a common (amber) neighbor, say $y$, in $Y$ for some $i \in[4]$ (where addition is taken modulo 4). We may assume that $x_{1}$ and $x_{2}$ have a common amber neighbor, say $y_{1}$, in $Y$. Letting $R=\left\{x_{1}, y_{1}, v_{3}, v_{4}\right\}$ (with $x_{1}$ and $y_{1}$ paired, and $v_{3}$ and $v_{4}$ paired), the six vertices $v_{1}, v_{2}, v_{3}, v_{4}, x_{1}, y$ are all colored cyan, while the vertex $x_{2} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertices $x_{3}, x_{4} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+16,148+$ $2 \times 15,185>90,000|R|$, a contradiction. Hence, $x_{i}$ and $x_{i+1}$ have no common neighbor in $Y$ for $i \in[4]$.

Let $y_{i}$ be an (amber) neighbor of $x_{i}$ for $i \in[4]$, where the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ are chosen so that the set $\cup_{i=1}^{4}\left\{y_{i}\right\}$ is as large as possible. By our earlier observations, $y_{i} \neq y_{i+1}$ for $i \in[4]$ (where addition is taken modulo 4). Suppose that $x_{i}$
and $x_{i+2}$ have a common (amber) neighbor in $Y$ for some $i \in[4]$. Renaming vertices if necessary, we may assume that $x_{1}$ and $x_{3}$ have a common amber neighbor in $Y$. Thus, $y_{1}=y_{3}$. If $x_{1}$ or $x_{3}$ has amber degree 3, then we could have chosen $y_{1}$ and $y_{3}$ to be distinct, a contradiction to our choice of the vertices $y_{1}, y_{2}, y_{3}, y_{4}$. Hence, both $x_{1}$ and $x_{3}$ have amber degree 2. Letting $R=\left\{v_{4}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right\}$ (with $v_{4}$ and $x_{4}$ paired, $x_{2}$ and $y_{2}$ paired, and $x_{3}$ and $y_{1}$ paired), the ten vertices in $V(C) \cup X \cup\left\{y_{1}, y_{2}\right\}$ are all colored cyan, implying that $\xi(R) \geq 10 \times 57,111>90,000|R|$, a contradiction. We deduce that no two vertices in $X$ have a common neighbor in $Y$. Thus, the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ are distinct.

Suppose that $y_{i} y_{i+1}$ is an edge for some $i \in[4]$ (where addition is taken modulo 4). By symmetry, we may assume that $y_{1} y_{2}$ is an edge. Letting $R=\left\{v_{3}, v_{4}, y_{1}, y_{2}\right\}$ (with $v_{3}$ and $v_{4}$ paired, and $y_{1}$ and $y_{2}$ paired), the vertices $v_{1}, v_{2}, v_{3}, v_{4}, y_{1}, y_{2}$ are colored cyan in $G_{S^{\prime}}$, while the vertices $x_{1}, x_{2} \in B_{1}^{\prime} \cup C^{\prime}$ (and the vertices $x_{3}, x_{4} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$ ), implying that $\xi(R)>6 \times$ $57,111+2 \times 16,148>90,000|R|$, a contradiction. Hence, $y_{i} y_{i+1}$ is not an edge for all $i \in[4]$.

Suppose that $y_{i} y_{i+2}$ is an edge for some $i \in[4]$ (where addition is taken modulo 4). By symmetry, we may assume that $y_{1} y_{3}$ is an edge. Letting $R=\left\{v_{2}, x_{2}, x_{4}, y_{1}, y_{3}, y_{4}\right\}$ (with $v_{2}$ and $x_{2}$ paired, $x_{4}$ and $y_{4}$ paired, and $y_{1}$ and $y_{3}$ paired), the nine vertices $v_{1}, v_{2}, v_{3}, v_{4}, x_{2}, x_{4}, y_{1}, y_{3}, y_{4}$ are colored cyan in the colored graph $G_{S^{\prime}}$, while the vertices $x_{1}, x_{3} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertex $y_{2} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R)>9 \times 57,111+2 \times 16,148+15,185>90,000|R|$, a contradiction. Hence, $y_{i} y_{i+2}$ is not an edge for all $i \in[4]$. Hence, $Y^{\prime}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ is an independent set in $G[A]$.

We show that $Y$ is an independent set of amber vertices. Suppose, to the contrary, that the vertex $y_{1}$ is adjacent to some other vertex, $y_{1}^{\prime}$ say, in $Y$. Let $x_{i}$ be the neighbor of $y_{1}^{\prime}$ that belongs to the set $X$ for some $i \in[4]$. Since there is no amber triangle, we note that $i \neq 1$. We may assume that $y_{1}^{\prime}=y_{i}$. This contradicts our earlier observation that the set $Y^{\prime}$ is an independent set of amber vertices. Hence, $Y$ is an independent set of amber vertices.

Let $Z$ be the set of amber vertices outside the set $X$ that have a neighbor in the set $Y$. Since every amber vertex has at least two amber neighbors, the vertex $y_{i}$ has at least one neighbor in $Z$ for $i \in[4]$. Since the maximum amber degree is 3 , this implies that $|Z| \geq 2$. Let $R=X \cup Y$ (with $x_{i}$ and $y_{i}$ paired for $i \in[4]$ ).

If $|Z| \geq 3$, then the 12 vertices $V(C) \cup X \cup Y^{\prime}$ are colored cyan in $G_{S^{\prime}}$, while the vertices in $Z$ belong to the set $B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 12 \times 57,111+3 \times 15,185=730,887>720,000=90,000|R|$, a contradiction. Hence, $|Z|=2$. Let $Z=$ $\left\{z_{1}, z_{2}\right\}$. If a vertex $z \in Z$ belongs to the set $C^{\prime}$ in $G_{S^{\prime}}$, then the 13 vertices $V(C) \cup X \cup Y^{\prime} \cup\{z\}$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 13 \times 57,111=742,443>720,000=90,000|R|$, a contradiction. Hence, $z_{1}, z_{2} \in B_{2}^{\prime} \cup B_{1}^{\prime}$. In particular, this implies that no vertex in $Z$ has three (amber) neighbors in $Y$. Thus, both $z_{1}$ and $z_{2}$ have exactly two (amber) neighbors in $Y^{\prime}$ and $z_{1}, z_{2} \in B_{1}^{\prime}$. Moreover, neither $z_{1}$ nor $z_{2}$ has an (amber) neighbor in $X$. Since $Y$ is an independent set, each vertex $y_{i}$ has exactly two amber neighbors, namely $v_{i}$ and one of $z_{1}$ and $z_{2}$, for $i \in[4]$.

Recall that $Y^{\prime}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $Y^{\prime} \subseteq Y$. If $Y^{\prime} \subset Y$, then by our earlier observations this implies that one of $z_{1}$ and $z_{2}$ has three neighbors in $Y$, and therefore belongs to the set $C^{\prime}$, a contradiction. Hence, $Y^{\prime}=Y$, implying that each vertex $x_{i}$ has exactly two amber neighbors, namely $v_{i}$ and $y_{i}$, for $i \in[4]$. Each vertex $x_{i}$ is therefore adjacent to at least one beige vertex for $i \in[4]$. By our earlier observations, each vertex $y_{i}$ is adjacent to at least one beige vertex for $i \in[4]$. This yields the existence of at least eight edges joining amber and beige vertices that get deleted, which contribute a weight decrease of at least $8 \times 963$, implying that $\xi(R) \geq 12 \times 57,111+2 \times 16,148+8 \times 963=725,332>720,000=90,000|R|$, a contradiction.

Claim 1.8. No component in the amber graph $G[A]$ is a cycle.
Proof. Suppose that the amber graph $G[A]$ contains a component $C$ that is a cycle. Let $C$ be the cycle $v_{1} v_{2} \ldots v_{q}$ for some $q \geq 3$ in $G[A]$. By Claim 1.6, there is no amber 3-cycle, and by Claim 1.7, there is no amber 4 -cycle. Hence, $q \geq 5$. We note that every vertex in the component $C$ has at least one beige neighbor. Let $w_{i}$ be a beige neighbor of $v_{i}$ for $i \in[q]$.

Suppose that $q=5$. If $w_{i}=w_{i+2}$ for all $i \in[5]$ (with addition taken modulo 5), then this implies that $w_{i}=w_{j}$ for all $i, j \in$ [5]. But then $w_{1}$ is adjacent to all vertices on the cycle $C$, and would therefore have amber degree at least 5 , a contradiction. Hence, we may assume that $w_{1}$ and $w_{3}$ are distinct. In this case, we let $R=\left\{v_{1}, v_{3}, w_{1}, w_{3}\right\}$ with $v_{1}$ and $w_{1}$ paired, and $v_{3}$ and $w_{3}$ paired. The vertices in $V(C) \cup\left\{w_{1}, w_{3}\right\}$ are all colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 5 \times 57,111+2 \times 40,963=$ $367,481>360,000=90,000|R|$, a contradiction. Hence, $q \neq 5$, implying that $q \geq 6$.

We now let $R=\left\{v_{2}, v_{5}, v_{6}, w_{2}\right\}$ (with $v_{2}$ and $w_{2}$ paired, and $v_{5}$ and $v_{6}$ paired). If $q=6$, then all six vertices of $C$ are colored cyan in the graph $G_{S^{\prime}}$, implying that $\xi(R) \geq 6 \times 57,111+40,963=383,629>360,000=90,000|R|$, a contradiction. Hence, $q \geq 7$. In this case, the six vertices $w_{2}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ are all colored cyan in the graph $G_{S^{\prime}}$, while the vertices $v_{1}$ and $v_{7}$ belong to the set $B_{1}^{\prime} \cup C^{\prime}$. The vertex $w_{2}$ is adjacent to at most three amber vertices, implying that at least four edges joining (amber) vertices in $\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ to beige vertices distinct from $w_{1}$ are deleted when constructing $G_{S^{\prime}}$, yielding an additional decrease in weight of at least $4 \times 963$. Therefore, $\xi(R) \geq 5 \times 57,111+40,963+2 \times 16,148+4 \times$ $963=362,666>90,000|R|$, a contradiction. Hence, there is no (amber) cycle component in $G_{S}[A]$.

By Claim 1.6, there is no amber 3-cycle and by Claim 1.7, there is no amber 4-cycle. Hence, every amber cycle has length at least 5. By Claim 1.8, there is no amber component that is a cycle.

Claim 1.9. The amber graph $G[A]$ contain no adjacent vertices of degree 2.
Proof. Suppose that the amber graph $G[A]$ has a component $C$ that contains two adjacent (amber) vertices of degree 2 . By Claim 1.8, the component $C$ is not a cycle, implying that $C$ contains a vertex of (amber) degree 3 . Hence, there must exist a vertex $v$ of (amber) degree 3 in the component $C$ with an (amber) neighbor $v_{1}$ of degree 2 that is adjacent to an (amber)
neighbor $x_{1}$ of degree 2 in $G[A]$. Let $v_{2}$ and $v_{3}$ be the other two amber neighbors of $v$, and so $N_{A}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Since there is no amber 3-cycle, the set $N_{A}(v)$ is an independent set.

Let $X=\partial\left(N_{A}[v]\right)$ be the boundary of the set $N_{A}[\nu]$ in the amber graph $G[A]$, and so $X$ is the set of amber vertices outside $N_{A}[v]$ that have a neighbor in $N_{A}(v)$. By Claim 1.1, every vertex in $C$ has amber degree at least 2 . Since there is no amber cycle of length 4 , no two vertices in $N_{A}(v)$ have a common neighbor in $X$. Let $x_{i}$ be an (amber) neighbor of $v_{i}$ that belongs to $X$ for $i \in[3]$. By our earlier observation, the vertices $x_{1}, x_{2}$ and $x_{3}$ are distinct. By supposition, the vertex $x_{1}$ has (amber) degree 2 in $G[A]$, and is the unique (amber) neighbor of $v_{1}$ in $X$.

Suppose that $x_{1} x_{i}$ is an edge for some $i \in\{2,3\}$. We may assume that $x_{1} x_{2}$ is an edge. If $v_{2}$ has amber degree 2 , then letting $R=\left\{x_{1}, x_{2}, x_{3}, v_{3}\right\}$ (with $x_{1}$ and $x_{2}$ paired, and $v_{3}$ and $x_{3}$ paired), the seven vertices in $N_{A}[v] \cup\left\{x_{1}, x_{2}, x_{3}\right\}$ are colored cyan, implying that $\xi(R) \geq 7 \times 57,111=399,777>360,000=90,000|R|$, a contradiction. Hence, $v_{2}$ has amber degree 3 . Let $x_{2}^{\prime}$ be the neighbor of $v_{2}$ in $X$ different from $x_{2}$. Letting $R=\left\{v, v_{2}, v_{3}, x_{2}\right\}$ (with $v$ and $v_{3}$ paired, and $x_{2}$ and $v_{2}$ paired), the six vertices in $N_{A}[v] \cup\left\{x_{1}, x_{2}\right\}$ are colored cyan, while the vertices $x_{2}^{\prime}, x_{3} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+$ $2 \times 15,185=373,036>360,000=90,000|R|$, a contradiction. Hence, $x_{1} x_{i}$ is not an edge for $i \in\{2,3\}$, implying that $x_{1}$ is not adjacent to any vertex of $X$. Let $y_{1}$ be the (amber) neighbor of $x_{1}$ different to $v_{1}$. Thus, $y_{1} \notin X$.

If $y_{1}$ is adjacent to both $x_{2}$ and $x_{3}$, then letting $R=\left\{v, v_{2}, x_{2}, y_{1}\right\}$ (with $v$ and $v_{2}$ paired, and $x_{2}$ and $y_{1}$ paired), the six vertices in $\left\{v, v_{1}, v_{2}, x_{1}, x_{2}, y_{1}\right\}$ are colored cyan, while the vertices $v_{3}, x_{3} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+$ $2 \times 15,185>90,000|R|$, a contradiction. Hence, we may assume that $y_{1}$ is not adjacent to $x_{2}$. Let $y_{2}$ be a neighbor of $y_{1}$ different from $x_{1}$. Thus, $y_{2} \neq x_{2}$ but possibly $x_{3}=y_{2}$. Letting $R=\left\{v, v_{2}, y_{1}, y_{2}\right\}$ (with $v$ and $v_{2}$ paired, and $y_{1}$ and $y_{2}$ paired), the six vertices in $\left\{v, v_{1}, v_{2}, x_{1}, y_{1}, y_{2}\right\}$ are colored cyan, while the vertices $v_{3}, x_{2} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times$ $57,111+2 \times 15,185>90,000|R|$, a contradiction.

Recall that every amber cycle has length at least 5. By Claim 1.9, a vertex of degree 2 in $G[A]$ has both its neighbors of degree 3 in $G[A]$.

Claim 1.10. A vertex of degree 2 in $G[A]$ does not belong to an amber 5- or 6-cycle.
Proof. Suppose that $G[A]$ contains a vertex $v_{1}$ of degree 2 that belongs to an amber 5- or 6-cycle $C_{\nu}$. Let $v$ and $x_{1}$ be the neighbors of $v_{1}$ in the cycle $C_{v}$. By Claim 1.9, both $v$ and $x_{1}$ have degree 3 in $G[A]$. Let $v_{2}$ and $v_{3}$ be the two amber neighbors of $v$ different from $v_{1}$, where $v_{2}$ belongs to the cycle $C_{v}$. Since there is no amber 3-cycle, the set $N_{A}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$ is an independent set. Let $X=\partial\left(N_{A}[v]\right)$ be the boundary of the set $N_{A}[v]$ in the amber graph $G[A]$. Let $x_{i}$ be an (amber) neighbor of $v_{i}$ that belongs to $X$ for $i \in\{2,3\}$. Since there is no amber 4-cycle, no two neighbors of $v$ in $G[A]$ have a common neighbor in $X$. In particular, $x_{1}, x_{2}, x_{3}$ are distinct.

Claim 1.10.1. The cycle $C_{v}$ is not a 5-cycle.
Proof. Suppose that $C_{v}$ is a 5 -cycle. We may assume that $x_{1} x_{2}$ is an edge of the cycle $C_{v}$. Thus, $C_{v}$ is the cycle $v v_{1} x_{1} x_{2} v_{2} v$. Let $R=\left\{x_{1}, x_{2}, x_{3}, v_{3}\right\}$ (with $x_{1}$ and $x_{2}$ paired, and $v_{3}$ and $x_{3}$ paired). The six vertices in $\left\{v, v_{1}, v_{3}, x_{1}, x_{2}, x_{3}\right\}$ are colored cyan in $G_{S^{\prime}}$. If $v_{2}$ has amber degree 2 , then the vertex $v_{2}$ is colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 7 \times 57,111=399,777>$ $360,000=90,000|R|$, a contradiction. Hence, $v_{2}$ has amber degree 3. Let $x_{2}^{\prime}$ be the amber neighbor of $v_{2}$ in $X$ different from $x_{2}$. We note that the vertex $v_{2} \in B_{1}^{\prime}$. Analogously, if $x_{1} x_{3}$ is an edge, then $v_{3}$ has amber degree 3 .

Let $y_{1}$ be the (amber) neighbor of $x_{1}$ different from $v_{1}$ and $x_{2}$. Since there is no amber 4 -cycle, we note that $y_{3} \neq x_{2}^{\prime}$. Suppose that $y_{1}=x_{3}$, that is, $x_{1} x_{3}$ is an edge, implying by our earlier observations that $v_{3}$ has amber degree 3 . Let $x_{3}^{\prime}$ be the amber neighbor of $v_{3}$ in $X$ different from $x_{3}$. As observed earlier, no two neighbors of $v$ in $G[A]$ have a common neighbor in $X$, and so the vertices $x_{1}, x_{2}, x_{2}^{\prime}, x_{3}, x_{3}^{\prime}$ are distinct. Recall that $R=\left\{x_{1}, x_{2}, x_{3}, v_{3}\right\}$ and $v_{2} \in B_{1}^{\prime}$. The vertex $x_{3}^{\prime} \in$ $B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+16,148+15,185=373,999>360,000=90,000|R|$, a contradiction. Hence, $y_{1} \neq x_{3}$. In this case, the vertex $y_{1} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying once again that $\xi(R) \geq 6 \times 57,111+16,148+15,185>90,000|R|$, a contradiction.

By Claim 1.10.1, the cycle $C_{v}$ is a 6-cycle. More generally, no vertex of degree 2 in $G[A]$ belongs to an amber 5-cycle. Thus, $x_{1}$ is adjacent to no vertex in $X$. Let $y_{1}$ and $y_{2}$ be the two amber neighbors of $x_{1}$ different from $v_{1}$. Thus, $y_{1}, y_{2} \notin X$. Recall that $v_{1}, v_{2}$ and $v_{3}$ are the three amber neighbors of $v$, and that $x_{i}$ is an amber neighbor of $v_{i}$ that belongs to $X$ for $i \in[3]$. We may assume that the cycle $C_{v}$ is the cycle $v v_{1} x_{1} y_{2} x_{2} v_{2} v$.

Suppose $x_{2}$ has a common neighbor with $v_{3}$. In this case, we can choose $x_{3}$ so that $x_{2} x_{3}$ is an edge. Letting $R=$ $\left\{v, v_{3}, x_{1}, y_{2}\right\}$ (with $x_{1}$ and $y_{2}$ paired, and $v$ and $v_{3}$ paired), the six vertices in $\left\{v, v_{1}, v_{3}, x_{1}, x_{2}, y_{2}\right\}$ are colored cyan, while the vertices $v_{2}, x_{3} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertex $y_{1} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+2 \times 16,148+15,185=390,147>$ $360,000=90,000|R|$, a contradiction. Hence, $x_{2}$ has no neighbor in $X$.

If $x_{2}$ has only $v_{2}$ and $y_{2}$ as its amber neighbors, then letting $R=\left\{v, v_{3}, x_{1}, y_{2}\right\}$, the six vertices in $\left\{v, v_{1}, v_{3}, x_{1}, x_{2}, y_{2}\right\}$ are colored cyan, while the vertex $v_{2} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertices $x_{3}, y_{1} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+16,148+$ $2 \times 15,185=389,184>360,000=90,000|R|$, a contradiction. Hence, $v_{2}$ has amber degree 3 . Let $y_{3}$ be the third amber neighbor of $x_{2}$, and so $N_{A}\left(x_{2}\right)=\left\{v_{2}, y_{2}, y_{3}\right\}$. Since there is no amber 4-cycle, we note that $y_{1} \neq y_{3}$.

If $v_{2}$ has amber degree 2 , then letting $R=\left\{v, v_{3}, x_{1}, y_{2}\right\}$, the six vertices in $\left\{v, v_{1}, v_{2}, v_{3}, x_{1}, y_{2}\right\}$ are colored cyan, while the vertex $x_{2} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertices $x_{3}, y_{1} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 6 \times 57,111+16,148+2 \times 15,185>90,000|R|$, a contradiction. Hence, $v_{2}$ has amber degree 3 . Let $x_{2}^{\prime}$ be the amber neighbor of $v_{2}$ in $X$ different from $x_{2}$, and let $y_{4}$ be an
amber neighbor of $x_{2}^{\prime}$ different from $v_{2}$. Further, we choose $y_{4}$, if possible, to be distinct from $y_{1}$. Since there is no amber 4 -cycle, we note that $y_{4} \neq y_{2}$ and $y_{4} \neq y_{3}$.

Suppose that $y_{4}=x_{3}$, that is, $x_{2}^{\prime} x_{3}$ is an edge. Since no vertex of degree 2 in $G[A]$ belong to an amber 5-cycle, we note that $v_{3}$ has amber degree 3. Let $x_{3}^{\prime}$ be the amber neighbor of $v_{3}$ in $X$ different from $x_{3}$. Letting $R=\left\{v_{3}, x_{1}, x_{2}^{\prime}, x_{3}, x_{3}^{\prime}, y_{2}\right\}$ (with $v_{3}$ and $x_{3}^{\prime}$ paired, $x_{1}$ and $y_{2}$ paired, and $x_{2}^{\prime}$ and $x_{3}$ paired), the nine vertices in $N_{A}[v] \cup\left\{x_{1}, x_{2}^{\prime}, x_{3}, x_{3}^{\prime}, y_{2}\right\}$ are colored cyan in $G_{S^{\prime}}$, while the vertices $x_{2} \in B_{1}^{\prime} \cup C^{\prime}$ and $y_{1} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 9 \times 57,111+15,185+16,148=545,332>$ $540,000=90,000|R|$, a contradiction. Hence, $y_{4} \neq x_{3}$. This implies that $X$ is an independent set.

Suppose that $y_{1} \neq y_{4}$. Letting $R=\left\{v_{3}, x_{1}, x_{2}^{\prime}, x_{3}, y_{2}, y_{4}\right\}$ (with $v_{3}$ and $x_{3}$ paired, $x_{1}$ and $y_{2}$ paired, and $x_{2}^{\prime}$ and $y_{4}$ paired), the nine vertices in $N_{A}[v] \cup\left\{x_{1}, x_{2}^{\prime}, x_{3}, y_{2}, y_{4}\right\}$ are colored cyan in $G_{S^{\prime}}$, while the vertex $x_{2} \in B_{1}^{\prime} \cup C^{\prime}$ and the vertex $y_{1} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup$ $C^{\prime}$, implying once again that $\xi(R) \geq 9 \times 57,111+15,185+16,148>90,000|R|$, a contradiction. Hence, $y_{1}=y_{4}$, implying that the vertex $x_{2}^{\prime}$ has amber degree 2 , where $v_{2}$ and $y_{1}$ are the two (amber) neighbors of $x_{2}^{\prime}$. However, interchanging the roles of $x_{2}$ and $x_{2}^{\prime}$, and taking the 6 -cycle $C_{v}$ to be the cycle $v v_{1} x_{1} y_{1} x_{2}^{\prime} v_{2} v$, the vertex $x_{2}^{\prime}$ has amber degree 3 , a contradiction. ( $\square$ )

Claim 1.11. A vertex of degree 3 in $G[A]$ has at most one neighbor of degree 2 in $G[A]$.
Proof. Suppose that $v$ is a vertex of degree 3 in the induced graph $G[A]$. Suppose, to the contrary, that at least two neighbors of $v$ have degree 2 in $G[A]$. Let $v_{1}, v_{2}, v_{3}$ be the three amber neighbors of $v$, where $v_{1}$ and $v_{2}$ have degree 2 in $G[A]$. Since there is no amber 3-cycle, the set $N_{A}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$ is an independent set. Let $X=\partial\left(N_{A}[v]\right)$ be the boundary of the set $N_{A}[v]$ in the amber graph $G[A]$. Let $x_{i}$ be an (amber) neighbor of $v_{i}$ that belongs to $X$ for $i \in[3]$. Since there is no amber 4-cycle, no two neighbors of $v$ in $G[A]$ have a common neighbor in $X$. Thus, $x_{1}, x_{2}, x_{3}$ are distinct. By supposition, the vertices $x_{1}$ and $x_{2}$ are the unique neighbors of $v_{1}$ and $v_{2}$, respectively, in $X$. By Claim 1.10 , and since there is no amber 5 -cycle with an amber vertex of amber degree 2 , the set $X$ is an independent set.

By Claim 1.9, the vertices $x_{1}$ and $x_{2}$ have degree 3 in $G[A]$. Let $y_{i}$ and $y_{i}^{\prime}$ be the two amber neighbors of $x_{i}$ different from $v_{i}$ for $i \in[2]$. By Claim 1.10, the vertices $y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}$ are distinct. Letting $R=\left\{v_{3}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}$ (with $v$ and $v_{3}$ paired, and $x_{i}$ and $y_{i}$ paired for $i \in[2]$ ), the nine vertices in $N_{A}[v] \cup\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}$ are colored cyan, while the vertices $y_{1}^{\prime}, y_{2}^{\prime} \in$ $B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 9 \times 57,111+2 \times 15,185=544,369>90,000|R|$, a contradiction.

Claim 1.12. If a component in the amber graph $G[A]$ is different from a path $P_{1}$ or $P_{2}$, then it has minimum degree 2 and maximum degree 3.

Proof. Suppose that $C$ is a component in the amber graph $G[A]$ distinct from a path $P_{1}$ or $P_{2}$. By Claim 1.1, the component $C$ has order at least 4 and minimum degree at least 2. By Claim 1.9, no two adjacent vertices in $C$ both have (amber) degree 2. At least one vertex of $C$ therefore has degree 3 . Suppose that $C$ is 3 -regular. In this case, we choose the set $R$ to be a minimum PD-set in $G[A]$. By Theorem 2, we have $|R| \leq \frac{3}{5}|A|$. In the colored graph $G_{S^{\prime}}$, all vertices are colored cyan. In particular, all vertices of $A$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 57,111 \times|A| \geq 57,111 \times \frac{5}{3}|R|=95185|R|>$ $90,000|R|$, a contradiction. Hence, at least one vertex in the component $C$ has degree 2 .

Claim 1.13. Every component in the amber graph $G[A]$ is a path $P_{1}$ or $P_{2}$.
Proof. Let $C$ be a component in the amber graph $G[A]$, and suppose that $C \neq P_{1}$ and $C \neq P_{2}$. By Claim 1.12 , the amber component $C$ has minimum degree 2 and maximum degree 3 . Hence, there exists a vertex $v$ of (amber) degree 3 in $C$ that has a neighbor of (amber) degree 2 in $C$. Let $v_{1}, v_{2}, v_{3}$ be the three amber neighbors of $v$, where $v_{1}$ has degree 2 in $C$. By Claim 1.11, both $v_{2}$ and $v_{3}$ have degree 3 in $C$. Recall that there is no amber 3- or 4-cycle in $G$. In particular, every two amber vertices have at most one amber vertex in common.

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$ be the set of amber vertices different from $v$ that have a neighbor in $N_{A}(v)$, where $x_{1}$ is the neighbor of $v_{1}$ in $X$, and $x_{2 i}$ and $x_{2 i+1}$ are the two neighbors of $v_{i}$ in $X$ for $i \in\{2,3\}$. By Claim 1.10, the vertex $v_{1}$ does not belong to an amber 5 -cycle, and so the vertex $x_{1}$ has no neighbor in $X$. By Claim 1.9, the vertex $x_{1}$ has degree 3 in C. Let $y_{1}$ and $y_{2}$ be the two neighbors of $x_{1}$ in $C$ different from $v_{1}$. By Claim 1.11, the vertices $y_{1}$ and $y_{2}$ have degree 3 in $C$. Let $z_{2 i-1}$ and $z_{2 i}$ are the two neighbors of $y_{i}$ different from $x_{i}$ for $i \in[2]$. Since there is no amber 3- or 4-cycle, the vertices $y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, z_{4}$ are distinct. Let $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$. By Claim 1.10, the vertex $v_{1}$ does not belong to a 5-or 6-cycle in the component $C$, implying that $X \cap\left(\left\{y_{1}, y_{2}\right\} \cup Z\right)=\emptyset$.

Since there is no amber 3- or 4-cycle in $G$, there are at most two edges in $G[X]$. We may assume that the only possibly edges joining vertices of $X$ are $x_{2} x_{5}$ and $x_{3} x_{4}$. If $x_{2} x_{5}$ is an edge, then since no vertex of amber degree 2 belongs to an amber 5-cycle, both $x_{2}$ and $x_{5}$ have amber degree 3. Similarly, if $x_{3} x_{4}$ is an edge, then both $x_{3}$ and $x_{4}$ have amber degree 3 . Let $w_{i}$ be an amber neighbor of $x_{i}$ that does not belong to the set $N_{A}(v) \cap X$ for $i \in\{2,3,4,5\}$. Recall that no vertex of amber degree 2 belongs to an amber 6-cycle. We can therefore choose the vertices $w_{2}, w_{3}, w_{4}, w_{5}$ so that $w_{2} \neq w_{5}$ and $w_{3} \neq w_{4}$. Let $R=\left\{w_{2}, w_{5}\right\} \cup\left\{w_{3}, w_{4}\right\}$. Possibly, $A \subseteq Z$.

Suppose that at least one vertex of $A$ does not belong to the set $\left\{z_{1}, z_{2}\right\}$. We may assume that $w_{3} \notin\left\{z_{1}, z_{2}\right\}$. Let $R=\left\{v_{2}, v_{3}, x_{1}, x_{3}, x_{4}, y_{1}\right\}$ (with $x_{1}$ and $y_{1}$ paired, $v_{2}$ and $x_{3}$ paired, and $v_{3}$ and $x_{4}$ paired). The eight vertices in $N_{A}[v] \cup\left\{x_{1}, x_{3}, x_{4}, y_{1}\right\}$ are colored cyan in $G_{S^{\prime}}$, while the six vertices $x_{2}, x_{5}, y_{2}, w_{3}, z_{1}, z_{2} \in B_{2}^{\prime} \cup B_{1}^{\prime} \cup C^{\prime}$, implying that $\xi(R) \geq 8 \times 57,111+6 \times 15,185=547,998>540,000=90,000|R|$, a contradiction. Hence, $A \subseteq\left\{z_{1}, z_{2}\right\}$. However letting $R=$ $\left\{v_{2}, v_{3}, x_{1}, x_{3}, x_{4}, y_{2}\right\}$ (where now $x_{1}$ and $y_{2}$ are paired), analogous arguments show that $A \subseteq\left\{z_{3}, z_{4}\right\}$. Since $\left\{z_{1}, z_{2}\right\} \cap\left\{z_{3}, z_{4}\right\}=$ $\emptyset$, this gives a contradiction.

By Claim 1.13, every amber component is either a path $P_{1}$ or a path $P_{2}$.
Claim 1.14. No amber component is a path $P_{2}$.
Proof. Suppose that there exists an amber component $C$ that is a path $P_{2}$. Let $V(C)=\left\{v_{1}, v_{2}\right\}$. The number of amber and beige neighbors of an amber vertex in $G_{S}$ is precisely its degree in $G$, which is at least 3. Hence, each vertex of $C$ has at least two beige neighbors in $G_{S}$.

Suppose that there exists a beige vertex $w$ that is adjacent to no amber vertex different from $v_{1}$ and $v_{2}$. Necessarily, $w$ is adjacent to at least one of $v_{1}$ and $v_{2}$. We may assume that $v_{2} w$ is an edge. Let $w_{2}$ be a beige neighbor of $v_{2}$ different from $w$, and let $R=\left\{v_{2}, w_{2}\right\}$. The vertices $v_{1}, v_{2}, w_{1}, w_{2}$ are all colored cyan in $G_{s^{\prime}}$, implying that $\xi(R) \geq 2 \times 57,111+2 \times$ $40,963=196,148>90,000|R|$, a contradiction. Hence, every beige vertex that has a neighbor in an amber $P_{2}$-component has a neighbor in an amber component different from that component.

Suppose that $v_{1}$ and $v_{2}$ have a common (beige) neighbor $w$. The vertex $w$ has a neighbor, say $v$, in an amber component, $C^{\prime}$ say, different from $C$. We note that $w \in B_{3}$. Let $R=\{v, w\}$. The vertices $v_{1}, v_{2}, v, w$ are all colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 3 \times 57,111+42,889=214,222>90,000|R|$, a contradiction. Hence, there is no beige vertex adjacent to both (amber) vertices belonging to the same $P_{2}$-component in the amber graph. Let $u_{i}$ and $w_{i}$ be two beige neighbors of $v_{i}$ for $i \in[2]$. The vertices $u_{1}, u_{2}, w_{1}, w_{2}$ are distinct.

Suppose that a beige neighbor of a vertex in $C$ is adjacent to a vertex, say $v$, from an amber $P_{1}$-component. We may assume that $w_{1}$ is such a vertex. Letting $R=\left\{v_{1}, w_{1}\right\}$, the vertices $v, v_{1}, v_{2}, w_{1}$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq$ $3 \times 57,111+41,926=213,259>90,000|R|$, a contradiction. Hence, every beige neighbor of an amber $P_{2}$-component has all its amber neighbors belonging to amber $P_{2}$-components.

Suppose that a beige neighbor of $v_{1}$ and a beige neighbor of $v_{2}$ have neighbors in different amber $P_{2}$-components. We may assume that $w_{i}$ has a neighbor in an amber $P_{2}$-component $C^{i}$ for $i \in[2]$, where the components $C, C^{1}, C^{2}$ are distinct. Let $x_{i}$ be the neighbor of $w_{i}$ that belongs to the $P_{2}$-component $C^{i}$ for $i \in[2]$, and let $R=\left\{w_{1}, w_{2}, x_{1}, x_{2}\right\}$ (with $w_{i}$ and $x_{i}$ paired for $i \in[2]$ ). In the graph $G_{S^{\prime}}$, all six (amber) vertices in the components $C, C^{1}, C^{2}$ are colored cyan, as are the (beige) vertices $w_{1}$ and $w_{2}$, implying that $\xi(R) \geq 6 \times 57,111+2 \times 41,926=426,518>360,000=90,000|R|$, a contradiction.

We deduce, therefore, that every amber neighbor of a beige vertex from the set $\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$ outside the component $C$ belongs to the same amber $P_{2}$-component, say $C^{\prime}$. Let $V\left(C^{\prime}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$. Thus, $V(C) \cap V\left(C^{\prime}\right)=\emptyset$, and every beige neighbor of a vertex in $C$ or $C^{\prime}$ belongs to the set $\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$. Further, every amber neighbor of a vertex in the set $\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$ belongs to $C$ or $C^{\prime}$. We now let $R=\left\{v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right\}$. In the colored graph $G_{S^{\prime}}$, all vertices in $V(C) \cup V\left(C^{\prime}\right) \cup\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$ are colored cyan, implying that $\xi(R) \geq 4 \times 57,111+4 \times 41,926=396,148>360,000=90,000|R|$, a contradiction.

By Claims 1.13 and 1.14 , every amber component is a path $P_{1}$. Every amber vertex therefore has three or more beige neighbors.

Claim 1.15. Every vertex in B has exactly two amber neighbors.
Proof. Suppose a vertex $w \in B$ has three or more amber neighbors. Since $\Delta_{A}(B) \leq 3$, we have $d_{A}(w)=\Delta_{A}(B)=3$. Let $v_{1}, v_{2}, v_{3}$ be the three amber neighbors of $w$ in $G_{S}$. Letting $R=\left\{w, v_{1}\right\}$, the vertex $w$ and its three amber neighbors are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 3 \times 57,111+42,889=214,222>90,000|R|$, a contradiction. Hence, every vertex in $B$ has at most two amber neighbors. Recall that every beige vertex has at least one amber neighbor.

Suppose a beige vertex $w_{1}$ has exactly one amber neighbor, say $v_{1}$. If all (beige) neighbors of $v_{1}$ have only $v_{1}$ as their only amber neighbor, then let $R=\left\{v_{1}, w_{1}\right\}$. In this case, $v_{1}$ and all its beige neighbors are colored cyan in $G_{s^{\prime}}$, implying that $\xi(R) \geq 57,111+3 \times 40,963=180,000=90,000|R|$, a contradiction. Hence, there is a beige neighbor of $v_{1}$, say $w$, that has two amber neighbors. Let $v_{2}$ be the amber neighbor of $w$ distinct from $v_{1}$. Letting $R=\left\{v_{1}, w\right\}$, the four vertices $v_{1}, v_{2}$, $w, w_{1}$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 2 \times 57,111+40,963+41,926=197,111>90,000|R|$, a contradiction.

By Claim 1.15, if a vertex belongs to $B$, then it has exactly two amber neighbors.
Claim 1.16. Every two amber vertices have at most one common (beige) neighbor in $G_{S}$.
Proof. Suppose that two amber vertices $v_{1}$ and $v_{2}$ have two common (beige) neighbors, say $w_{1}$ and $w_{2}$. Letting $R=\left\{v_{1}, w_{1}\right\}$, the vertices $v_{1}, v_{2}, w_{1}, w_{2}$ are colored cyan in $G_{S^{\prime}}$, implying that $\xi(R) \geq 2 \times 57,111+2 \times 41,926=198,074>90,000|R|$, a contradiction.

We now return to the proof of Claim 1 one final time. By our earlier observations, every beige vertex has exactly two amber neighbors, while every amber vertex has at least three beige neighbors. By Claim 1.16, there is no 4 -cycle containing two amber vertices. Let $w_{1} \in B$ and let $v_{1}$ and $v_{2}$ be the two amber neighbors of $w_{1}$. Let $w_{2}$ be a beige neighbor of $v_{2}$ different from $w_{1}$. Let $v_{3}$ be the amber neighbor of $w_{2}$ different from $v_{2}$. By Claim 1.16, we note that $v_{1} \neq v_{3}$. Let $w_{3}$ and $w_{3}^{\prime}$ be two beige neighbors of $v_{3}$ different from $w_{2}$. By Claim 1.16, at most one neighbor of $v_{3}$ is adjacent to $v_{1}$. Let $w_{3}$ be a neighbor of $v_{3}$ different from $w_{2}$ that is not adjacent to $v_{1}$. Let $v_{4}$ be the amber neighbor of $w_{3}$ different from $v_{3}$. By our earlier observations, the vertices $v_{1}, v_{2}, v_{3}, v_{4}, w_{1}, w_{2}, w_{3}$ are distinct and $P: v_{1} w_{1} v_{2} w_{2} v_{3} w_{3} v_{4}$ is an induced path on seven vertices in $G_{S}$ starting and ending at amber vertices, and alternating between amber and beige vertices.

Let $R=\left\{v_{2}, v_{4}, w_{1}, w_{3}\right\}$ (with $v_{2}$ and $w_{1}$ paired, and $v_{4}$ and $w_{3}$ paired). All vertices on the path $P$ are colored cyan in $G_{S^{\prime}}$, as are the three beige vertices $w_{1}, w_{2}, w_{3}$. Moreover, since $P$ is an induced path and every amber vertex has at least three
beige neighbors, at least six edges join vertices on the path $P$ to beige vertices that do not belong to the set $\left\{w_{1}, w_{2}, w_{3}\right\}$. These edges when removed decrease the weight by at least $6 \times 963$ when constructing $G_{S^{\prime}}$ from $G_{S}$. Therefore, $\xi(R) \geq 4 \times$ $57,111+3 \times 41,926+6 \times 963=360,000=90,000|R|$, a contradiction. This completes the proof of Claim 1. ( $\quad \square$ )

We now return to the proof of Theorem 3. By Claim 1, if $w\left(G_{S}\right)>0$, then there is a $S$-desirable set in the graph $G$. Let $S_{0}=$ $\emptyset$ and let $G_{0}=G_{S_{0}}$, and so $G_{0}$ is the graph $G$ with all vertices colored amber. We note that $V\left(G_{0}\right)=A$ and $\mathrm{w}\left(G_{0}\right)=57,111 \mathrm{n}$. By Claim 1, there exists a $S_{0}$-desirable set $R_{1}$, and so letting $S_{1}=S_{0} \cup R_{1}=R_{1}$ and $G_{1}=G_{S_{1}}$, we have $\mathrm{w}\left(G_{0}\right)-\mathrm{w}\left(G_{1}\right) \geq$ $90,000\left|R_{1}\right|$, that is,

$$
\mathrm{w}\left(G_{1}\right) \leq \mathrm{w}\left(G_{0}\right)-90,000\left|R_{1}\right| .
$$

If $\mathrm{w}\left(G_{1}\right)>0$, then there is a $S_{1}$-desirable set $R_{2}$ by Claim 1, and so letting $S_{2}=R_{1} \cup R_{2}$ and $G_{2}=G_{S_{2}}$, we have $\mathrm{w}\left(G_{1}\right)-$ $\mathrm{w}\left(G_{2}\right) \geq 90,000\left|R_{2}\right|$, that is,

$$
\mathrm{w}\left(G_{2}\right) \leq \mathrm{w}\left(G_{1}\right)-90,000\left|R_{2}\right| .
$$

If $\mathrm{w}\left(G_{2}\right)>0$, then we repeat the process, thereby obtaining a sequence of colored graphs $G_{0}, G_{1}, \ldots, G_{k}$ and a PD-set $S=R_{1} \cup \cdots \cup R_{k}$ of $G$ such that

$$
\begin{aligned}
0=\mathrm{w}\left(G_{k}\right) & \leq \mathrm{w}\left(G_{k-1}\right)-90,000\left|R_{k}\right| \\
& \leq \mathrm{w}\left(G_{0}\right)-90,000 \sum_{i=1}^{k}\left|R_{i}\right| \\
& =57111 n-90,000|S| .
\end{aligned}
$$

Consequently,

$$
\gamma_{\mathrm{pr}}(G) \leq|S| \leq \frac{57,111}{90,000} n=\frac{19,037}{30,000} n<0.634567 n .
$$

## 5. Concluding remarks

If $G$ is a 3 -regular graph of order $n$, then by the result (see Theorem 2) of Chen et al. [2] in 2007, we have $\gamma_{\text {pr }}(G) \leq \frac{3}{5} n$. This bound is best possible, and is achieved by the Petersen graph. Given the considerable work to date on the problem, it is evident that determining a tight upper bound on the paired domination of a non-regular graph with minimum degree at least 3 is more challenging than in the regular case. In this paper, we prove that in this non-regular case we have $\gamma_{\mathrm{pr}}(G) \leq \frac{19037}{30000} n<0.634567 n$. However, it is unlikely that this bound is achievable. It would be interesting to close the gap between this current best known bound of $\gamma_{\mathrm{pr}}(G) \leq \frac{19037}{30000} n$ and the best possible general upper bound we can hope for, namely $\gamma_{\mathrm{pr}}(G) \leq 0.6 n$ (which is achieved by the Petersen graph).

## References

[1] C. Bujtás, Domination number of graphs with minimum degree five, Discuss. Math. Graph Theory 41 (3) (2021) 763-777.
[2] X.G. Chen, L. Sun, H.M. Xing, Paired domination numbers of cubic graphs. (Chinese), Acta Math. Sci. Ser. A Chin. Ed. 27 (2007) 166-170.
[3] W.J. Desormeaux, T.W. Haynes, M.A. Henning, Paired domination in graphs, Topics in Domination in Graphs, 64, Springer Developments in Mathematics, 2020 ISBN 978-3-030-51116-6.
[4] W. Goddard, M.A. Henning, A characterization of cubic graphs with paired domination number three fifths their order, Graphs Combin. 25 (2009) 675-692.
[5] T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Domination in Graphs: Core Concepts (Springer Monographs in Mathematics series), to be published in 2021.
[6] T.W. Haynes, P.J. Slater, Paired domination and the paired domatic number, Congr. Numer. 109 (1995) 65-72.
[7] T.W. Haynes, P.J. Slater, Paired domination in graphs, Networks 32 (1998) 199-206.
[8] M.A. Henning, Graphs with large paired domination number, J. Combin. Optim. 13 (2007) 61-78.
[9] M.A. Henning, A. Yeo, Total domination in graphs (Springer monographs in mathematics), 2013, ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online).
[10] S. Huang, E. Shan, A note on the upper bound for the paired domination number of a graph with minimum degree at least two, Networks 57 (2011) 115-116.
[11] C. Lu, B. Wang, K. Wang, Y. Wu, Paired-domination in claw-free graphs with minimum degree at least three, Discrete Appl. Math. 257 (2019) $250-259$.


[^0]:    * Corresponding author.

    E-mail addresses: mahenning@uj.ac.za (M.A. Henning), pilsniak@agh.edu.pl (M. Pilśniak), etumid@agh.edu.pl (E. Tumidajewicz).
    ${ }^{1}$ Research supported in part by the University of Johannesburg.

