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A set S of vertices in a graph G is a paired dominating set if every vertex of G is adjacent to 

a vertex in S and the subgraph induced by S contains a perfect matching (not necessarily 

as an induced subgraph). The minimum cardinality of a paired dominating set of G is the 

paired domination number γpr (G ) of G . In this paper, we show that if G is a graph of 

order n and δ(G ) ≥ 3 , then γpr (G ) ≤ 19037 
30 0 0 0 

n < 0 . 634567 n . 
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1. Introduction 

A set S of vertices in a graph G is a dominating set if every vertex in V (G ) \ S is adjacent to a vertex of S. A paired

dominating set , abbreviated PD-set, of G is a dominating set S of G such that the induced subgraph G [ S] contains a perfect

matching M (not necessarily induced). Two vertices are paired in S if they form an edge of M. The paired domination number ,

γpr (G ) , of G is the minimum cardinality of a PD-set of G . A γpr - set of G is a PD-set of G of minimum cardinality. Necessarily,

the paired domination number of a graph is an even integer. Paired domination in graphs is well studied in the literature,

and was first studied by Haynes and Slater [6,7] in 1995. A recent survey paper on paired domination in graphs can be

found in [3,5] ). 

For graph theory notation and terminology, we follow [9] . The vertex set and edge set of G are denoted by V (G ) and

E(G ) , respectively. The order and size of G are given by n (G ) = | V (G ) | and size m (G ) = | E(G ) | . If two vertices are adjacent,

they are called neighbors . The set of neighbors of a vertex v in G is the set N G (v ) , called the open neighborhood of v . The

degree, d G (v ) , of v is the number of neighbors of v in G . Moreover, if X is a set of vertices of G , then d X (v ) is the number of

neighbors of v in G that belong to the set X . In the special case when X = V (G ) , we note that d X (v ) = d G (v ) . The minimum

and maximum degree among the vertices of G is δ(G ) and �(G ) , respectively. A graph is k - regular if every vertex has

degree k . A 3-regular graph is commonly referred to a cubic graph in the literature. The set consisting of v and its neighbors

is its closed neighborhood N G [ v ] . For a set S of vertices, the open (resp., closed ) neighborhood of S is union of the open (resp.,

closed) neighborhoods of vertices in S, denoted by N G (S) (resp., N G [ S] ). For simplicity, we sometimes write N(v ) and N[ S] in

place of N (v ) and N [ S] , respectively. 
G G 
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If S is a set of vertices in G , by G − S we mean the graph obtained from G by removing the vertices (and their incident

edges) from S. If S = { v } , then we simply write G − v rather than G − { v } . The subgraph induced by the set S is given by G [ S] .

A path, cycle and complete graph on n vertices is given by P n , C n and K n , respectively. 

2. Known results 

The paired domination number of a graph with minimum degree at least 2 is known to be at most two-thirds its order. 

Theorem 1. ( [7 , 10] ) If G is a connected graph of order n ≥ 6 with δ(G ) ≥ 2 , then γpr (G ) ≤ 2 
3 n . 

The graphs achieving equality in Theorem 1 are characterized in [8] . Chen et al. [2] in 2007 established the best possible

upper bound on the paired domination number of a cubic graph. 

Theorem 2. ( [2] ) If G is a cubic graph of order n , then γpr (G ) ≤ 3 
5 n . 

Goddard and Henning [4] in 2009 showed that the only connected graph achieving equality in Theorem 2 is the Petersen

graph, and conjectured that if we exclude this exceptional graph, then the bound can be improved to γpr (G ) ≤ 4 
7 n . This

conjecture has yet to be resolved in general. However, Lu et al. [11] in 2019 proved the conjecture in the special case of

claw-free graphs. 

3. Main result 

It remains an open problem to determine a best possible upper bound on the paired domination number of a connected

graph with minimum degree at least 3 in terms of its order n . By Theorem 1 , we have γpr (G ) ≤ 2 
3 n . However, this 2 

3 -bound

has yet to be improved. A best possible upper bound on the paired domination of a non-regular graph with minimum degree

at least 3 is considerable more challenging to determine than in the case of 3-regular graphs. In this paper, we present such

a bound that is an improvement of the 2 
3 -upper bound, a proof of which is given in Section 4 . 

Theorem 3. If G is a graph of order n with δ(G ) ≥ 3 , then γpr (G ) ≤ 19 , 037 
30 , 0 0 0 n < 0 . 634567 n . 

4. Proof of Theorem 3 

We define the boundary ∂ G (D ) of a set D ⊆ V (G ) in a graph G as all neighbors of vertices of D that belong outside the

set D , that is, ∂ G (D ) = N G [ D ] \ D . We define the concept of a colored graph, which has a similar flavor to a residual graph

defined by Bujtás [1] . 

Definition 1. Let G be a graph and let S be a set of vertices such that G [ S] contains a perfect matching. The colored graph

G S of G associated with the set S is the graph obtained from G as follow: 

1. A vertex is colored amber if it has no neighbor in S. 

2. A vertex is colored beige if it has a neighbor in S and a neighbor not dominated by S. 

3. A vertex is colored cyan if it and all its neighbors are dominated by S. 

4. All edges of G are removed from G S , except for edges that join two amber vertices or an amber and a beige vertex. 

Thus, each vertex in the colored graph G S is colored amber, beige or cyan. In particular, a vertex in S is colored cyan. We

let A , B , and C be the set of amber, beige, and cyan vertices, respectively, in G S , and so (A, B, C) is a partition of V (G ) . The

amber graph is defined as the graph G [ A ] induced by the set A of amber vertices. The number of amber and beige vertices

adjacent to a vertex v in G S is the amber - degree and beige - degree , respectively, of v , and is denoted by d A (v ) and d B (v ) ,
respectively. The maximum amber-degree of a vertex in A (resp., B ) is denoted by �A (A ) (resp., �A (B ) ). If v is an amber

vertex, then its amber and beige neighbors are given by N A (v ) and N B (v ) , respectively. We let N A [ v ] = N A (v ) ∪ { v } . 
Throughout the proof we use the observation that an amber vertex has no cyan neighbor, and therefore its degree in G is

the sum of its amber-degree and beige-degree in the colored graph G S . Hence, the number of amber and beige neighbors of

an amber vertex in G S is precisely its degree in G , which is at least δ(G ) ≥ 3 . By construction of the colored graph, a beige

vertex has at least one amber neighbor, but no beige or cyan neighbors in G S . Moreover, if v is colored beige in G S , then it

has at least one neighbor in G that is colored cyan in G S . 

We are now in a position to prove Theorem 3 . Recall its statement. 

Theorem 3 If G is a graph of order n with δ(G ) ≥ 3 , then γpr (G ) ≤ 19 , 037 
30 , 0 0 0 n < 0 . 634567 n . 

Proof. Let G be a graph of order n with δ(G ) ≥ 3 . Removing edges from a graph in such a way that no isolated vertices

are created, cannot decrease its paired-domination number. Hence, we may assume that the graph G is edge-minimal with 

respect to the condition that δ(G ) ≥ 3 , that is, if u and v are adjacent vertices, then at least one of u and v has degree 3 in

G (or, equivalently, at most one of u and v has degree 4 or more in G ). �

For a set S of vertices in G , we define a weak partition (where some of the sets may be empty) of the set of beige vertices

in G by B = (B , B , B , B ) , where B is the set of beige vertices having i amber neighbors in G for i ∈ [3] and where B is
S 1 2 3 4 i S 4 

2 
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Table 1 

The weight w(v ) of a vertex v . 

set containing v A B 4 B 3 B 2 B 1 C

w (v ) 57,111 46,964 42,889 41,926 40,963 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the remaining set of beige vertices. Thus, each vertex in B 4 has four or more amber neighbors. The weight w(v ) of a vertex

v in the colored graph G S is defined by the values given in Table 1 . 

The weight w(G S ) of the colored graph G S is the sum of the weights of the vertices, that is, 

w(G S ) = 

∑ 

v ∈ V (G ) 

w(v ) = 57 , 111 | A | + 46 , 964 | B 4 | + 42 , 889 | B 3 | + 41 , 926 | B 2 | + 40 , 963 | B 1 | . 

The set S is a PD-set in G if and only if all vertices are colored cyan in G S , in which case w(G S ) = 0 . Given a subset

S ⊆ V (G ) such that G [ S] contains a perfect matching and given a subset R ⊆ V (G ) \ S where G [ R ] contains a perfect matching,

we define 

ξ (R ) = w(G S ) − w(G R ∪ S ) , 

that is, ξ (R ) represented the total weight decrease when growing the set S to the set R ∪ S. Such a set R is an S-desirable set

if G [ R ] contains a perfect matching and 

ξ (R ) ≥ 90 , 0 0 0 | R | . 
Letting S ′ = R ∪ S, we denote the resulting set of amber, beige and cyan vertices, respectively, in G S ′ by A 

′ , B ′ and C ′ 
respectively. Associated with the resulting set S ′ , we define the weak partition B ′ = (B ′ 1 , B ′ 2 , B ′ 3 , B ′ 4 ) of the beige vertices in

G S ′ in the natural way, where B ′ 
i 

is the set of beige vertices having i amber neighbors in G S ′ for i ∈ [3] and where B ′ 
4 

is the 

remaining set of beige vertices. Our key claim is that if the weight of the colored graph G S is positive, then there exists an

S-desirable set. 

Claim 1. If w(G S ) > 0 , then there exists an S-desirable set in G S . 

Proof. Let w(G S ) > 0 , and suppose that there is no S-desirable set in G S . We proceed with a series of claims describing

some structural properties of G S which culminate in the implication of its nonexistence. �

Claim 1.1. The following hold in the amber graph G [ A ] . 

1. There is no component of order 3 in G [ A ] . 

2. Every component of order at least 4 in G [ A ] has minimum degree at least 2. 

Proof. (a) Assume that C is a component of order 3 in G [ A ] . Thus, C contains a path P 3 given by v 1 v 2 v 3 , where possibly

v 1 v 3 is an edge. Let u 2 be a beige neighbor of v 2 , and let R = { u 2 , v 2 } . In the graph G S ′ , the four vertices v 1 , v 2 , v 3 , u 2 are all

colored cyan, implying that ξ (R ) ≥ 3 × 57 , 111 + 1 × 40 , 963 = 212 , 296 > 180 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, no

component in G [ A ] has order 3. 

(b) Suppose that C is a component in the amber graph G [ A ] such that | V (C) | ≥ 4 and δ(C) = 1 . Let a 1 be a vertex of

minimum (amber) degree in C, and so let a 2 be the only amber neighbor of a 1 . Let a 3 be a neighbor of a 2 distinct from

a 1 in C. Since C has order greater than 3, there is an (amber) vertex p / ∈ { a 1 , a 2 , a 3 } that is adjacent to at least one of a 2 
or a 3 . Letting R = { a 2 , a 3 } , the vertices a 1 , a 2 , a 3 are colored cyan in G S ′ , while the vertex p is colored beige or cyan in

G S ′ . Each of a 1 , a 2 , a 3 therefore decreases the weight by 57,111, while the weight decrease of p is at least 10,147. Therefore,

ξ (R ) ≥ 57 , 111 × 3 + 10 , 147 = 181 , 480 > 180 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. �

Claim 1.2. �A (A ) ≤ 3 . 

Proof. Suppose that �A (A ) ≥ 4 . Let v be an amber vertex with d A (v ) = �A (A ) ≥ 4 . By the edge-minimality of G , every neigh-

bor of v has degree 3 in G . Let X = ∂(N A [ v ]) be the boundary of the set N A [ v ] in the amber graph G [ A ] , and so X is the set of

amber vertices that do not belong to N A [ v ] but have a neighbor in N A (v ) . Among all amber neighbors of v , let v ′ be chosen

so that the number, d X (v ′ ) , of neighbors of v ′ that belong to the set X is a maximum. Since the vertex v ′ has degree 3 in G ,

we have d X (v ′ ) ≤ 2 . Let R = { v , v ′ } . 
Suppose that d X (v ′ ) = 0 . Thus the vertex v and its amber neighbors are colored cyan in the colored graph G S ′ , and

therefore result in a weight decrease of 57 , 111 × (1 + d A (v )) ≥ 57 , 111 × 5 = 285 , 555 . Hence, ξ (R ) ≥ 285 , 555 > 180 , 0 0 0 =
90 , 0 0 0 | R | . Thus, the set R is a S-desirable set, a contradiction. Therefore, d X (v ′ ) ≥ 1 . 

Suppose that d X (v ′ ) = 2 . Thus, v and v ′ are colored cyan in G S ′ . Every amber neighbor u of v different from v ′ has

degree 3 in G and therefore has degree at most 2 in G S ′ , implying that u ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ , resulting in a weight decrease

of at least 57 , 111 − 41 , 926 = 15 , 185 . Further, the two amber neighbors of v ′ in X are colored beige or cyan in G S ′ , and

therefore their weight decreases by at least 57 , 111 − 46 , 964 = 10 , 147 . Hence, ξ (R ) ≥ 57 , 111 × 2 + 15 , 185 × (d A (v ) − 1) +
10 , 147 × d A ′ (v ′ ) ≥ 2 × 57 , 111 + 3 × 15 , 185 + 2 × 10 , 147 = 180 , 071 > 180 , 0 0 0 = 90 , 0 0 0 | R | . Thus, the set R is a S-desirable
3 
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set, a contradiction. Hence, d X (v ′ ) = 1 . By our choice of the vertex v ′ , every amber neighbor of v has at most one neighbor

in X . 

Suppose that some neighbor of v , say v ′′ , has no amber neighbor in X , that is, d X (v ′′ ) = 0 . Thus, the vertices v , v ′ and

v ′′ are colored cyan. Moreover, the neighbors of v distinct from v ′ and v ′′ belong to the set B ′ 
1 

∪ C ′ . Hence, ξ (R ) ≥ 57 , 111 ×
3 + 16 , 148 × (d A (v ) − 2) ≥ 57 , 111 × 3 + 16 , 148 × 2 = 203 , 629 > 90 , 0 0 0 | R | , a contradiction. Thus, every amber neighbor of

v has exactly one amber neighbor in X . Thus, for every amber neighbor u of v different from v ′ we have u ∈ B ′ 1 ∪ C ′ , and

therefore the vertex u decreases the weight by at least 57 , 111 − 40 , 963 = 16 , 148 . As before, the decrease of weight of

the amber neighbor of v ′ outside the set N[ v ] is at least 10,147. Hence if d A (v ) ≥ 5 , then ξ (R ) ≥ 57 , 111 × 2 + 16 , 148 × 4 +
10 , 147 = 188 , 961 > 90 , 0 0 0 | R | , a contradiction. Therefore, �A (A ) = 4 . Let N A (v ) = { v 1 , v 2 , v 3 , v 4 } , where v ′ = v 1 . 

Suppose that two amber neighbors of v have a common amber neighbor in X . Without loss of generality, we may assume

that v 1 and v 2 are two such neighbors of v . In this case, the vertices v , v 1 and v 2 are colored cyan in G S ′ , implying that

ξ (R ) ≥ 57 , 111 × 3 + 16 , 148 × 2 + 10 , 147 = 213 , 776 > 90 , 0 0 0 | R | , a contradiction. Hence, no two amber neighbors of w have

a common (amber) neighbor in X . Let x i be the (amber) neighbor of v i in X for i ∈ [4] . By our earlier observations, the

vertices x 1 , x 2 , x 3 , x 4 are distinct. Thus, X = { x 1 , x 2 , x 3 , x 4 } . 
Let C v be the component in the amber graph A that contains the vertex v . Thus, N A [ v ] ∪ X ⊆ V (C v ) , implying that the

component C v has order at least 9. Hence by Claim 1.1 , we have δ(C v ) ≥ 2 , and so every vertex in X has amber degree at

least 2. 

Suppose that x i x j is an edge for some i, j ∈ [4] where i 	 = j. We may assume that x 1 x 2 is an edge. Let R = { v , v 3 , x 1 , x 2 }
(with v and v 3 paired, and with x 1 and x 2 paired). All vertices in { v , v 1 , v 2 , v 3 , x 1 , x 2 } are colored cyan in G S ′ , while the

vertex v 4 ∈ B ′ 
1 

∪ C ′ and the vertex x 3 is colored beige or cyan in G S ′ . This implies that ξ (R ) ≥ 6 × 57 , 111 + 1 × 16 , 148 + 1 ×
10 , 147 = 368 , 961 > 360 , 0 0 0 = 90 , 0 0 0 | R | . Thus, R is a S-desirable set, a contradiction. We deduce that X is an independent

set in G . 

Let Y be the set of all amber vertices that are not neighbors of v but have a neighbor in the set X . Each vertex in X has

degree at least 2 and therefore has at least one (amber) neighbor in Y . 

Suppose that two vertices in X , say x 1 and x 2 , have a common amber neighbor, say y , in Y . Let R = { v , v 3 , x 1 , y } (with

v and v 3 paired, and with x 1 and y paired). All vertices in { v , v 1 , v 2 , v 3 , x 1 , y } are colored cyan in G S ′ . Further, the vertex

v 4 ∈ B ′ 
1 

∪ C ′ , and the vertices x 2 and x 3 are recolored beige or cyan. This implies that ξ (R ) ≥ 6 × 57 , 111 + 1 × 16 , 148 + 2 ×
10 , 147 = 368 , 961 > 360 , 0 0 0 = 90 , 0 0 0 | R | . Thus, R is a S-desirable set, a contradiction. We deduce that no two vertices in

X have a common neighbor in Y . 

Suppose that a vertex in X has only one (amber) neighbor in Y . We may assume that the vertex x 1 has a unique neighbor

y 1 in Y . Thus, the vertex x 1 has amber-degree 2. Let z 1 be an amber neighbor of y 1 distinct from x 1 . Thus, z 1 / ∈ X . Letting

R = { v , v 2 , y 1 , z 1 } (with v and v 2 paired, and with y 1 and z 1 paired), the six vertices in { v , v 1 , v 2 , x 1 , y 1 , z 1 } are colored cyan

in the colored graph G S ′ , while the vertices v 3 , v 4 ∈ B ′ 
1 

∪ C ′ and the vertex x 2 is recolored beige or cyan, implying that

ξ (R ) ≥ 6 × 57 , 111 + 2 × 16 , 148 + 1 × 10 , 147 = 385 , 109 > 90 , 0 0 0 | R | . Thus, R is a S-desirable set, a contradiction, implying

that each vertex in X has at least two amber neighbors in Y . 

Let y i and y ′ 
i 

be two distinct (amber) neighbors of x i for i ∈ [4] . By our earlier observations, the vertices

y 1 , y 
′ 
1 
, y 2 , y 

′ 
2 
, y 3 , y 

′ 
3 
, y 4 , y 

′ 
4 

are distinct. Let R = { v 1 , x 1 , x 2 , x 3 , x 4 , y 2 , y 3 , y 4 } (with v 1 and x 1 paired, and with x i and y i paired

for i ∈ { 2 , 3 , 4 } ). All 12 vertices in the set N A [ v ] ∪ X ∪ { y 2 , y 3 , y 4 } are colored cyan in G S ′ , and the vertices y 1 , y 
′ 
1 
, y ′ 

2 
, y ′ 

3 
, y ′ 

4 
are

recolored beige or cyan. This implies that ξ (R ) ≥ 12 × 57 , 111 + 5 × 10 , 147 = 736 , 067 > 720 , 0 0 0 = 90 , 0 0 0 | R | , and so the

set R is a S-desirable set, a contradiction. �

Claim 1.3. �A (B ) ≤ 3 . 

Proof. Suppose that �A (B ) ≥ 4 . Let w be a beige vertex with d A (w ) = �A (B ) . By the edge-minimality of G , every neighbor

of w has degree 3 in G . Let X = ∂(N A [ w ]) be the boundary of the set N A [ w ] in the amber graph G [ A ] , and so X is the set of

amber vertices that do not belong to N A [ v ] but have a neighbor in N A (v ) . Among all amber neighbors of w , let w 

′ be chosen

so that d A (w 

′ ) is a maximum. Since the vertex w 

′ has degree 3 in G , we have d A (w 

′ ) ≤ 2 . Let R = { w, w 

′ } . 
If d X (w 

′ ) = 0 , then the vertex w and all its amber neighbors in G are colored cyan in G S ′ , implying that ξ (R ) ≥ 46 , 964 +
4 × 57 , 111 ≥ 275 , 408 > 180 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, d X (w 

′ ) ≥ 1 . 

Suppose that d X (w 

′ ) = 2 . The vertices w and w 

′ are colored cyan in G S ′ . Every amber neighbor u of v distinct from v ′ 
has degree 3 in G and therefore has degree at most 2 in G S ′ , and so u ∈ B ′ 

2 
∪ B ′ 

1 
∪ C ′ . Thus, the vertex u decreases the weight

by at least 15,185. Further, every amber neighbor of w 

′ in X is colored beige or cyan in G S ′ and, by Claim 1.2 , has at most

two amber neighbors in G S ′ , implying that it belongs to the set B ′ 
2 

∪ B ′ 
1 

∪ C ′ and therefore its weight decrease is also at

least 15,185. Hence, ξ (R ) ≥ 46 , 964 + 57 , 111 + 15 , 185 × (d A (w ) − 1 + d X (w 

′ )) ≥ 46 , 964 + 57 , 111 + 15 , 185 × 5 = 180 , 0 0 0 =
90 , 0 0 0 | R | . This contradicts our assumption, therefore, d X (w 

′ ) = 1 . 

Suppose that �A (B ) ≥ 5 . The weight decrease of every amber neighbor of w different from w 

′ is at least 15,185, as is

the weight decrease of the amber neighbor of w 

′ in X . Hence, ξ (R ) ≥ 46 , 964 + 57 , 111 + 5 × 15 , 185 = 90 , 0 0 0 | R | , a con-

tradiction. Thus, �A (B ) ≤ 4 . By supposition, �A (B ) ≥ 4 . Consequently, d A (w ) = �A (B ) = 4 . Let w 1 , w 2 , w 3 , w 4 be the amber

neighbors of w . 

By our earlier observations, d X (w 

′ ) = 1 , implying that every amber neighbor of w has at most one neighbor in X . If an

amber neighbor of w has no neighbor in X , then such a vertex is recolored cyan in G S ′ , implying that ξ (R ) ≥ 46 , 964 + 2 ×
4 



M.A. Henning, M. Pil ́sniak and E. Tumidajewicz Applied Mathematics and Computation 417 (2022) 126782 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

57 , 111 + 3 × 15 , 185 = 206 , 741 > 90 , 0 0 0 | R | , a contradiction. Hence, every amber neighbor of w has exactly one neighbor in

X , that is, d X (w i ) = 1 for all i ∈ [4] . We can therefore choose the vertex w 

′ (which has the maximum number of neighbors

in X) as an arbitrary vertex among w 1 , w 2 , w 3 , w 4 . 

Suppose that two amber neighbors, say w 1 and w 2 , of w have a common amber neighbor in X . We may assume that

w 

′ = w 1 . The vertices w, w 1 , w 2 are colored cyan in G S ′ , implying once again that ξ (R ) ≥ 46 , 964 + 2 × 57 , 111 + 3 × 15 , 185 >

90 , 0 0 0 | R | , a contradiction. Hence, no two amber neighbors of w have a common (amber) neighbor in X . Let x i be the

(amber) neighbor of w i in X for i ∈ [4] . The vertices x 1 , x 2 , x 3 , x 4 are distinct. Thus, X = { x 1 , x 2 , x 3 , x 4 } . 
Suppose that x i x j is an edge for some i, j ∈ [4] where i 	 = j. We may assume that x 1 x 2 is an edge. Let R = { w, w 3 , x 1 , x 2 }

(with w and w 3 paired, and with x 1 and x 2 paired). All vertices in { w, w 1 , w 2 , w 3 , x 1 , x 2 } are colored cyan in G S ′ , while

the vertex w 4 ∈ B ′ 
1 

∪ C ′ and the vertex x 3 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ . This implies that ξ (R ) ≥ 46 , 964 + 5 × 57 , 111 + 16 , 148 + 15 , 185 =
363 , 852 > 360 , 0 0 0 = 90 , 0 0 0 | R | . Thus, R is a S-desirable set, a contradiction. We deduce that X = { x 1 , x 2 , x 3 , x 4 } is an inde-

pendent set in G . 

Let Y be the set of all amber vertices that are not neighbors of w but have a neighbor in the set X . Each vertex in X

has amber degree at least 2, and therefore has at least one neighbor in Y . Suppose that two vertices in X , say x 1 and x 2 ,

have a common amber neighbor, say y , in Y . Let R = { w, w 3 , x 1 , y } (with w and w 3 paired, and with x 1 and y paired). The

six vertices in { w, w 1 , w 2 , w 3 , x 1 , y } are colored cyan in G S ′ . Moreover, w 4 , x 2 ∈ B ′ 
1 

∪ C ′ and x 3 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ . This implies that

ξ (R ) ≥ 46 , 964 + 5 × 57 , 111 + 2 × 16 , 148 + 15 , 185 = 380 , 0 0 0 > 90 , 0 0 0 | R | . Thus, R is a S-desirable set, a contradiction. We

deduce that for any two vertices x 1 , x 2 ∈ X there is no vertex y ∈ Y that is a neighbor of both x 1 and x 2 . 

Let y i be an (amber) neighbor of x i that belongs to the set Y for i ∈ [4] . The vertices y 1 , y 2 , y 3 , y 4 are distinct. Let R = X ∪
{ y 1 , y 2 , y 3 , y 4 } . The vertex w is colored cyan in G S ′ , as are the vertices w i , x i , y i for all i ∈ [4] , implying that ξ (R ) ≥ 46 , 964 +
12 × 57 , 111 = 732 , 296 > 720 , 0 0 0 = 90 , 0 0 0 | R | , and so the set R is a S-desirable set, a contradiction. �

As a consequence of Claim 1.2 , we have �A (A ) ≤ 3 , and by Claim 1.3 , we have �A (B ) ≤ 3 . Thus, B = B 1 ∪ B 2 ∪ B 3 , where

we recall that if w ∈ B i for i ∈ [3] , then d A (w ) = i . 

Claim 1.4. There is no subgraph isomorphic to K 4 or K 4 − e in G [ A ] . 

Proof. Assume that F is an (amber) subgraph in G [ A ] isomorphic to K 4 . Since �A (A ) ≤ 3 , F is an (amber) component in

G [ A ] . Let V (F ) = { v 1 , v 2 , v 3 , v 4 } and let R = { v 1 , v 2 } . All four (amber) vertices in F are colored cyan in G S ′ , and so ξ (R ) ≥
4 × 57 , 111 = 228 , 4 4 4 > 90 , 0 0 0 | R | , a contradiction. Hence, there is no subgraph isomorphic to K 4 in G [ A ] . 

Assume that F is an (amber) subgraph in G [ A ] isomorphic to K 4 − e . Let V (F ) = { v 1 , v 2 , v 3 , v 4 } , where v 2 and v 3 have

degree 3 in F . By Part (a), we note that v 1 v 4 is not an edge. Letting R = { v 1 , v 2 } , the vertices v 1 , v 2 , v 3 are colored cyan in

G S ′ and v 4 ∈ B ′ 1 ∪ C ′ . Thus, ξ (R ) ≥ 3 × 57 , 111 + 16 , 148 = 187 , 481 > 90 , 0 0 0 | R | , a contradiction. �

Claim 1.5. The removal of an edge that joins a beige vertex v to an amber vertex results in a decrease in the weight of v by at

least 963. 

Proof. Let e be an edge of G S joining a beige vertex v to an amber vertex u . If the vertex u is added to the set S and

the edge e is removed, then the vertex v has i − 1 amber neighbors, whence i ∈ { 2 , 3 } and v ∈ B i −1 in G S or i = 1 and v is

recolored cyan in G S . This implies (see, Table 1 ) that the removal of the edge e decreases the weight of v by 963 if i ∈ { 2 , 3 } ,
and by 40963 if i = 1 . �

Since we frequently use Claim 1.5 in the remaining part of the proof, we often omit the reference to this claim when we

apply it. 

Claim 1.6. There is no subgraph isomorphic to K 3 in G [ A ] . 

Proof. Assume that T is an (amber) triangle in G [ A ] , where V (T ) = { v 1 , v 2 , v 3 } . Let C be the (amber) component in G [ A ] that

contains the triangle T . By Claim 1.1 (a), the subgraph T is not a component in G [ A ] , and so the component C has order at

least 4. Thus by Claim 1.1 (b), every vertex that belongs to the component C has degree at least 2. Let X = ∂(V (T )) be the

boundary of the set V (T ) in the amber graph G [ A ] . Thus, X consists of all amber vertices not in T that have a neighbor in

T . Since the component C has order at least 4, we note that X 	 = ∅ . We may assume that v 1 has an (amber) neighbor in X ,

say x 1 . 

Suppose that a vertex in T , say v 3 , has no (amber) neighbor in X . In this case, we let R = { v 1 , v 2 } . All three vertices in T 

are colored cyan in G S ′ , while the vertex x 1 ∈ B ′ 2 ∪ B ′ 1 ∪ C, implying that ξ (R ) ≥ 3 × 57 , 111 + 15 , 185 = 186 , 518 > 90 , 0 0 0 | R | ,
a contradiction. Hence, each vertex in the triangle T has an amber neighbor in X . Let x i be the (amber) neighbor of v i that

belongs to X for i ∈ [3] . By Claim 1.4 , the vertices x 1 , x 2 , x 3 are distinct. Hence, X = { x 1 , x 2 , x 3 } . 
Suppose that x i x j is an edge for some i, j ∈ [3] where i 	 = j. We may assume that x 1 x 2 is an edge. We now consider the

set R = { v 1 , x 1 } . The vertices v 1 , v 2 , x 1 are colored cyan in G S ′ , while v 3 , x 2 ∈ B ′ 1 ∪ C ′ , implying that ξ (R ) ≥ 3 × 57 , 111 + 2 ×
16 , 148 > 90 , 0 0 0 | R | , a contradiction. The set X is therefore an independent set. 

Let Y be the set of all amber vertices that do not belong to the triangle T but have a neighbor in the set X . Every vertex

in X has at least two amber neighbors, and therefore has either one or two neighbors in Y . 

Suppose that two vertices, x 1 and x 2 , in X have a common amber neighbor, say y , in Y . If x 1 has amber degree 2, then

letting R = { v , x , x , y } (with x and y paired, and v and x paired), the seven vertices in V (T ) ∪ X ∪ { y } are colored
3 2 3 2 1 3 3 
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cyan in the colored graph G S ′ , implying that ξ (R ) ≥ 7 × 57 , 111 = 399 , 777 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence,

x 1 has amber degree 3. Let y 1 be the amber neighbor of x 1 different from v 1 and y . Letting R = { x 1 , y, v 3 , x 3 } (with x 1 and

y paired, and v 3 and x 3 paired), the six vertices v 1 , v 2 , v 3 , x 1 , x 3 , y are all colored cyan in G S ′ , while x 2 ∈ B ′ 
1 

∪ C ′ and y 1 ∈
B ′ 

2 
∪ B ′ 

1 
∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 16 , 148 + 15 , 185 = 373 , 999 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence,

no two vertices in X have a common neighbor in Y . Let y i be an (amber) neighbor of x i for i ∈ [3] . By our earlier observations,

the vertices y 1 , y 2 , y 3 are distinct. 

Suppose that y i y j is an edge for some i, j ∈ [3] where i 	 = j. We may assume that y 1 y 2 is an edge. Let R = { v 3 , x 3 , y 1 , y 2 }
(with v 3 and x 3 paired, and y 1 and y 2 paired). In the colored graph G S ′ , the six vertices v 1 , v 2 , v 3 , x 3 , y 1 , y 2 are colored

cyan, while the vertices x 1 , x 2 ∈ B ′ 
1 

∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 2 × 16 , 148 = 374 , 962 > 90 , 0 0 0 | R | , a contradic-

tion. Hence, the set { y 1 , y 2 , y 3 } is an independent set in G . 

Suppose that a vertex in X has at least two (amber) neighbors in Y . We may assume that x 1 has two neighbors in Y .

Let y ′ 
1 

be a neighbor of x 1 in Y different from y 1 . Interchanging the roles of y 1 and y ′ 
1 
, the vertex y ′ 

1 
is not adjacent to y 2 

or y 3 . Let z 2 be an (amber) neighbor of y 2 different from x 2 . By our earlier observations, z 2 / ∈ X ∪ { y 1 , y ′ 1 , y 3 } . Letting R =
{ x 1 , x 2 , x 3 , y 1 , y 2 , y 3 } (with x i and y i paired for i ∈ [3] ), all nine vertices in the set V (T ) ∪ X ∪ { y 1 , y 2 , y 3 } are colored cyan in

G S ′ , while the vertices y ′ 1 , z 2 ∈ B ′ 2 ∪ B ′ 1 ∪ C ′ , implying that ξ (R ) ≥ 9 × 57 , 111 + 2 × 15 , 185 = 544 , 369 > 540 , 0 0 0 = 90 , 0 0 0 | R | .
Thus, R is a S-desirable set, a contradiction. Every vertex in X therefore has exactly one (amber) neighbor in Y , implying by

our earlier observations that N A (x i ) = { v i , y i } for i ∈ [3] . 

Let Z be the set of amber vertices not in X but having a neighbor in the set Y . Every vertex in Y has at least two

amber neighbors, and therefore has either one or two neighbors in Z. Letting R = X ∪ Y (with x i and y i paired for i ∈ [3] ),

the vertices in V (T ) ∪ X ∪ Y are all colored cyan in G S ′ , while the vertices in Z belong to the set B ′ 
2 

∪ B ′ 
1 

∪ C ′ . If | Z| ≥ 2 ,

then ξ (R ) ≥ 9 × 57 , 111 + 2 × 15 , 185 = 544 , 369 > 540 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, | Z| = 1 . Let Z = { z} . By our

earlier observations, every vertex in Y has a neighbor in Z, and so z is adjacent to all three vertices in Y . Thus, z ∈ C ′ and

ξ (R ) ≥ 10 × 57 , 111 = 571 , 110 > 90 , 0 0 0 | R | , a contradiction. �

Claim 1.7. There is no 4-cycle in G [ A ] . 

Proof. Suppose that C : v 1 v 2 v 3 v 4 v 1 is an amber 4-cycle in G [ A ] . Let X = ∂(V (C)) be the boundary of the set V (C) in the

amber graph G [ A ] . Thus, X consists of all amber vertices not in C that have a neighbor in C. By Claim 1.6 , there is no amber

triangle, implying that the cycle C is an induced cycle in G [ A ] . By Claim 1.1 , every vertex in the (amber) component in G [ A ]

containing the cycle C has degree at least 2. 

Suppose that a vertex in C, say v 1 , has no (amber) neighbor in X . In this case, we let R = { v 2 , v 3 } . All three ver-

tices v 1 , v 2 , v 3 are colored cyan in G S ′ , while the vertex v 4 ∈ B ′ 
1 

∪ C, implying that ξ (R ) ≥ 3 × 57 , 111 + 16 , 148 = 187 , 481 >

90 , 0 0 0 | R | , a contradiction. Hence, each vertex in the cycle C has an amber neighbor in X . Let x i be the (amber) neighbor of

v i that belongs to X for i ∈ [4] . 

Suppose that x i = x j for some i and j where 1 ≤ i < j ≤ 4 . Since there is no (amber) triangle in G [ A ] , we have j = i + 2 .

For notational simplicity, we may assume that x 1 = x 3 . Let R = { x 1 , v 3 } (with x 1 and v 3 paired). All three vertices v 1 , v 3 , x 1 are

colored cyan in G S ′ , while the vertices v 2 , v 4 ∈ B ′ 1 ∪ C ′ , implying that ξ (R ) ≥ 3 × 57 , 111 + 2 × 16 , 148 = 203 , 629 > 90 , 0 0 0 | R | ,
a contradiction. Hence, the vertices x 1 , x 2 , x 3 , x 4 are distinct. Thus, X = { x 1 , x 2 , x 3 , x 4 } . 

Suppose that x i x i +1 is an edge for some i ∈ [4] (where addition is taken modulo 4). By symmetry, we may assume that

x 1 x 2 is an edge. Letting R = { x 1 , x 2 , v 3 , v 4 } (with x 1 and x 2 paired, and v 3 and v 4 paired), all six vertices in V (C) ∪ { x 1 , x 2 }
are colored cyan in G S ′ , while the vertices x 3 , x 4 ∈ B ′ 

2 
∪ B ′ 

1 
∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 2 × 15 , 185 = 373 , 036 >

360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, x i x i +1 is not an edge for all i ∈ [4] . 

Suppose that x i x i +2 is an edge for some i ∈ [4] (where addition is taken modulo 4). By symmetry, we may assume that

x 1 x 3 is an edge. If x 2 x 4 is an edge, then letting R = X (with x 1 and x 3 paired, and x 2 and x 4 paired), all eight vertices in

 (C) ∪ X are colored cyan in G S ′ , implying that ξ (R ) ≥ 8 × 57 , 111 = 456 , 888 > 90 , 0 0 0 | R | , a contradiction. Hence, x 2 x 4 is

not an edge, implying by our earlier observations that neither x 2 nor x 4 has a neighbor in X . 

Let y 2 and y 4 be amber neighbors of x 2 and x 4 , respectively, that lie outside the cycle C. Further, let y 2 and y 4 be

chosen, if possible, to be distinct. If y 2 	 = y 4 , then letting R = X ∪ { y 2 , y 4 } (with x 1 and x 3 paired, x 2 and y 2 paired, and x 4 
and y 4 paired), all 10 vertices in V (C) ∪ X ∪ { y 2 , y 4 } are colored cyan in G S ′ , implying that ξ (R ) ≥ 10 × 57 , 111 = 571 , 110 >

540 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, y 2 = y 4 , implying by our choice of y 2 and y 4 that the vertices x 2 and x 4 both

have (amber) degree 2 in G [ A ] . In this case, letting R = { v 1 , v 4 , x 4 , y 4 } (with v 1 and v 4 paired, and x 4 and y 4 paired), all

six vertices in { v 1 , v 2 , v 4 , x 2 , x 4 , y 4 } are colored cyan in G S ′ , while the vertex v 3 ∈ B ′ 
1 

∪ C ′ and the vertex x 1 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ ,
implying that ξ (R ) ≥ 6 × 57 , 111 + 16 , 148 + 15 , 185 = 373 , 999 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, x i x i +2 is not

an edge for all i ∈ [4] , implying by our earlier observations that X is an independent set. 

Let Y be the set of all amber vertices that do not belong to the 4-cycle C but have a neighbor in the set X . Every vertex

in X has either one or two (amber) neighbors in Y . Suppose that x i and x i +1 have a common (amber) neighbor, say y , in Y 

for some i ∈ [4] (where addition is taken modulo 4). We may assume that x 1 and x 2 have a common amber neighbor, say

y 1 , in Y . Letting R = { x 1 , y 1 , v 3 , v 4 } (with x 1 and y 1 paired, and v 3 and v 4 paired), the six vertices v 1 , v 2 , v 3 , v 4 , x 1 , y are all

colored cyan, while the vertex x 2 ∈ B ′ 
1 

∪ C ′ and the vertices x 3 , x 4 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 16 , 148 +
2 × 15 , 185 > 90 , 0 0 0 | R | , a contradiction. Hence, x i and x i +1 have no common neighbor in Y for i ∈ [4] . 

Let y i be an (amber) neighbor of x i for i ∈ [4] , where the vertices y 1 , y 2 , y 3 , y 4 are chosen so that the set ∪ 

4 
i =1 

{ y i } is

as large as possible. By our earlier observations, y i 	 = y i +1 for i ∈ [4] (where addition is taken modulo 4). Suppose that x i 
6 
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and x i +2 have a common (amber) neighbor in Y for some i ∈ [4] . Renaming vertices if necessary, we may assume that x 1 
and x 3 have a common amber neighbor in Y . Thus, y 1 = y 3 . If x 1 or x 3 has amber degree 3, then we could have chosen

y 1 and y 3 to be distinct, a contradiction to our choice of the vertices y 1 , y 2 , y 3 , y 4 . Hence, both x 1 and x 3 have amber

degree 2. Letting R = { v 4 , x 2 , x 3 , x 4 , y 1 , y 2 } (with v 4 and x 4 paired, x 2 and y 2 paired, and x 3 and y 1 paired), the ten vertices

in V (C) ∪ X ∪ { y 1 , y 2 } are all colored cyan, implying that ξ (R ) ≥ 10 × 57 , 111 > 90 , 0 0 0 | R | , a contradiction. We deduce that

no two vertices in X have a common neighbor in Y . Thus, the vertices y 1 , y 2 , y 3 , y 4 are distinct. 

Suppose that y i y i +1 is an edge for some i ∈ [4] (where addition is taken modulo 4). By symmetry, we may assume that

y 1 y 2 is an edge. Letting R = { v 3 , v 4 , y 1 , y 2 } (with v 3 and v 4 paired, and y 1 and y 2 paired), the vertices v 1 , v 2 , v 3 , v 4 , y 1 , y 2
are colored cyan in G S ′ , while the vertices x 1 , x 2 ∈ B ′ 

1 
∪ C ′ (and the vertices x 3 , x 4 ∈ B ′ 

2 
∪ B ′ 

1 
∪ C ′ ), implying that ξ (R ) > 6 ×

57 , 111 + 2 × 16 , 148 > 90 , 0 0 0 | R | , a contradiction. Hence, y i y i +1 is not an edge for all i ∈ [4] . 

Suppose that y i y i +2 is an edge for some i ∈ [4] (where addition is taken modulo 4). By symmetry, we may assume that

y 1 y 3 is an edge. Letting R = { v 2 , x 2 , x 4 , y 1 , y 3 , y 4 } (with v 2 and x 2 paired, x 4 and y 4 paired, and y 1 and y 3 paired), the nine

vertices v 1 , v 2 , v 3 , v 4 , x 2 , x 4 , y 1 , y 3 , y 4 are colored cyan in the colored graph G S ′ , while the vertices x 1 , x 3 ∈ B ′ 
1 

∪ C ′ and the

vertex y 2 ∈ B ′ 2 ∪ B ′ 1 ∪ C ′ , implying that ξ (R ) > 9 × 57 , 111 + 2 × 16 , 148 + 15 , 185 > 90 , 0 0 0 | R | , a contradiction. Hence, y i y i +2

is not an edge for all i ∈ [4] . Hence, Y ′ = { y 1 , y 2 , y 3 , y 4 } is an independent set in G [ A ] . 

We show that Y is an independent set of amber vertices. Suppose, to the contrary, that the vertex y 1 is adjacent to

some other vertex, y ′ 
1 

say, in Y . Let x i be the neighbor of y ′ 
1 

that belongs to the set X for some i ∈ [4] . Since there is no

amber triangle, we note that i 	 = 1 . We may assume that y ′ 1 = y i . This contradicts our earlier observation that the set Y ′ is

an independent set of amber vertices. Hence, Y is an independent set of amber vertices. 

Let Z be the set of amber vertices outside the set X that have a neighbor in the set Y . Since every amber vertex has at

least two amber neighbors, the vertex y i has at least one neighbor in Z for i ∈ [4] . Since the maximum amber degree is 3,

this implies that | Z| ≥ 2 . Let R = X ∪ Y (with x i and y i paired for i ∈ [4] ). 

If | Z| ≥ 3 , then the 12 vertices V (C) ∪ X ∪ Y ′ are colored cyan in G S ′ , while the vertices in Z belong to the set B ′ 
2 

∪ B ′ 
1 

∪ C ′ ,
implying that ξ (R ) ≥ 12 × 57 , 111 + 3 × 15 , 185 = 730 , 887 > 720 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, | Z| = 2 . Let Z =
{ z 1 , z 2 } . If a vertex z ∈ Z belongs to the set C ′ in G S ′ , then the 13 vertices V (C) ∪ X ∪ Y ′ ∪ { z} are colored cyan in G S ′ , implying

that ξ (R ) ≥ 13 × 57 , 111 = 742 , 443 > 720 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, z 1 , z 2 ∈ B ′ 
2 

∪ B ′ 
1 
. In particular, this implies

that no vertex in Z has three (amber) neighbors in Y . Thus, both z 1 and z 2 have exactly two (amber) neighbors in Y ′ and

z 1 , z 2 ∈ B ′ 
1 
. Moreover, neither z 1 nor z 2 has an (amber) neighbor in X . Since Y is an independent set, each vertex y i has

exactly two amber neighbors, namely v i and one of z 1 and z 2 , for i ∈ [4] . 

Recall that Y ′ = { y 1 , y 2 , y 3 , y 4 } and Y ′ ⊆ Y . If Y ′ ⊂ Y , then by our earlier observations this implies that one of z 1 and z 2 
has three neighbors in Y , and therefore belongs to the set C ′ , a contradiction. Hence, Y ′ = Y , implying that each vertex x i has

exactly two amber neighbors, namely v i and y i , for i ∈ [4] . Each vertex x i is therefore adjacent to at least one beige vertex for

i ∈ [4] . By our earlier observations, each vertex y i is adjacent to at least one beige vertex for i ∈ [4] . This yields the existence

of at least eight edges joining amber and beige vertices that get deleted, which contribute a weight decrease of at least

8 × 963 , implying that ξ (R ) ≥ 12 × 57 , 111 + 2 × 16 , 148 + 8 × 963 = 725 , 332 > 720 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. �

Claim 1.8. No component in the amber graph G [ A ] is a cycle. 

Proof. Suppose that the amber graph G [ A ] contains a component C that is a cycle. Let C be the cycle v 1 v 2 . . . v q for some

q ≥ 3 in G [ A ] . By Claim 1.6 , there is no amber 3-cycle, and by Claim 1.7 , there is no amber 4-cycle. Hence, q ≥ 5 . We note

that every vertex in the component C has at least one beige neighbor. Let w i be a beige neighbor of v i for i ∈ [ q ] . 

Suppose that q = 5 . If w i = w i +2 for all i ∈ [5] (with addition taken modulo 5), then this implies that w i = w j for all i, j ∈
[5] . But then w 1 is adjacent to all vertices on the cycle C, and would therefore have amber degree at least 5, a contradiction.

Hence, we may assume that w 1 and w 3 are distinct. In this case, we let R = { v 1 , v 3 , w 1 , w 3 } with v 1 and w 1 paired, and v 3 
and w 3 paired. The vertices in V (C) ∪ { w 1 , w 3 } are all colored cyan in G S ′ , implying that ξ (R ) ≥ 5 × 57 , 111 + 2 × 40 , 963 =
367 , 481 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, q 	 = 5 , implying that q ≥ 6 . 

We now let R = { v 2 , v 5 , v 6 , w 2 } (with v 2 and w 2 paired, and v 5 and v 6 paired). If q = 6 , then all six vertices of C are

colored cyan in the graph G S ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 40 , 963 = 383 , 629 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction.

Hence, q ≥ 7 . In this case, the six vertices w 2 , v 2 , v 3 , v 4 , v 5 , v 6 are all colored cyan in the graph G S ′ , while the vertices v 1 
and v 7 belong to the set B ′ 1 ∪ C ′ . The vertex w 2 is adjacent to at most three amber vertices, implying that at least four

edges joining (amber) vertices in { v 1 , v 3 , v 4 , v 5 , v 6 , v 7 } to beige vertices distinct from w 1 are deleted when constructing

G S ′ , yielding an additional decrease in weight of at least 4 × 963 . Therefore, ξ (R ) ≥ 5 × 57 , 111 + 40 , 963 + 2 × 16 , 148 + 4 ×
963 = 362 , 6 6 6 > 90 , 0 0 0 | R | , a contradiction. Hence, there is no (amber) cycle component in G S [ A ] . �

By Claim 1.6 , there is no amber 3-cycle and by Claim 1.7 , there is no amber 4-cycle. Hence, every amber cycle has length

at least 5. By Claim 1.8 , there is no amber component that is a cycle. 

Claim 1.9. The amber graph G [ A ] contain no adjacent vertices of degree 2. 

Proof. Suppose that the amber graph G [ A ] has a component C that contains two adjacent (amber) vertices of degree 2. By

Claim 1.8 , the component C is not a cycle, implying that C contains a vertex of (amber) degree 3. Hence, there must exist a

vertex v of (amber) degree 3 in the component C with an (amber) neighbor v of degree 2 that is adjacent to an (amber)
1 
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neighbor x 1 of degree 2 in G [ A ] . Let v 2 and v 3 be the other two amber neighbors of v , and so N A (v ) = { v 1 , v 2 , v 3 } . Since

there is no amber 3-cycle, the set N A (v ) is an independent set. 

Let X = ∂(N A [ v ]) be the boundary of the set N A [ v ] in the amber graph G [ A ] , and so X is the set of amber vertices outside

N A [ v ] that have a neighbor in N A (v ) . By Claim 1.1 , every vertex in C has amber degree at least 2. Since there is no amber

cycle of length 4, no two vertices in N A (v ) have a common neighbor in X . Let x i be an (amber) neighbor of v i that belongs

to X for i ∈ [3] . By our earlier observation, the vertices x 1 , x 2 and x 3 are distinct. By supposition, the vertex x 1 has (amber)

degree 2 in G [ A ] , and is the unique (amber) neighbor of v 1 in X . 

Suppose that x 1 x i is an edge for some i ∈ { 2 , 3 } . We may assume that x 1 x 2 is an edge. If v 2 has amber degree 2, then

letting R = { x 1 , x 2 , x 3 , v 3 } (with x 1 and x 2 paired, and v 3 and x 3 paired), the seven vertices in N A [ v ] ∪ { x 1 , x 2 , x 3 } are colored

cyan, implying that ξ (R ) ≥ 7 × 57 , 111 = 399 , 777 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, v 2 has amber degree 3.

Let x ′ 2 be the neighbor of v 2 in X different from x 2 . Letting R = { v , v 2 , v 3 , x 2 } (with v and v 3 paired, and x 2 and v 2 paired),

the six vertices in N A [ v ] ∪ { x 1 , x 2 } are colored cyan, while the vertices x ′ 
2 
, x 3 ∈ B ′ 

2 
∪ B ′ 

1 
∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 +

2 × 15 , 185 = 373 , 036 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, x 1 x i is not an edge for i ∈ { 2 , 3 } , implying that x 1 is

not adjacent to any vertex of X . Let y 1 be the (amber) neighbor of x 1 different to v 1 . Thus, y 1 / ∈ X . 

If y 1 is adjacent to both x 2 and x 3 , then letting R = { v , v 2 , x 2 , y 1 } (with v and v 2 paired, and x 2 and y 1 paired), the six

vertices in { v , v 1 , v 2 , x 1 , x 2 , y 1 } are colored cyan, while the vertices v 3 , x 3 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 +
2 × 15 , 185 > 90 , 0 0 0 | R | , a contradiction. Hence, we may assume that y 1 is not adjacent to x 2 . Let y 2 be a neighbor of y 1 
different from x 1 . Thus, y 2 	 = x 2 but possibly x 3 = y 2 . Letting R = { v , v 2 , y 1 , y 2 } (with v and v 2 paired, and y 1 and y 2 paired),

the six vertices in { v , v 1 , v 2 , x 1 , y 1 , y 2 } are colored cyan, while the vertices v 3 , x 2 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ , implying that ξ (R ) ≥ 6 ×
57 , 111 + 2 × 15 , 185 > 90 , 0 0 0 | R | , a contradiction. �

Recall that every amber cycle has length at least 5. By Claim 1.9 , a vertex of degree 2 in G [ A ] has both its neighbors of

degree 3 in G [ A ] . 

Claim 1.10. A vertex of degree 2 in G [ A ] does not belong to an amber 5- or 6-cycle. 

Proof. Suppose that G [ A ] contains a vertex v 1 of degree 2 that belongs to an amber 5- or 6-cycle C v . Let v and x 1 be the

neighbors of v 1 in the cycle C v . By Claim 1.9 , both v and x 1 have degree 3 in G [ A ] . Let v 2 and v 3 be the two amber neighbors

of v different from v 1 , where v 2 belongs to the cycle C v . Since there is no amber 3-cycle, the set N A (v ) = { v 1 , v 2 , v 3 } is an

independent set. Let X = ∂(N A [ v ]) be the boundary of the set N A [ v ] in the amber graph G [ A ] . Let x i be an (amber) neighbor

of v i that belongs to X for i ∈ { 2 , 3 } . Since there is no amber 4-cycle, no two neighbors of v in G [ A ] have a common neighbor

in X . In particular, x 1 , x 2 , x 3 are distinct. �

Claim 1.10.1. The cycle C v is not a 5-cycle. 

Proof. Suppose that C v is a 5-cycle. We may assume that x 1 x 2 is an edge of the cycle C v . Thus, C v is the cycle vv 1 x 1 x 2 v 2 v .
Let R = { x 1 , x 2 , x 3 , v 3 } (with x 1 and x 2 paired, and v 3 and x 3 paired). The six vertices in { v , v 1 , v 3 , x 1 , x 2 , x 3 } are colored cyan

in G S ′ . If v 2 has amber degree 2, then the vertex v 2 is colored cyan in G S ′ , implying that ξ (R ) ≥ 7 × 57 , 111 = 399 , 777 >

360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, v 2 has amber degree 3. Let x ′ 
2 

be the amber neighbor of v 2 in X different

from x 2 . We note that the vertex v 2 ∈ B ′ 1 . Analogously, if x 1 x 3 is an edge, then v 3 has amber degree 3. 

Let y 1 be the (amber) neighbor of x 1 different from v 1 and x 2 . Since there is no amber 4-cycle, we note that y 3 	 = x ′ 2 .
Suppose that y 1 = x 3 , that is, x 1 x 3 is an edge, implying by our earlier observations that v 3 has amber degree 3. Let x ′ 

3 
be the amber neighbor of v 3 in X different from x 3 . As observed earlier, no two neighbors of v in G [ A ] have a common

neighbor in X , and so the vertices x 1 , x 2 , x 
′ 
2 , x 3 , x 

′ 
3 are distinct. Recall that R = { x 1 , x 2 , x 3 , v 3 } and v 2 ∈ B ′ 1 . The vertex x ′ 3 ∈

B ′ 
2 

∪ B ′ 
1 

∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 16 , 148 + 15 , 185 = 373 , 999 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence,

y 1 	 = x 3 . In this case, the vertex y 1 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ , implying once again that ξ (R ) ≥ 6 × 57 , 111 + 16 , 148 + 15 , 185 > 90 , 0 0 0 | R | ,
a contradiction. �

By Claim 1.10.1 , the cycle C v is a 6-cycle. More generally, no vertex of degree 2 in G [ A ] belongs to an amber 5-cycle. Thus,

x 1 is adjacent to no vertex in X . Let y 1 and y 2 be the two amber neighbors of x 1 different from v 1 . Thus, y 1 , y 2 / ∈ X . Recall

that v 1 , v 2 and v 3 are the three amber neighbors of v , and that x i is an amber neighbor of v i that belongs to X for i ∈ [3] .

We may assume that the cycle C v is the cycle vv 1 x 1 y 2 x 2 v 2 v . 
Suppose x 2 has a common neighbor with v 3 . In this case, we can choose x 3 so that x 2 x 3 is an edge. Letting R =

{ v , v 3 , x 1 , y 2 } (with x 1 and y 2 paired, and v and v 3 paired), the six vertices in { v , v 1 , v 3 , x 1 , x 2 , y 2 } are colored cyan, while the

vertices v 2 , x 3 ∈ B ′ 
1 

∪ C ′ and the vertex y 1 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 2 × 16 , 148 + 15 , 185 = 390 , 147 >

360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, x 2 has no neighbor in X . 

If x 2 has only v 2 and y 2 as its amber neighbors, then letting R = { v , v 3 , x 1 , y 2 } , the six vertices in { v , v 1 , v 3 , x 1 , x 2 , y 2 } are

colored cyan, while the vertex v 2 ∈ B ′ 1 ∪ C ′ and the vertices x 3 , y 1 ∈ B ′ 2 ∪ B ′ 1 ∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 16 , 148 +
2 × 15 , 185 = 389 , 184 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, v 2 has amber degree 3. Let y 3 be the third amber

neighbor of x 2 , and so N A (x 2 ) = { v 2 , y 2 , y 3 } . Since there is no amber 4-cycle, we note that y 1 	 = y 3 . 

If v 2 has amber degree 2, then letting R = { v , v 3 , x 1 , y 2 } , the six vertices in { v , v 1 , v 2 , v 3 , x 1 , y 2 } are colored cyan, while the

vertex x 2 ∈ B ′ 
1 

∪ C ′ and the vertices x 3 , y 1 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ , implying that ξ (R ) ≥ 6 × 57 , 111 + 16 , 148 + 2 × 15 , 185 > 90 , 0 0 0 | R | ,
a contradiction. Hence, v 2 has amber degree 3. Let x ′ be the amber neighbor of v 2 in X different from x 2 , and let y 4 be an
2 
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amber neighbor of x ′ 
2 

different from v 2 . Further, we choose y 4 , if possible, to be distinct from y 1 . Since there is no amber

4-cycle, we note that y 4 	 = y 2 and y 4 	 = y 3 . 

Suppose that y 4 = x 3 , that is, x ′ 2 x 3 is an edge. Since no vertex of degree 2 in G [ A ] belong to an amber 5-cycle, we note that

v 3 has amber degree 3. Let x ′ 
3 

be the amber neighbor of v 3 in X different from x 3 . Letting R = { v 3 , x 1 , x ′ 2 , x 3 , x ′ 3 , y 2 } (with

v 3 and x ′ 
3 

paired, x 1 and y 2 paired, and x ′ 
2 

and x 3 paired), the nine vertices in N A [ v ] ∪ { x 1 , x ′ 2 , x 3 , x ′ 3 , y 2 } are colored cyan

in G S ′ , while the vertices x 2 ∈ B ′ 1 ∪ C ′ and y 1 ∈ B ′ 2 ∪ B ′ 1 ∪ C ′ , implying that ξ (R ) ≥ 9 × 57 , 111 + 15 , 185 + 16 , 148 = 545 , 332 >

540 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, y 4 	 = x 3 . This implies that X is an independent set. 

Suppose that y 1 	 = y 4 . Letting R = { v 3 , x 1 , x ′ 2 , x 3 , y 2 , y 4 } (with v 3 and x 3 paired, x 1 and y 2 paired, and x ′ 
2 

and y 4 paired), the

nine vertices in N A [ v ] ∪ { x 1 , x ′ 2 , x 3 , y 2 , y 4 } are colored cyan in G S ′ , while the vertex x 2 ∈ B ′ 1 ∪ C ′ and the vertex y 1 ∈ B ′ 2 ∪ B ′ 1 ∪
 

′ , implying once again that ξ (R ) ≥ 9 × 57 , 111 + 15 , 185 + 16 , 148 > 90 , 0 0 0 | R | , a contradiction. Hence, y 1 = y 4 , implying that

the vertex x ′ 
2 

has amber degree 2, where v 2 and y 1 are the two (amber) neighbors of x ′ 
2 
. However, interchanging the roles of

x 2 and x ′ 
2 
, and taking the 6-cycle C v to be the cycle vv 1 x 1 y 1 x ′ 2 v 2 v , the vertex x ′ 

2 
has amber degree 3, a contradiction. ( �) 

Claim 1.11. A vertex of degree 3 in G [ A ] has at most one neighbor of degree 2 in G [ A ] . 

Proof. Suppose that v is a vertex of degree 3 in the induced graph G [ A ] . Suppose, to the contrary, that at least two neighbors

of v have degree 2 in G [ A ] . Let v 1 , v 2 , v 3 be the three amber neighbors of v , where v 1 and v 2 have degree 2 in G [ A ] . Since

there is no amber 3-cycle, the set N A (v ) = { v 1 , v 2 , v 3 } is an independent set. Let X = ∂(N A [ v ]) be the boundary of the set

N A [ v ] in the amber graph G [ A ] . Let x i be an (amber) neighbor of v i that belongs to X for i ∈ [3] . Since there is no amber

4-cycle, no two neighbors of v in G [ A ] have a common neighbor in X . Thus, x 1 , x 2 , x 3 are distinct. By supposition, the vertices

x 1 and x 2 are the unique neighbors of v 1 and v 2 , respectively, in X . By Claim 1.10 , and since there is no amber 5-cycle with

an amber vertex of amber degree 2, the set X is an independent set. 

By Claim 1.9 , the vertices x 1 and x 2 have degree 3 in G [ A ] . Let y i and y ′ 
i 

be the two amber neighbors of x i different from

v i for i ∈ [2] . By Claim 1.10 , the vertices y 1 , y 
′ 
1 
, y 2 , y 

′ 
2 

are distinct. Letting R = { v 3 , x 1 , x 2 , x 3 , y 1 , y 2 } (with v and v 3 paired,

and x i and y i paired for i ∈ [2] ), the nine vertices in N A [ v ] ∪ { x 1 , x 2 , x 3 , y 1 , y 2 } are colored cyan, while the vertices y ′ 
1 
, y ′ 

2 
∈

B ′ 2 ∪ B ′ 1 ∪ C ′ , implying that ξ (R ) ≥ 9 × 57 , 111 + 2 × 15 , 185 = 544 , 369 > 90 , 0 0 0 | R | , a contradiction. �

Claim 1.12. If a component in the amber graph G [ A ] is different from a path P 1 or P 2 , then it has minimum degree 2 and

maximum degree 3. 

Proof. Suppose that C is a component in the amber graph G [ A ] distinct from a path P 1 or P 2 . By Claim 1.1 , the component

has order at least 4 and minimum degree at least 2. By Claim 1.9 , no two adjacent vertices in C both have (amber)

degree 2. At least one vertex of C therefore has degree 3. Suppose that C is 3-regular. In this case, we choose the set

R to be a minimum PD-set in G [ A ] . By Theorem 2 , we have | R | ≤ 3 
5 | A | . In the colored graph G S ′ , all vertices are colored

cyan. In particular, all vertices of A are colored cyan in G S ′ , implying that ξ (R ) ≥ 57 , 111 × | A | ≥ 57 , 111 × 5 
3 | R | = 95185 | R | >

90 , 0 0 0 | R | , a contradiction. Hence, at least one vertex in the component C has degree 2. �

Claim 1.13. Every component in the amber graph G [ A ] is a path P 1 or P 2 . 

Proof. Let C be a component in the amber graph G [ A ] , and suppose that C 	 = P 1 and C 	 = P 2 . By Claim 1.12 , the amber com-

ponent C has minimum degree 2 and maximum degree 3. Hence, there exists a vertex v of (amber) degree 3 in C that has

a neighbor of (amber) degree 2 in C. Let v 1 , v 2 , v 3 be the three amber neighbors of v , where v 1 has degree 2 in C. By Claim

1.11 , both v 2 and v 3 have degree 3 in C. Recall that there is no amber 3- or 4-cycle in G . In particular, every two amber

vertices have at most one amber vertex in common. 

Let X = { x 1 , x 2 , . . . , x 5 } be the set of amber vertices different from v that have a neighbor in N A (v ) , where x 1 is the

neighbor of v 1 in X , and x 2 i and x 2 i +1 are the two neighbors of v i in X for i ∈ { 2 , 3 } . By Claim 1.10 , the vertex v 1 does not

belong to an amber 5-cycle, and so the vertex x 1 has no neighbor in X . By Claim 1.9 , the vertex x 1 has degree 3 in C. Let

y 1 and y 2 be the two neighbors of x 1 in C different from v 1 . By Claim 1.11 , the vertices y 1 and y 2 have degree 3 in C. Let

z 2 i −1 and z 2 i are the two neighbors of y i different from x i for i ∈ [2] . Since there is no amber 3- or 4-cycle, the vertices

y 1 , y 2 , z 1 , z 2 , z 3 , z 4 are distinct. Let Z = { z 1 , z 2 , z 3 , z 4 } . By Claim 1.10 , the vertex v 1 does not belong to a 5- or 6-cycle in the

component C, implying that X ∩ ({ y 1 , y 2 } ∪ Z) = ∅ . 
Since there is no amber 3- or 4-cycle in G , there are at most two edges in G [ X] . We may assume that the only possibly

edges joining vertices of X are x 2 x 5 and x 3 x 4 . If x 2 x 5 is an edge, then since no vertex of amber degree 2 belongs to an amber

5-cycle, both x 2 and x 5 have amber degree 3. Similarly, if x 3 x 4 is an edge, then both x 3 and x 4 have amber degree 3. Let

w i be an amber neighbor of x i that does not belong to the set N A (v ) ∩ X for i ∈ { 2 , 3 , 4 , 5 } . Recall that no vertex of amber

degree 2 belongs to an amber 6-cycle. We can therefore choose the vertices w 2 , w 3 , w 4 , w 5 so that w 2 	 = w 5 and w 3 	 = w 4 .

Let R = { w 2 , w 5 } ∪ { w 3 , w 4 } . Possibly, A ⊆ Z. 

Suppose that at least one vertex of A does not belong to the set { z 1 , z 2 } . We may assume that w 3 / ∈ { z 1 , z 2 } .
Let R = { v 2 , v 3 , x 1 , x 3 , x 4 , y 1 } (with x 1 and y 1 paired, v 2 and x 3 paired, and v 3 and x 4 paired). The eight vertices

in N A [ v ] ∪ { x 1 , x 3 , x 4 , y 1 } are colored cyan in G S ′ , while the six vertices x 2 , x 5 , y 2 , w 3 , z 1 , z 2 ∈ B ′ 
2 

∪ B ′ 
1 

∪ C ′ , implying that

ξ (R ) ≥ 8 × 57 , 111 + 6 × 15 , 185 = 547 , 998 > 540 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, A ⊆ { z 1 , z 2 } . However letting R =
{ v 2 , v 3 , x 1 , x 3 , x 4 , y 2 } (where now x 1 and y 2 are paired), analogous arguments show that A ⊆ { z 3 , z 4 } . Since { z 1 , z 2 } ∩ { z 3 , z 4 } =
∅ , this gives a contradiction. �
9 
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By Claim 1.13 , every amber component is either a path P 1 or a path P 2 . 

Claim 1.14. No amber component is a path P 2 . 

Proof. Suppose that there exists an amber component C that is a path P 2 . Let V (C) = { v 1 , v 2 } . The number of amber and

beige neighbors of an amber vertex in G S is precisely its degree in G , which is at least 3. Hence, each vertex of C has at least

two beige neighbors in G S . 

Suppose that there exists a beige vertex w that is adjacent to no amber vertex different from v 1 and v 2 . Necessarily, w

is adjacent to at least one of v 1 and v 2 . We may assume that v 2 w is an edge. Let w 2 be a beige neighbor of v 2 different

from w , and let R = { v 2 , w 2 } . The vertices v 1 , v 2 , w 1 , w 2 are all colored cyan in G S ′ , implying that ξ (R ) ≥ 2 × 57 , 111 + 2 ×
40 , 963 = 196 , 148 > 90 , 0 0 0 | R | , a contradiction. Hence, every beige vertex that has a neighbor in an amber P 2 -component

has a neighbor in an amber component different from that component. 

Suppose that v 1 and v 2 have a common (beige) neighbor w . The vertex w has a neighbor, say v , in an amber component,

 

′ say, different from C. We note that w ∈ B 3 . Let R = { v , w } . The vertices v 1 , v 2 , v , w are all colored cyan in G S ′ , implying

that ξ (R ) ≥ 3 × 57 , 111 + 42 , 889 = 214 , 222 > 90 , 0 0 0 | R | , a contradiction. Hence, there is no beige vertex adjacent to both

(amber) vertices belonging to the same P 2 -component in the amber graph. Let u i and w i be two beige neighbors of v i for

i ∈ [2] . The vertices u 1 , u 2 , w 1 , w 2 are distinct. 

Suppose that a beige neighbor of a vertex in C is adjacent to a vertex, say v , from an amber P 1 -component. We may

assume that w 1 is such a vertex. Letting R = { v 1 , w 1 } , the vertices v , v 1 , v 2 , w 1 are colored cyan in G S ′ , implying that ξ (R ) ≥
3 × 57 , 111 + 41 , 926 = 213 , 259 > 90 , 0 0 0 | R | , a contradiction. Hence, every beige neighbor of an amber P 2 -component has all

its amber neighbors belonging to amber P 2 -components. 

Suppose that a beige neighbor of v 1 and a beige neighbor of v 2 have neighbors in different amber P 2 -components. We

may assume that w i has a neighbor in an amber P 2 -component C i for i ∈ [2] , where the components C, C 1 , C 2 are distinct. Let

x i be the neighbor of w i that belongs to the P 2 -component C i for i ∈ [2] , and let R = { w 1 , w 2 , x 1 , x 2 } (with w i and x i paired

for i ∈ [2] ). In the graph G S ′ , all six (amber) vertices in the components C, C 1 , C 2 are colored cyan, as are the (beige) vertices

w 1 and w 2 , implying that ξ (R ) ≥ 6 × 57 , 111 + 2 × 41 , 926 = 426 , 518 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. 

We deduce, therefore, that every amber neighbor of a beige vertex from the set { u 1 , u 2 , w 1 , w 2 } outside the component

belongs to the same amber P 2 -component, say C ′ . Let V (C ′ ) = { v ′ 
1 
, v ′ 

2 
} . Thus, V (C) ∩ V (C ′ ) = ∅ , and every beige neighbor of

a vertex in C or C ′ belongs to the set { u 1 , u 2 , w 1 , w 2 } . Further, every amber neighbor of a vertex in the set { u 1 , u 2 , w 1 , w 2 }
belongs to C or C ′ . We now let R = { v 1 , v 2 , v ′ 1 , v ′ 2 } . In the colored graph G S ′ , all vertices in V (C) ∪ V (C ′ ) ∪ { u 1 , u 2 , w 1 , w 2 } are

colored cyan, implying that ξ (R ) ≥ 4 × 57 , 111 + 4 × 41 , 926 = 396 , 148 > 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. �

By Claims 1.13 and 1.14 , every amber component is a path P 1 . Every amber vertex therefore has three or more beige

neighbors. 

Claim 1.15. Every vertex in B has exactly two amber neighbors. 

Proof. Suppose a vertex w ∈ B has three or more amber neighbors. Since �A (B ) ≤ 3 , we have d A (w ) = �A (B ) = 3 . Let

v 1 , v 2 , v 3 be the three amber neighbors of w in G S . Letting R = { w, v 1 } , the vertex w and its three amber neighbors are

colored cyan in G S ′ , implying that ξ (R ) ≥ 3 × 57 , 111 + 42 , 889 = 214 , 222 > 90 , 0 0 0 | R | , a contradiction. Hence, every vertex

in B has at most two amber neighbors. Recall that every beige vertex has at least one amber neighbor. 

Suppose a beige vertex w 1 has exactly one amber neighbor, say v 1 . If all (beige) neighbors of v 1 have only v 1 as their

only amber neighbor, then let R = { v 1 , w 1 } . In this case, v 1 and all its beige neighbors are colored cyan in G S ′ , implying that

ξ (R ) ≥ 57 , 111 + 3 × 40 , 963 = 180 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. Hence, there is a beige neighbor of v 1 , say w , that has

two amber neighbors. Let v 2 be the amber neighbor of w distinct from v 1 . Letting R = { v 1 , w } , the four vertices v 1 , v 2 , w, w 1 

are colored cyan in G S ′ , implying that ξ (R ) ≥ 2 × 57 , 111 + 40 , 963 + 41 , 926 = 197 , 111 > 90 , 0 0 0 | R | , a contradiction. �

By Claim 1.15 , if a vertex belongs to B , then it has exactly two amber neighbors. 

Claim 1.16. Every two amber vertices have at most one common (beige) neighbor in G S . 

Proof. Suppose that two amber vertices v 1 and v 2 have two common (beige) neighbors, say w 1 and w 2 . Letting R = { v 1 , w 1 } ,
the vertices v 1 , v 2 , w 1 , w 2 are colored cyan in G S ′ , implying that ξ (R ) ≥ 2 × 57 , 111 + 2 × 41 , 926 = 198 , 074 > 90 , 0 0 0 | R | , a

contradiction. �

We now return to the proof of Claim 1 one final time. By our earlier observations, every beige vertex has exactly two

amber neighbors, while every amber vertex has at least three beige neighbors. By Claim 1.16 , there is no 4-cycle containing

two amber vertices. Let w 1 ∈ B and let v 1 and v 2 be the two amber neighbors of w 1 . Let w 2 be a beige neighbor of v 2 
different from w 1 . Let v 3 be the amber neighbor of w 2 different from v 2 . By Claim 1.16 , we note that v 1 	 = v 3 . Let w 3 and

w 

′ 
3 be two beige neighbors of v 3 different from w 2 . By Claim 1.16 , at most one neighbor of v 3 is adjacent to v 1 . Let w 3 be

a neighbor of v 3 different from w 2 that is not adjacent to v 1 . Let v 4 be the amber neighbor of w 3 different from v 3 . By our

earlier observations, the vertices v 1 , v 2 , v 3 , v 4 , w 1 , w 2 , w 3 are distinct and P : v 1 w 1 v 2 w 2 v 3 w 3 v 4 is an induced path on seven

vertices in G S starting and ending at amber vertices, and alternating between amber and beige vertices. 

Let R = { v 2 , v 4 , w 1 , w 3 } (with v 2 and w 1 paired, and v 4 and w 3 paired). All vertices on the path P are colored cyan in G S ′ ,
as are the three beige vertices w , w , w . Moreover, since P is an induced path and every amber vertex has at least three 
1 2 3 
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beige neighbors, at least six edges join vertices on the path P to beige vertices that do not belong to the set { w 1 , w 2 , w 3 } .
These edges when removed decrease the weight by at least 6 × 963 when constructing G S ′ from G S . Therefore, ξ (R ) ≥ 4 ×
57 , 111 + 3 × 41 , 926 + 6 × 963 = 360 , 0 0 0 = 90 , 0 0 0 | R | , a contradiction. This completes the proof of Claim 1 . ( �) 

We now return to the proof of Theorem 3 . By Claim 1 , if w(G S ) > 0 , then there is a S-desirable set in the graph G . Let S 0 =
∅ and let G 0 = G S 0 

, and so G 0 is the graph G with all vertices colored amber. We note that V (G 0 ) = A and w(G 0 ) = 57 , 111 n .

By Claim 1 , there exists a S 0 -desirable set R 1 , and so letting S 1 = S 0 ∪ R 1 = R 1 and G 1 = G S 1 
, we have w(G 0 ) − w(G 1 ) ≥

90 , 0 0 0 | R 1 | , that is, 

w(G 1 ) ≤ w(G 0 ) − 90 , 0 0 0 | R 1 | . 
If w(G 1 ) > 0 , then there is a S 1 -desirable set R 2 by Claim 1 , and so letting S 2 = R 1 ∪ R 2 and G 2 = G S 2 

, we have w(G 1 ) −
w(G 2 ) ≥ 90 , 0 0 0 | R 2 | , that is, 

w(G 2 ) ≤ w(G 1 ) − 90 , 0 0 0 | R 2 | . 
If w(G 2 ) > 0 , then we repeat the process, thereby obtaining a sequence of colored graphs G 0 , G 1 , . . . , G k and a PD-set

S = R 1 ∪ · · · ∪ R k of G such that 

0 = w(G k ) ≤ w(G k −1 ) − 90 , 0 0 0 | R k | 

≤ w(G 0 ) − 90 , 0 0 0 

k ∑ 

i =1 

| R i | 
= 57111 n − 90 , 0 0 0 | S| . 

Consequently, 

γpr (G ) ≤ | S| ≤ 57 , 111 

90 , 0 0 0 

n = 

19 , 037 

30 , 0 0 0 

n < 0 . 634567 n. �

5. Concluding remarks 

If G is a 3-regular graph of order n , then by the result (see Theorem 2 ) of Chen et al. [2] in 2007, we have γpr (G ) ≤ 3 
5 n .

This bound is best possible, and is achieved by the Petersen graph. Given the considerable work to date on the problem, it

is evident that determining a tight upper bound on the paired domination of a non-regular graph with minimum degree 

at least 3 is more challenging than in the regular case. In this paper, we prove that in this non-regular case we have

γpr (G ) ≤ 19037 
30 0 0 0 n < 0 . 634567 n . However, it is unlikely that this bound is achievable. It would be interesting to close the gap

between this current best known bound of γpr (G ) ≤ 19037 
30 0 0 0 n and the best possible general upper bound we can hope for,

namely γpr (G ) ≤ 0 . 6 n (which is achieved by the Petersen graph). 
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