
Applied Mathematics and Computation 421 (2022) 126939 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Proper distinguishing arc-colourings of symmetric digraphs 

Rafał Kalinowski ∗, Monika Pil ́sniak 

AGH University of Science and Technology, al. Mickiewicza 30, 30–059 Krakow, Poland 

a r t i c l e i n f o 

Article history: 

Received 8 July 2021 

Revised 3 January 2022 

Accepted 8 January 2022 

MSC: 

05C25 

05E18 

68R10 

Keywords: 

Automorphism 

Symmetry breaking 

Distinguishing chromatic index 

a b s t r a c t 

A symmetric digraph 
←→ 

G arises from a simple graph G by substituting each edge u v by a 

pair of opposite arcs 
−→ 

u v , −→ v u . An arc-colouring c of 
←→ 

G is distinguishing if the only automor- 

phism of 
←→ 

G preserving c is the identity. We study four types of proper arc-colourings of ←→ 

G corresponding to four definitions of adjacency of arcs. For each type, we investigate the 

distinguishing chromatic index of 
←→ 

G , i.e. the least number of colours in a distinguishing 

proper colouring of 
←→ 

G . We also determine tight bounds for chromatic indices of 
←→ 

G , i.e. 

for the least numbers of colours in each type of proper colourings. Colourings of arcs of 

a symmetric digraph 
←→ 

G are equivalent to colourings of halfedges of the graph G , which 

have applications in computer science. 
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1. Introduction 

We use standard graph theory notation. By [ k ] we denote the set { 1 , . . . , k } of k smallest positive integers. Throughout,

we consider only connected graphs. 

A colouring c of a graph is called distinguishing (or asymmetric ) if the only automorphism preserving c is the identity. 

The first papers on distinguishing vertex-colourings were published by Babai [2] in 1977 and Cameron [4] in 1986. However,

a special interest in these issues began with a seminal paper [1] of Albertson and Collins in 1996. They introduced the

definition of the distinguishing number of a graph as the least number of colours in a general, i.e. not necessarily proper,

distinguishing vertex-colouring. Their paper spawned much more than a hundred papers on symmetry breaking in graphs 

by various types of colourings. In 2006, Collins and Trenk in [5] initiated investigations of proper distinguishing vertex- 

colourings. They defined the chromatic distinguishing number χD (G ) of a graph G as the least number of colours in a proper

distinguishing vertex-colouring of G . 

In 2015, Kalinowski and Pil ́sniak in [11] introduced the distinguishing index D 

′ (G ) of a graph G as the least number of

colours in a general distinguishing edge-colouring of G , not necessarily proper. In the same paper, its counterpart for proper

colourings called the chromatic distinguishing index , denoted by χ ′ 
D 
(G ) was also defined. Clearly, both invariants are defined

for any connected graph except for K 2 . 

Total distinguishing colourings, both general and proper, were later studied by Kalinowski, Pil ́sniak and Wo ́zniak in [14] .

In the present paper, we initiate investigations of proper distinguishing arc-colourings of symmetric digraphs. By 
←→ 

G we 

denote a symmetric digraph obtained from a simple graph G by replacing each edge u v by a pair of opposite arcs 
−→ 

u v , −→ v u .
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A definition of proper arc-colourings of a digraph depends on a definition of adjacent arcs. There are four digraphs A i , i =
1 , . . . , 4 , with two arcs having at least one vertex in common: 

• 2-cycle A 1 with arcs 
−→ 

u v , −→ v u , 
• 2-path A 2 with arcs 

−→ 

u v , −→ v w , 

• source A 3 with arcs 
−→ 

u v , −→ 

uw , 

• sink A 4 with arcs 
−→ 

u v , −→ 

w v . Thus, there are 15 possible definitions of a proper colouring of a digraph since there are 15

possible definitions of adjacency of arcs corresponding to non-empty forbidden monochromatic subsets of the set of the 

four digraphs A i , i = 1 , . . . , 4 . We denote by χ ′ 
i 
( 
←→ 

G ) the chromatic index of a symmetric digraph 

←→ 

G , i.e. the least number

of colours in a proper arc-colouring of 
←→ 

G , when “proper” means “without monochromatic digraph A i ”. We also use the

notation χ ′ 
i, j 

( 
←→ 

G ) , χ ′ 
i, j,k 

( 
←→ 

G ) , χ ′ 
i, j,k,l 

( 
←→ 

G ) if more monochromatic two-arc digraphs are forbidden. 

It has to be noted that so far, only two types of proper arc-colourings of digraphs were studied in literature. An arc-

colouring of a digraph is called proper of type I if there are neither monochromatic 2-cycles nor 2-paths. Poljak and Rödl

[18] proved a notable result stating that 

χ ′ 
1 , 2 ( 

←→ 

G ) = min 

{
k : χ(G ) ≤

(
k 

� k/ 2 � 
)}

for every graph G . An arc-coloring is proper of type II if there are neither monochromatic sources nor sinks. It is well known

that χ ′ 
3 , 4 

( 
←→ 

G ) = �(G ) (cf. [15,20] ). 

Determining chromatic indices corresponding other types of proper arc-colourings is sometimes easy, but not al- 

ways. For instance, it can be easily seen, using the correspondence between colourings of the symmetric digraph 

←→ 

G 

and the subdivision 

̂ G described in the next section, that the chromatic index χ ′ 
1 , 2 , 3 ( 

←→ 

G ) equals the incidence chro- 

matic number of the graph G , introduced by Brualdi and Massey [3] in 1993. No general sharp upper bound for the

incidence chromatic number is known. For the current state of art, see the homepage of Éric Sopena [19] . Similarly,

χ ′ 
D i 

( 
←→ 

G ) , χ ′ 
D i, j 

( 
←→ 

G ) , χ ′ 
D i, j,k 

( 
←→ 

G ) , χ ′ 
D i, j,k,l 

( 
←→ 

G ) stands for the chromatic distinguishing index of 
←→ 

G , i.e. the least number of

colours in a distinguishing proper arc-colouring, where the indicated two-arc digraphs cannot be monochromatic. 

In this paper, we determine the values of χ ′ 
D 1 

( 
←→ 

G ) , χ ′ 
D 3 

( 
←→ 

G ) , χ ′ 
D 4 

( 
←→ 

G ) , χ ′ 
D 1 , 3 , 4 

( 
←→ 

G ) . In each case, we also determine the

corresponding chromatic index of 
←→ 

G . We settle the other types of proper arc-colourings in another papers [12,13] . 

2. Preliminaries 

Let us first show a correspondence between arc-colourings of a symmetric digraph 

←→ 

G and edge-colourings of a subdi- 

vision of the graph G . By ̂ G we denote a subdivision of G , i.e. a graph obtained by replacing each edge u v of G by a path

ux v of length two. A colouring of ̂ G can be also described as a colouring of the two halfedges of each edge of G , and the

problems we consider here have applications in computer science, where sometimes it is necessary to break all non-trivial 

symmetries of networks of anonymous ports or nodes by colouring endings of edges (cf. [6,7] ). 

Clearly, Aut ( 
←→ 

G ) = Aut (G ) . If G is a cycle C n , then 

̂ G = C 2 n . Hence, Aut (C n ) is the dihedral group of order 2 n , while Aut ( ̂  C n )

is a dihedral group of order 4 n , so Aut (C n ) is isomorphic to a proper subgroup of Aut ( ̂  C n ) . 

Proposition 1. If a connected graph G is not a cycle, then 

Aut ( 
←→ 

G ) ∼= 

Aut ( ̂  G ) ∼= 

Aut (G ) . 

Proof. Clearly, Aut (G ) is isomorphic to a subgroup of Aut ( ̂  G ) . Let ϕ ∈ Aut ( ̂  G ) . If G is not a cycle, then either G is a path or

�(G ) ≥ 3 . Then 

̂ G contains a vertex v 0 of degree d(v 0 ) � = 2 . Hence, ϕ(v 0 ) ∈ V (G ) . Obviously, a vertex u ∈ V ( ̂  G ) belongs to

 (G ) if and only if the distance between u and v 0 is even. Every automorphism preserves the distance between vertices, so

each vertex of G is mapped by ϕ into a vertex of G . That is, the restriction of ϕ to V (G ) is an automorphism of G . �

We apply the following one-to-one correspondence between arcs of 
←→ 

G and edges of ̂ G . Let u v be an edge of G , and let

x ∈ V ( ̂  G ) \ V (G ) be adjacent to u and v in 

̂ G . Then the arc 
−→ 

u v corresponds to the edge ux . Given an arc-colouring c of 
←→ 

G ,

we define the edge colouring ̂  c of ̂ G by setting ̂  c (ux ) = c( 
−→ 

u v ) . In view of Proposition 1 , the following lemma is obvious, and

it clearly holds also for cycles. 

Lemma 2. An arc-colouring c of 
←→ 

G is distinguishing if and only if the corresponding edge-colouring ̂  c is a distinguishing colour- 

ing of ̂ G . �

Given an arc-colouring c of 
←→ 

G , we say that a vertex v ∈ V (G ) is fixed if ϕ(v ) = v for every automorphism of 
←→ 

G preserv-

ing c. The following observation is very useful in some cases of proper arc-colourings. 

Lemma 3. Let c be an arc-colouring of 
←→ 

G without monochromatic sources or sinks. If there exists a fixed vertex, then c is a

distinguishing colouring. 
2 
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Proof. Suppose that there are no monochromatic sources in a colouring c. Let v be a fixed vertex. Every arc outgoing from

v has a distinct colour, and therefore each neighbour of v is also fixed. Then the claim follows by induction of the distance

from v . 
We argue analogously, if monochromatic sinks are forbidden. �

In the next section we use some known results concerning the distinguishing index of simple graphs. 

Theorem 4. ( [11] ) If G is a connected graph of order n ≥ 3 , then 

D 

′ (G ) ≤ �(G ) 

unless G is a cycle of length at most five. 

A tree is symmetric (resp. bisymmetric ) if it has a central vertex v c (resp. a central edge e c ), all leaves are of the same

distance from v c (resp. e c ) and every vertex that is not a leaf has the same degree. 

Theorem 5. ( [17] ) Let G be a connected graph with �(G ) ≥ 3 . Then D 

′ (G ) ≤ �(G ) − 1 unless G is either a symmetric or bisym-

metric tree, or G is K 4 or K 3 , 3 . 

Theorem 6. ( [10] ) If G is a connected graph without pendant edges, then 

D 

′ (G ) ≤
⌈ √ 

�(G ) 
⌉ 

+ 1 . 

3. Proper arc-colourings 

3.1. Forbidden monochromatic 2-cycles 

Trivially, χ ′ 
1 
( 
←→ 

G ) = 2 by putting the same pair of distinct colours on each 2-cycle. However, χ ′ 
D 1 

( 
←→ 

G ) can be arbitrarily

large. 

Proposition 7. For every symmetric tree T , 

χ ′ 
D 1 

( 
←→ 

T ) = min { k : �(T ) ≤ k (k − 1) } . 
Proof. Let T be a symmetric tree with a central vertex v 0 . By Theorem 5 , D 

′ (T ) = �(T ) . Let c : E(T ) → [�(T )] be a dis-

tinguishing colouring. Denote k 0 = min { k : �(T ) ≤ k (k − 1) } , and K = [ k 0 ] 
2 \ { ( j, j) : j ∈ [ k 0 ] } . Thus, there is an injection

ι : [�(T )] → K. 

Let e = u v be any edge of T such that the vertex u lies on the path between v 0 and v . If ι(c(u v )) = (i, j) , then we put

colour i on the arc 
−→ 

u v , and colour j on the opposite arc 
−→ v u to obtain an arc-colouring c ′ of 

←→ 

T . The colouring c ′ is obviously

distinguishing since c was a distinguishing edge-colouring of T . Hence, χ ′ 
D 1 

( 
←→ 

T ) ≤ k 0 . 

On the other hand, suppose that there exists a distinguishing arc-colouring c ′ of 
←→ 

T with less that k 0 colours. Every edge

u v of T , such that u lies on a path from v 0 to v , can be coloured by a pair (i, j) , where i = c ′ ( −→ 

u v ) and j = c ′ ( −→ v u ) . This yields

a distinguishing colouring of T with less than �(T ) colours. This contradicts the fact that D 

′ (T ) = �(T ) . �

Here is an upper bound for χ ′ 
D 1 

( 
←→ 

G ) with respect to the maximum degree �(G ) of the underlying graph G . 

Proposition 8. For every connected graph G , 

χ ′ 
D 1 

( 
←→ 

G ) ≤  
√ 

�(G ) � + 1 . 

Proof. Suppose first that the graph is a tree T . Then by Theorem 4 , D 

′ (T ) ≤ �(T ) , whence D 

′ (T ) ≤ k (k − 1) for k =
 √ 

�(T ) � + 1 . If the tree T has a central vertex, then, using the same method as in the proof of Proposition 7 , we con-

struct a distinguishing arc-colouring of 
←→ 

T with at most  √ 

�(T ) � + 1 colours. If the tree T has a central edge e 0 = u 0 v 0 ,
then we colour the pair of arcs between u 0 and v 0 with a pair of distinct colours, thus fixing both vertices u 0 , v 0 . Each of

the two subtrees of T − e has the distinguishing number less than �(T ) , and we can analogously construct a distinguishing

arc-colouring of 
←→ 

T with  √ 

�(T ) � + 1 colours. 

Now, consider any connected graph G with a cycle. Consider the maximal subgraph G 

′ of G with δ(G 

′ ) ≥ 2 , i.e. the

subgraph G 

′ obtained by deleting all pendant subtrees of G . By Theorem 6 , there exists a distinguishing colouring c of G 

′ 
with  √ 

�(G ) � + 1 colours. Since  √ 

�(G ) � + 1 ≥ 3 , we have ( √ 

�(G ) � + 1 

2 

)
≥  

√ 

�(G ) � + 1 , 

hence to each colour in c we can assign a distinct 2-element subset { i, j} of the set of integers [  √ 

�(G ) � + 1] . For each

edge u v of G 

′ , we colour the pair of opposite arcs 
−→ 

u v , −→ v u with two pairs (i, j) , ( j, i ) , where { i, j} is the set assigned to c(u v ) .
This way, we obtain an arc-colouring c ′ of G 

′ such that V (G 

′ ) is fixed pointwise by every automorphism of G preserving c ′ . 
3 
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To complete the proof, it suffices to extend the colouring c ′ to a distinguishing colouring for every maximal pendant

subtree T of G . As we have already shown at the beginning of the proof, this can be done with  √ 

�(G ) � + 1 colours. �

The bound in Proposition 8 is tight for infinitely many values of �(G ) , since by Proposition 7 , it is achieved by infinitely

many symmetric trees with maximum degree �. Indeed, it is easy to check that 

min { k : � ≤ k (k − 1) } ∈ { √ 

�� ,  √ 

�� + 1 } , 
and both values are achieved with asymptotically equal frequency, as � tends to infinity. In view of Theorem 4 , we suppose

that the following generalization of Proposition 7 holds. 

Conjecture 9. For every connected graph G , 

χ ′ 
D 1 

( 
←→ 

G ) ≤ min 

{
k : D 

′ (G ) ≤ k (k − 1) 
}
. 

For D 

′ (G ) = 2 , this conjecture, if true, would imply that every graph with D 

′ (G ) ≤ 2 has an asymmetric orientation, that

is, one can substitute each edge of G with an arc such that the resulting oriented graph had trivial automorphism group.

Indeed, we would then have χ ′ 
D 1 

( 
←→ 

G ) = 2 , and the arcs in one colour would create an asymmetric orientation of G . Let us

mention that the problem of the existence of asymmetric orientations for some classes of graphs was investigated by Harary 

et al. [8,9] and by Meslem and Sopena [16] . Conjecture 9 is true for bipartite graphs and for traceable graphs. Recall that

Pil ́sniak [17] proved that D 

′ (G ) ≤ 2 for every traceable graph G of order n ≥ 7 , and D 

′ (G ) ≤ 3 for graphs of smaller orders. 

Proposition 10. If G is a connected bipartite graph, then 

χ ′ 
D 1 

( 
←→ 

G ) ≤ min 

{
k : D 

′ (G ) ≤ k (k − 1) 
}
. 

Proof. Let A and B be two independent sets of a bipartition of the graph G , and let c be a distinguishing edge-colouring of

G with the set [ D 

′ (G )] of colours. Denote k 0 = min { k : D 

′ (G ) ≤ k (k − 1) } . Let 

ι : [ D 

′ (G )] −→ [ k 0 ] 
2 \ { ( j, j) : j ∈ [ k 0 ] } 

be an injection. 

For every edge u v of G with u ∈ A and v ∈ B , we colour the two arcs between u and v as follows. If ι(c(u v )) = (i, j) , then

we colour the arc 
−→ 

u v with i and the arc 
−→ v u with j. Let ϕ be any automorphism of 

←→ 

G preserving our colouring. Then ϕ
also preserves the colouring c of G , unless there exist two edges u v , u ′ v ′ such that ι(c(u v )) = (i, j) and ι(c(u ′ v ′ )) = ( j, i ) ,

ϕ(u ) = v ′ and ϕ(v ) = u ′ . However, since G is bipartite and connected, then either all vertices of A are mapped by ϕ into

A or all of them are mapped into B . Therefore, the above situation is not possible. Hence, ϕ is the identity automorphism.

Consequently, χ ′ 
D 1 

( 
←→ 

G ) ≤ k 0 (k 0 − 1) . �

Proposition 11. If G is a traceable graph, then 

χ ′ 
D 1 

( 
←→ 

G ) ≤ 2 . 

Proof. Let P = v 1 · · · v n be a Hamilton path of G . For i < j, we colour each arc 
−−→ v i v j of 

←→ 

G with colour 1, and each arc 
−−→v j v i 

with colour 2. Then v 1 is the only vertex with all outgoing arcs coloured with 1, so it is fixed. Moreover, P is the only

directed Hamilton path of 
←→ 

G coloured with 1, so each vertex of P , and thus each of 
←→ 

G , is also fixed. �

3.2. Forbidden monochromatic either sources or sinks 

We begin with determining the chromatic distinguishing index of 
←→ 

G in each of the two cases. 

Proposition 12. If G is a connected graph, then 

χ ′ 
3 ( 

←→ 

G ) = χ ′ 
4 ( 

←→ 

G ) = �(G ) . 

Proof. The subdivision 

̂ G is a bipartite graph, hence it admits a proper edge-colouring ˆ c with �( ̂  G ) = �(G ) colours, by

K ̋onig’s theorem. The corresponding arc-colouring c of 
←→ 

G does not have monochromatic sources. Hence, χ ′ 
3 ( 

←→ 

G ) = �(G ) . 

If monochromatic sinks are not allowed, then we reverse the arcs in 

←→ 

G coloured by c to obtain an arc-colouring without 

monochromatic sinks. Thus, χ ′ 
4 
( 
←→ 

G ) = �(G ) . �

Now we show that every symmetric digraph 

←→ 

G admits a proper distinguishing arc-colouring with the minimum number 

of colours, whenever G is connected. 

Theorem 13. For every connected graph G , 

χ ′ 
D 3 

( 
←→ 

G ) = χ ′ 
D 4 

( 
←→ 

G ) = �(G ) . 
4 
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Proof. Suppose first that sources cannot be monochromatic. By K ̋onig’s theorem, the subdivision 

̂ G , being a bipartite graph,

admits a proper edge-colouring ˆ c with �(G ) colours. Clearly, ˆ c need not be distinguishing. Observe that, for every vertex 

x ∈ V ( ̂  G ) \ V (G ) , both edges of ̂ G incident to x have distinct colours. However, this is not required in this type of proper

colouring, and we shall use this fact to obtain a distinguishing colouring by exchanging colours of some edges. 

We consider Kempe chains with respect to ˆ c , that is, connected components of subgraphs induced by edges coloured by 

ˆ c with two given colours. Suppose first that there exists a Kempe chain which is a cycle C . Clearly, C is of length at least

six. We exchange colours of two adjacent edges x v , v y in C, where v ∈ V (G ) , thus obtaining a colouring c. Now, v is the

only vertex adjacent in 

←→ 

G to two monochromatic 2-cycles. Hence, v is fixed by every automorphism of 
←→ 

G preserving the 

corresponding colouring c which is still proper. By Lemma 3 , c is distinguishing. 

Suppose then that every Kempe chain is a path. There always exists in 

̂ G a Kempe path of length at least three, in

particular the one containing a vertex of maximum degree, since all colours of ˆ c appear on its incident edges. Let P be

such a path with an end-vertex u ∈ V (G ) , and let v be a vertex of distance two on P . We exchange the colours of the two

edges of P incident to v . Thus v becomes a unique vertex of 
←→ 

G incident to arcs in both colours of P , one of which on

a monochromatic 2-cycle. Thus v is fixed. If P has both end-vertices in V ( ̂  G ) \ V (G ) and is of length at least six, then we

exchange the colours of the last two edges of P with a common vertex v ∈ V (G ) . For the same reason as in the previous

case, v is fixed. In both cases, we obtain a proper distinguishing colouring of 
←→ 

G , by Lemma 3 . 

Thus we are left with a situation, when all Kempe paths of ˆ c in 

̂ G are of length four and have both ends in V ( ̂  G ) \ V (G ) .

Let P = x v ywz be such a Kempe path and let u be the other neighbour of x in 

̂ G . If there is no edge incident to u coloured

with ˆ c (v y ) , then we recolour the edge xu with ˆ c (v y ) . Otherwise, if there is such an edge, say ut , then we exchange colours

of xu and ut . In both cases, we obtain a longer Kempe path, and we proceed as previously. Note that in the latter case,

the exchange of colours may create a monochromatic path of length two incident to u , but it does not matter for the next

procedure since this would be a colour different from those of P . 

If the monochromatic sinks are forbidden, then we take a distinguishing colouring of 
←→ 

G constructed above and reverse 

the arcs. �

3.3. Forbidden monochromatic 2-cycles, sources and sinks 

In this subsection, we determine both invariants χ ′ 
1 , 3 , 4 

( 
←→ 

G ) and χ ′ 
D 1 , 3 , 4 

( 
←→ 

G ) for connected graphs G . 

Theorem 14. For every connected graph G , 

�(G ) ≤ χ ′ 
1 , 3 , 4 ( 

←→ 

G ) ≤ �(G ) + 1 . 

Moreover, χ ′ 
1 , 3 , 4 

( 
←→ 

G ) = �(G ) whenever �(G ) is even. 

Proof. We add a matching M between vertices of odd degrees, thus obtaining an Eulerian multigraph G + M. We take an

Eulerian tour W and fix its orientation. Let V (G ) = { v 1 , . . . , v n } . We define a bipartite multigraph G 

′ = (X, Y, E) as follows:

X = V (G ) , Y = { v ′ 
1 
, . . . , v ′ n } and v i v ′ j ∈ E if 

−−→ v i v j is an oriented edge of W . By K ̋onig’s theorem, which is also valid for multi-

graphs, G 

′ has a proper edge-colouring with �(G 

′ ) = �(G + M) / 2 =  �(G ) / 2 � colours. The k -th colour class corresponds in

G to a subgraph H k with maximum degree at most two, for k ∈ [  �(G ) / 2 � ] . 
For each k , we fix an orientation of each component of H k (which is a cycle or a path) and colour the arcs of 

←→ 

H k according

to the fixed orientation with colour 2 k − 1 , while the opposite arcs get colour 2 k . Thus we obtain a proper colouring of 
←→
G 

with 2  �(G ) / 2 � ≤ �(G ) + 1 colours. �

For odd �, there are infinitely many graphs G with �(G ) = � and χ ′ 
1 , 3 , 4 

( 
←→ 

G ) = � + 1 . This is the case, for instance, for

a �-regular graph G having a bridge xy (clearly, such graphs exist for every odd �). Indeed, in any colouring of arcs of 
←→
G 

with � colours without monochromatic sources and sinks, each arc of 
←→ 

G belongs to a monochromatic directed cycle. The 

only possible monochromatic cycle for arcs between x and y is the 2-cycle between them. Thus, we need an extra colour to

avoid monochromatic 2-cycles. 

Theorem 15. If G is a connected graph, then 

�(G ) ≤ χ ′ 
D 1 , 3 , 4 

( 
←→ 

G ) ≤ �(G ) + 1 . 

Proof. Clearly, �(G ) ≤ χ ′ 
1 , 3 , 4 ( 

←→ 

G ) ≤ χ ′ 
D 1 , 3 , 4 

( 
←→ 

G ) . If �(G ) is even, then 

←→ 

G admits a proper colouring with �(G ) colours. We

simply put an extra colour on a certain arc. Hence, both ends of this arc are fixed. Then each vertex of 
←→ 

G is fixed, by

Lemma 3 . 

Let �(G ) be odd. We select an edge u v ∈ E(G ) which lies on a cycle C, and we join u and v by additional edge u v . When

G does not contain a cycle, i.e. G is a tree, then we earlier add an edge between two pendant vertices of G to create a cycle.

This way we get a multigraph G 1 with a double edge u v . Next, we add a matching M between vertices of odd degrees in

G to obtain an Eulerian multigraph G + M. We pick an oriented Euler tour W of G + M such that both edges between u
1 1 1 
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and v are traversed in the same direction. To see that such a tour W exists, start it with one edge from u to v , and traverse

the cycle C until we again reach v through the other edge u v . Then we continue our tour as long as possible. If we do not

complete an Euler tour this way, then we break our tour in a suitable vertex (perhaps several times) and complete it to an

Euler tour without changing the direction of edges of previous parts. 

Next, we proceed as in the proof of Theorem 14 . The bipartite multigraph G 

′ with a double edge u v ′ admits a proper

edge-colourings with  (�(G ) + 1) / 2 � colours. Thus the double edge u v ′ gets two distinct colours, say 1 and 2. We consider

the corresponding colouring of the graph G . Without loss of generality, we may assume that the edge u v gets colour 1.

Again, for k = 1 , . . . ,  �(G ) / 2 � , we fix an orientation of each component of the colour class H k and colour its arcs with

colour 2 k − 1 . The opposite arcs of 
←→ 

H k we colour with 2 k . Thus we obtain a proper arc-colouring of 
←→ 

G . Now, we take the

arc between u and v which is coloured with 2, and recolour it with 3. The colouring remains proper since the double edge

u v ′ of G 

′ got colours 1 and 2. Consequently, the pair 
−→ 

u v , −→ v u creates the only 2-cycle coloured with the pair 1,3, therefore

both u and v are fixed. By Lemma 3 , this colouring is distinguishing. �

The left-hand side equality is achieved by trees, and the right-hand side by cycles. 
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