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Abstract

Call a colouring of a graph distinguishing if the only

colour preserving automorphism is the identity. A

conjecture of Tucker states that if every automorphism

of a connected graph G moves infinitely many vertices,

then there is a distinguishing 2‐colouring. We confirm

this conjecture for graphs with maximum degree

≤Δ 5. Furthermore, using similar techniques we show

that if an infinite graph has maximum degree ≥Δ 3,

then it admits a distinguishing colouring with Δ − 1

colours. This bound is sharp.
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1 | INTRODUCTION

A distinguishing k‐colouring of a graphG V E= ( , ) is a map →c V k: {0, …, − 1} such that the
identity is the only automorphism γ with ∘c γ c= . The distinguishing number D G( ) is the
least k such that G admits a distinguishing k‐colouring. These notions were first introduced by
Babai [1] in 1977 (under the name asymmetric colouring and asymmetric number respectively)
and have since received considerable attention.

In this article, we investigate connections between the maximum degree of a graph and its
distinguishing number. This connection was studied in [3] and [8], where it was shown in-
dependently that connected finite graphs with maximum degree Δ satisfy ≤D G( ) Δ + 1 and
that equality holds if and only if G is C5 , or Kr or Kr r, for some ≥r 1. Imrich et al. [6] in 2007
proved that this remains true for infinite graphs, that is, ≤D G( ) Δ for every connected infinite
graph. Recently, Hüning et al. [4] completely characterized all (finite and infinite) connected
graphs of maximum degree ≤Δ 3 and distinguishing number 3, and Lehner and Verret [13]
gave a similar characterization for finite, 4‐regular, vertex transitive graphs. The results of [4]
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in particular show that all infinite connected graphs whose maximum degree is 3
satisfy ≤D G( ) 2.

Our first main result is motivated by the following recent result of Babai [2] confirming
a conjecture made by Tucker [15] over a decade ago.

Theorem 1. If every nontrivial automorphism of a connected locally finite graphG moves
infinitely many vertices, then G admits a distinguishing 2‐colouring.

Clearly, the requirement of connectedness cannot be omitted, Lehner and Möller [12]
showed that the same is true for local finiteness.

It is worth pointing out that Babai's proof of Theorem 1 depends on what is perhaps the
deepest result in group theory to date, the classification of finite simple groups (CFSG). The
proof of the CSFG spans hundreds of research papers, see [14] for an overview. On the other
hand, there are numerous graph classes for which Tucker's conjecture can be answered using
purely combinatorial methods (see e.g., [4–7,9–11,16]), thus raising the question whether
Theorem 1 can be proved without the CFSG.

The article [4] provides a combinatorial proof for graphs with maximum degree ≤Δ 3. Our
first main theorem is a further step towards a such a proof for graphs with bounded degrees.

Theorem 2. Let G be a connected graph with maximum degree ≤Δ 5 in which every
nontrivial automorphism moves infinitely many vertices, then ≤D G( ) 2.

As indicated above, the proof is purely combinatorial, and we point out that most of the
proof techniques generalize well to higher degrees. In fact, the only part of the proof that seems
to break down for Δ > 5 is Lemma 7. It is thus conceivable that a suitable generalization of this
lemma would lead to a further improvement.

The result of Hüning et al. [4] shows that the bound obtained by Imrich et al. [6] in 2007 for
the distinguishing number of connected infinite graphs with prescribed maximum degree is not
tight in the case of subcubic graphs. Our second main result shows that this bound can be
improved for every finite maximum degree greater than 2. It is easy to see that our bound is
tight for every ≥Δ 3. Note that the mentioned result of Hüning et al. [4] is a special case of the
following theorem which constitutes the second main result of this article.

Theorem 3. Let G be an infinite connected graph with maximum degree ≥Δ 3, then
≤D G( ) Δ − 1.

2 | PRELIMINARIES

All graphs in this article are simple, connected and locally finite. A multirooted graph G R( , ) is
a graph G together with a set ⊆R V of roots. Note that the set R is allowed to be empty
or infinite; the latter possibility will play a role in the proofs of our main results. An auto-
morphism of a multirooted graph G R( , ) is an automorphism ofG which fixes R pointwise. The
group of automorphisms of G R( , ) is denoted by G RAut( , ) .

A partial colouring of a graphG is a function c from ⊆S V to a set C of colours. We denote
the domain S of a partial colouring by cdom( ) . Call two partial colourings c and c′ compatible if
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they coincide on ∩c cdom( ) dom( ′) . For compatible colourings c and c′ we define the partial
colouring ∪c c′ with domain ∪c cdom( ) dom( ′) by

∪ ≔
∈

∈




c c x
c x x c

c x x c
( ′)( )

( ) dom( ),

′( ) dom( ′).

Note that this is well‐defined as long as the colourings are compatible.
We say that a partial colouring c′ extends a partial colouring c if ⊆c cdom( ) dom( ′) and c′

coincides with c on cdom( ) . Note that in this case ∪c c c′ = ′. Call a sequence ∈c( )i i ℕ of partial
colourings increasing if ci+1 extends ci for every ∈i ℕ. For an increasing sequence of colourings
define the limit colouring by

≔
→∞ ∈

c clim ,
i

i

i

i

ℕ

that is, the colouring that maps every ∈v cdom( )i to c v( )i .
We say that an automorphism ∈γ GAut( )preserves a partial colouring c if c v c γv( ) = ( )

whenever both colours are defined, and call the set of all c‐preserving automorphisms the
stabilizer of c. Call a partial colouring c of a multirooted graph S‐distinguishing if every
c‐preserving automorphism fixes S pointwise. Call it S‐preserving if every c‐preserving
automorphism must fix S setwise. As a special case of this, we call a cdom( ) ‐distinguishing
colouring domain distinguishing, and a cdom( ) ‐preserving colouring domain preserving; see
Figure 1 for examples illustrating these definitions. Finally, a V ‐distinguishing colouring is
simply called distinguishing. The distinguishing number of G is the least number of colours in a
distinguishing colouring and denoted by D G( ) .

The following two lemmas show how S‐distinguishing colourings can be used to construct
distinguishing limit colourings.

Lemma 4. Let G R( , ) be a multirooted graph. Assume that we have compatible
colourings c and c′, where c is an S‐distinguishing colouring of G R( , ) , and c′ is an S′‐
distinguishing colouring of ∪G R S( , ) . Then ∪c c′ is an ∪S S( ′) ‐distinguishing colouring
of G R( , ) .

Proof. Let γ be a ∪c c( ′) ‐preserving automorphism. If γ moves a vertex in S, then this
contradicts the fact that c was S‐distinguishing. Hence, γ fixes ∪R S which means that γ
is an automorphism of the multirooted graph ∪G R S( , ) . Since c′ is S′‐distinguishing for

FIGURE 1 Three different partial colourings of a finite tree with colours black and white; uncoloured
vertices are shown in grey. The first colouring is domain distinguishing, the second is domain preserving, and
the third is neither. All three colourings are S‐preserving for the set S of vertices in the central branch
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∪G R S( , ) this implies that γ cannot move any vertex in S′, and hence ∪c c′ is ∪S S( ′) ‐
distinguishing for G R( , ) . □

Lemma 5. Let G R( , ) be a multirooted graph. Let ∈c( )i i ℕ be an increasing sequence of
partial colourings. Assume that ci is Si ‐distinguishing in G R( , ) where the sets Si satisfy

∈ S V=i iℕ . Then →∞ climi i is distinguishing.

Proof. Let γ be an automorphism that preserves →∞ climi i . Then γ preserves all partial
colourings ci . This implies that γ fixes Si pointwise for every i, and since ∈V S= i iℕ we
conclude that γ = id. □

We say that a graph has infinite motion if every nontrivial automorphism moves infinitely
many vertices. Theorem 1 states that a locally finite graph with infinite motion has distin-
guishing number at most 2. In the special case where the graph is a tree, this result boils down
to the following theorem which has a purely combinatorial proof, see for instance [6,16].

Theorem 6. Let G be a locally finite tree with infinite motion, then ≤D G( ) 2. In
particular the distinguishing number of a locally finite tree without leaves is at most 2.

3 | PROOF OF THE FIRST MAIN RESULT

The proof strategy is to recursively construct a colouring and then use Lemma 5 to ensure that
this colouring is distinguishing. Before giving any proof details, we briefly sketch an outline of
the proof to motivate some auxiliary concepts.

The first step is to turnG into a multirooted graph by picking an infinite, connected root set
R and assigning colour 0 to every vertex in R. Then recursively pick a vertex v and extend the
current partial colouring in a way that every colour preserving automorphism fixes v. In case v
is already coloured we have to achieve this by colouring some other vertices, which motivates
the notion of sychronization of moving tuples below. At the end of this recursive construction,
Lemma 5 ensures that no automorphism of G R( , ) preserves the limit colouring c, but we still
need to ensure that any automorphism in the stabilizer of c fixes R. To this end, we consider the
subgraph H of G induced by the vertices with colour 0. The set R is contained in some infinite
component of H . Our construction will imply that this component is asymmetric, so if it is fixed
setwise, then is is fixed pointwise. This motivates the notion of healthy and unhealthy com-
ponents below; intuitively, a healthy component is one that has some property which sets it
apart from the component containing R. In other words, if all components of H are healthy,
then any colour preserving automorphism fixes R setwise and thus also pointwise.

Before we give a formal proof of Theorem 2 we need formally introduce the notions from
the proof sketch above and observe some basic facts about these notions.

3.1 | Moving tuples and synchronization

Let c be a domain preserving colouring of a multirooted graph G R( , ) . Note that the stabilizer of
a domain preserving colouring forms a group (this is not true in general for the stabilizer of a
partial colouring). Call a vertex ∈ ⧹v V R charted if it is coloured or it has a neighbour in R, and
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call vuncharted otherwise. A moving tuple (singleton, pair, triple, quadruple, …) is an orbit of a
charted vertex under the stabilizer of c, see Figure 2. Since c is domain preserving, all vertices in
a moving tuple must be charted.

Note that all members of a moving tuple must have the same neighbours in R. Outside of R
there may be vertices that are adjacent to some, but not all members of a moving tuple. We call
such vertices uncommon neighbours of the tuple. Uncommon neighbours can synchronize the
action on different moving tuples as the following lemma demonstrates.

Lemma 7. Let c be a domain preserving colouring with domain S, and let A and B be
moving tuples with at most 3 elements. If A has an uncommon neighbour in B, then B has
an uncommon neighbour in A and there is a bijection →f A B: such for every
automorphism γ in the stabilizer of S we have ∘ ∘ γ f γ f=B A

−1. In particular, every such
γ that fixes ∈v A must also fix ∈f v B( ) and vice versa.

Proof. First note that by the definition of moving tuples the stabilizer of S fixes A and B
setwise but acts transitively on the elements of A and B respectively. Hence, every
element of A has the same number of neighbours in B and vice versa. Since A and B both
contain at most 3 vertices, this can only work if the graph induced by the edges between
A and B is either complete bipartite, or a matching, or a 6‐cycle. In the first case B cannot
contain an uncommon neighbour of A. In the second case we take f to be the map that
takes each vertex to the other endpoint of its matching edge, in the last case let f be the
map taking each vertex to the antipodal vertex on the cycle. □

Remark 8. Note that the lemma above is no longer true if we allow moving quadruples. In
this case it is possible that we have two disjoint copies of K2,2 between twomoving quadruples
or two disjoint copies of K2,1 between a moving pair and a moving quadruple, see Figure 3.
This is also why our proof does not easily carry over to higher maximum degrees.

We call two moving pairs or triples A and B synchronized and write A B~
sync

if there is a
finite sequence A A A A B= , , …, =k1 2 of moving pairs or triples such that Ai has an

FIGURE 2 A partially coloured multirooted graph whose root set R is a ray; colours are black and white,
uncoloured vertices are shown in grey. The boxed sets of non‐root vertices form moving tuples. Note that the
uncoloured vertices at distance 2 from R are not contained in moving tuples since they are uncharted

FIGURE 3 Moving tuples with uncommon neighbours. Note that the action on moving triples with
uncommon neighbours in one another must be the same, but this is not true for moving quadruples
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uncommon neighbour in Ai+1 for ≤ ≤i k1 − 1, see Figure 4. By the lemma above, being
synchronized is an equivalence relation. Furthermore, between any two synchronized moving
pairs or triples we can find a bijection f such that an automorphism in the stabilizer of S fixes
∈x A if and only if it fixes ∈f x B( ) .

3.2 | Healthy and unhealthy components

Let c be a partial colouring of a multirooted graph G R( , ) and let v be a vertex in the domain of
c. The monochromatic component of v is the set of all vertices that can be reached from v by a
monochromatic path (i.e., no vertices of the opposite colour, but also no uncoloured vertices).
Call a monochromatic component Kunhealthy, if it satisfies the following properties:

• ∩ ∅K R = ,
• all vertices in K have colour 0,
• the maximum degree of the induced subgraph G K[ ] is at most 3,
• either ∞ K = , or K has an uncoloured neighbour.

If a monochromatic component is not unhealthy, we call it healthy. Call the colouring
chealthy if all monochromatic components under c are healthy and unhealthy otherwise. A
symptom of a colouring c is a vertex in an unhealthy component with uncoloured neighbours
outside R, or an infinite unhealthy monochromatic component. Denote by csymp( ) the set of
symptoms of a colouring c. Note that a colouring c is healthy if and only if it has no
symptoms.

Lemma 9. Let c be a healthy colouring and let c′ be a colouring extending c such that
⧹c cdom( ′) dom( ) is finite and contains no symptoms of c′. Then c′ is healthy.

Proof. If c′ is unhealthy, then there is a symptom A of c′. By assumption,
∩ ≠ ∅A cdom( ) . If A is a vertex with uncoloured neighbours, then A is a symptom

of c. Otherwise, there is an infinite monochromatic component of c contained in A,
which is a symptom of c. In both cases we obtain a contradiction to the assumption that c
is healthy. □

Lemma 10. The limit colouring of any increasing sequence ∈c( )i i ℕ of healthy partial
colourings is healthy.

FIGURE 4 A set of synchronized moving triples. Note that by fixing a vertex in any triple we automatically
fix a vertex in each of the triples
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Proof. Assume that there is an unhealthy component K in the limit colouring. Let ∈i ℕ

be such that ∩ ≠ ∅K K c:= dom( )i i . Since K is unhealthy in c, all vertices of Ki are
coloured with colour 0, ∩ ∅K R =i , and no vertex of Ki has 4 or more neighbours in Ki .
The colouring ci is healthy, so Ki is finite and all neighbours of Ki except those in R have
already been coloured (with colours different from 0). It follows that K K= i , and thus K
is healthy, a contradiction. □

3.3 | Proof of Theorem 2

We are now ready to prove Theorem 2. Before doing so, let us briefly recall its statement.

Theorem 2. Let G be a connected graph with maximum degree ≤Δ 5 in which every
nontrivial automorphism moves infinitely many vertices, then ≤D G( ) 2.

Proof. If G is a tree, then we are done by Theorem 6. We may thus assume that G
contains at least one cycle. LetC be an induced cycle, let P be a geodesic ray which meets
C only at its starting point, and let s be a neighbour of the starting point of P onC. Define
R P C s= + − .

We now inductively define sets Si with ∈ S V=i iℕ and an increasing sequence ci of
partial colourings such that for every ∈i ℕ

(C1) ci is Si ‐distinguishing in G R( , ) ,
(C2) R is contained in a monochromatic component KR of colour 0 such that

– each ∈r R has at most one neighbour in K R−R , and
– each ∈v K R−R has exactly one neighbour r in KR which lies in R C− , neither
v nor r have uncoloured neighbours,

(C3) ci is healthy.

Before we construct these colourings, we show that their limit colouring is
distinguishing.

First note that by Lemma 5 and (C1), the limit colouring →∞c c= limi i is
distinguishing for the multirooted graph G R( , ) . So we only need to show that every
colour preserving automorphism fixes R pointwise.

It is easy to see that property (C2) carries over to the limit colouring. Hence, the
monochromatic component KR with respect to c is a ray with leaves attached to it. There
is no leaf attached to the first two elements of the ray (because they are in C). Hence, any
automorphism which fixes KR setwise must fix R pointwise, and we only need to show
that any colour preserving automorphism has to fix KR setwise.

To this end, observe that by Lemma 10 and (C3), the limit colouring is healthy. In
particular, KR is the only infinite monochromatic component of colour 0 which does not
contain a vertex of degree at least 4. Hence, KR must be fixed setwise by every colour
preserving automorphism.

To recursively construct the colourings ci we make a few additional assertions which
will be true for every ∈ ⧹i ℕ {0} .

(C4) ci is domain preserving in G R( , ) ,
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(C5) ⧹c Rdom( )i is finite,
(C6) cdom( )i contains all neighbours of ⧹S Ri ,
(C7) there are no moving k‐tuples for ≥k 4 in cdom( )i .

Let S R=1 , and let c1 be the colouring that assigns 0 to all vertices in R and leaves the
remaining vertices uncoloured. Properties (C1) to (C6) are trivially satisfied. To see that
(C7) also holds, recall that the vertices of R form a ray. Every internal vertex of this ray
has two neighbours in R, and thus at most 3 neighbours outside R. The starting point of R
may have 4 neighbours outside R, but at least one of them is also a neighbour of an
internal vertex of R and hence contained in a moving k‐tuple for ≤k 3.

Now assume that we already defined Si and ci . Let x be a vertex at minimal distance to
C which is not contained in Si . Note that x is a neighbour of Si . Since by (C6) all
neighbours of ⧹S Ri are coloured, we conclude that x is charted. Let X be the moving
tuple containing x .

We claim that if X is not a singleton, then one of the following holds:

1. There is an uncoloured Y X~
sync

whose unique coloured neighbour lies in R C− .
2. There is Y X~

sync
which has uncharted uncommon neighbours.

Let  be the set of tuples that are synchronized with X . If no tuple in  has an
uncharted uncommon neighbour, then there is an automorphism that moves only
vertices contained in  and fixes all other vertices. Since G has infinite motion, this
implies that  must be infinite. By (C5), ⧹c Rdom( )i is finite, so infinitely many elements
of  must be neighbours of R.

Note that every internal vertex of R has neighbours in at most one moving tuple in  ,
otherwise, its degree would be larger than 5 since it already has two neighbours in R. It's
easy to see that there are tuples ∈Y Y Y, ,1 2 3 whose only coloured neighbours lie on the
geodesic ray ⊆P R such that Yi has uncommon neighbours in Yi+1 for ∈i {1, 2} . Since
each Yi has 2 or more neighbours in R, we conclude that at least two of those neighbours,
v and w, lie at distance 5 or more from each other on R.

Assume that v is a neighbour of Y1 and w is a neighbour of Y3 . Then there is a path
v y y y w, , , ,1 2 3 , where ∈y Yi i+1 +1 is an uncommon neighbour of ∈y Yi i for ∈i {1, 2} . This
path has length 4, contradicting the fact that P was geodesic. The cases where v and w are
neighbours of other tuples in Y Y Y, ,1 2 3 are completely analogous and lead to even shorter
paths. This finishes the proof of the claim.

Let ∪S S x= { }i i+1 . We now define the colouring ci+1 by first colouring cdom( )i
according to ci , and then possibly colouring some yet uncoloured vertices. If X is
uncoloured (this can only happen if x is a neighbour of R), then colour all elements of X
with 1. Note that if X x= { } is a moving singleton with no uncoloured neighbours, then
(C1) to (C7) are trivially satisfied, whence we found ci+1 .

Otherwise, distinguish cases according to the two possible options arising from the
claim above. The case where X x= { } is a singleton with uncoloured neighbours will be
treated together with the case where there are uncharted uncommon neighbours of some
Y X~

sync
.

First assume that there is an uncoloured Y X~
sync

whose unique coloured neighbour r
lies in R C− . By Lemma 7 there is an element ∈y Y such that any ci ‐preserving
automorphism that fixes y must also fix x . Colour y with 0 and all other uncoloured
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neighbours of r with 1. Colour all uncoloured neighbours of x and y with colour 1 and let
ci+1 be the resulting colouring.

It remains to show that ci+1 satisfies (C1) to (C7). For (C1) note that any
ci+1 ‐preserving automorphism also preserves ci and thus fixes Si pointwise and Y

setwise. Since y is the only vertex with colour 0 in Y , every ci+1 ‐preserving
automorphism must fix y and thus also x . If r had any neighbours of colour 0 in ci ,
then ci would violate (C2). Hence, the way we picked y and the fact that we coloured all
remaining neighbours of y and r with 1 ensures that (C2) holds for ci+1 . Property (C3)
holds by Lemma 9 and the fact that y is the only vertex with colour 0 in

⧹c cdom( ) dom( )i i+1 . For (C4) note that ci was domain preserving, hence every vertex
in cdom( )i is mapped to a coloured vertex. Furthermore, every ci+1 ‐preserving
automorphism must fix x y, , and r and hence fixes their neighbourhoods setwise.
Properties (C5) and (C6) hold because we coloured finitely many vertices including the
neighbourhood of x . For the proof of (C7) first note that when we picked Y , the tuple X
was already coloured. So ≠X Y and consequently both x and y have at least two
ci ‐charted neighbours: one in a synchronized moving tuple, and one in Si . All other
vertices in ⧹c cdom( ) dom( )i i+1 are ci charted. Since ci satisfies (C7), all charted vertices are
contained in moving k‐tuples for ≤k 3, and we conclude that ci+1 satisfies (C7) as well.

Finally, consider the case when there is Y X~
sync

which has uncharted uncommon
neighbours. If X has uncharted uncommon neighbours, we pick Y X= . Let ∈y Y be
such that every ci ‐preserving automorphism that fixes y must also fix x . The argument
below also applies in the case where X is a singleton with uncoloured neighbours. In this
case let Y X= and y x= .

If ≠X Y and X has uncoloured neighbours, then colour all of them with colour 1. If Y
is uncoloured, then colour it with colour 1. Let  Y= and iteratively run the following
procedure.

Let ∈a (in the first step choose a y= ) and let A be the moving tuple containing a.
Colour all neighbours of A that are also neighbours of R with colour 1. If there are still
uncoloured neighbours, we distinguish the following cases.

1. A has no uncoloured uncommon neighbours (this includes the case where  A = 1).
1A If A has 3 or fewer uncoloured neighbours, do nothing.
1B If A has 4 uncoloured neighbours, then colour 3 of them with 0.

2. A a a= { , }1 2 is a moving pair, or A a a a= { , , }1 2 3 is a moving triple with uncoloured
uncommon neighbours. Without loss of generality, a a=1 . We say that an uncommon
neighbour v of A is linked toai if either ai is the unique neighbour of v in A, or if A is a
moving triple and ai is the unique vertex in A that is not connected to v.
2A If there is a unique uncommon neighbour linked to a1 , then colour it with 0.
2B If there are 2 or 3 uncommon neighbours linked to ai , then colour i( − 1) un-

common neighbours linked to ai with colour 0.
2C If there are 4 uncommon neighbours linked to ai , then colour i(4 − ) uncommon

neighbours linked to ai with colour 0.

Finally, colour all remaining uncoloured neighbours of A with colour 1. If any of the
newly coloured vertices are symptoms, then add them to. Remove all elements from
that have ceased to be symptoms. If  ≠ ∅, iterate.
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We claim that after finitely many iterations this yields the desired colouring ci+1 . We
first show that (C1), (C2), and (C4) to (C7) hold after every step of the recursion. Then
we prove that the recursion eventually terminates with  ∅= and that this implies that
the colouring is healthy.

We show inductively that all desired properties except (C3) hold after every iteration.
The induction basis for (C2), (C4), and (C5) trivially follows from the corresponding
properties of ci .

For the induction basis for (C1) first note that if  X = 1, then this is trivially satisfied
(even before the first iteration). To see that if  X > 1 it is satisfied after the first iteration,
note that Y has uncharted uncommon neighbours. Hence, it still has uncoloured
uncommon neighbours after colouring the neighbours of R in its neighbourhood, that is,
we apply Case 2. In each of the subcases it is easy to see that the number of uncommon
neighbours of y a= 1 with colour 0 differs from the corresponding numbers for a2 and a3 ,
whence y (and thus also x) is fixed by every colour preserving automorphism.

If Y X= , then property (C6) will be satisfied after the first iteration where all
neighbours of Y are coloured, otherwise it follows from the colouring that was done
before the first iteration.

Property (C7) always holds before the first iteration. If X Y= , then this follows from
(C7) for ci . Otherwise, X has no uncharted uncommon neighbours, so all uncharted
neighbours of X are neighbours of x . Note that x has at least one neighbour in Si and one
neighbour in a synchronized moving tuple, and thus X has at most 3 uncharted
neighbours. Since ci satisfies (C7), every charted neighbour of X is contained in moving
k‐tuples for some ≤k 3. Hence, there are no moving k‐tuples for ≥k 4 in the
neighbourhood of X and it follows that the colouring before the first iteration
satisfies (C7).

For the induction step note that the colouring procedure preserves property (C1) since
an extension of an S‐distinguishing colouring is again S‐distinguishing. It preserves (C2)
since throughout the procedure neighbours of root vertices are only coloured with colour
1. Property (C4) is preserved since the whole neighbourhood of an orbit is coloured in
each recursion step. The colouring procedure preserves (C5) since only finitely many
vertices are coloured in each iteration. It also trivially preserves (C6).

For the induction step for (C7) note that in all cases except 2A with a moving triple,
every element of A has a different number of neighbours with colour 0. In particular, A
must be fixed pointwise by every colour preserving automorphism and the colouring on
the neighbourhood of A makes sure that there are no moving k‐tuples for ≥k 4. If A is a
moving triple and we are in case 2A, then a1 is fixed by every colour preserving
automorphism, and so is the unique previously uncoloured neighbour that is linked to a1 .
The vertices a2 and a3 are either fixed by every colour preserving automorphism or they
form a moving pair, and the same is true for the previously uncoloured vertices that are
linked to them. Every remaining uncoloured neighbour of A is not uncommon and hence
connected to every vertex of A. Since a1 had at least one coloured vertex before the
iteration (otherwise it would not have been added to ) we conclude that there are at
most 3 uncoloured neighbours of  left, and hence there is no moving k‐tuple for ≥k 4.

Next we show that the recursion terminates. For this purpose first note that after each
iteration all neighbours of every vertex in A are coloured. Hence, the members of A are
removed from  and won't be added again in later iterations. Hence, it suffices to show
that the number of vertices that can possibly be added to  is finite.
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To this end define the generation g x( ) of an element ∈x as follows. The generation
of any element of Y is 1. If x has been added to  in an iteration where g a i( ) = , then
g x i( ) = + 1. Note that every vertex in generation i + 1 has at least one neighbour in
generation i and thus lies at distance at most i − 1 from Y . So it suffices to show that
there is an upper bound on g x( ) .

Every vertex added to  is a symptom and thus has colour 0. Hence, every vertex of
generation 3 and higher has a neighbour of colour 0 of an earlier generation. Note that
moving triples of colour 0 can only be created in Subcases 1B and 2C. In case a already
has a neighbour of colour 0, hence the degree of a in its monochromatic component
increases to 4 thus making this monochromatic component healthy. In particular, such
triples will not be added to since they are contained in a healthy component. It follows
that no ∈x with ≥g x( ) 4 is contained in a moving triple.

Next note that if A is a moving pair, then A is fixed pointwise by every automorphism
that preserves the colouring after the iteration. Hence, the vertices of any moving tuple
that is added to  in this iteration must have a common neighbour in A. In particular,
the members of a moving tuple of generation 5 or higher lie in the same monochromatic
component. If Subcase 2C is applied to such a tuple, no vertices are added to . Since all
other cases only yield moving singletons of colour 0, we conclude that every ∈x with

≥g x( ) 6 is fixed pointwise by any colour preserving automorphism. Neither of the
subcases of Case 1 yields new elements of  after generation 4 and it follows that there
are no vertices of generation 7.

Finally, we need to show that the colouring ci+1 obtained by running the recursion
until  ∅= is healthy. Assume that there is a symptom ∈ ⧹v c cdom( ) dom( )i i+1 . Then v
would have been a symptom after the iteration in which it was coloured, and hence we
would have added v to . Since we ran the recursion until  ∅= , there must have been
an iteration in which v was removed from  due to not being a symptom any more. This
implies that v is not a symptom of any subsequent colouring and in particular v is not a
symptom of ci+1 . Since there are no symptoms in ⧹c cdom( ) dom( )i i+1 , we can use
Lemma 9 and conclude that ci+1 is healthy. □

It is obvious that by using more colours in the colouring procedure above we can avoid
moving k‐tuples for ≥k 4 even if the maximum degree is larger than 5. Consequently, the proof
can be adapted to show the following.

Corollary 11. Let G be a connected graph with maximum degree ≥Δ 3 in which every

nontrivial automorphism moves infinitely many vertices. Then ≤D G( ) + 1
Δ

3
.

4 | A GENERAL BOUND

In light of the corollary above it is only natural to ask how much the bound for D G( ) changes if
we allow automorphisms moving only finitely many vertices. Recall that by [6] we know that

≤D G( ) Δ for any infinite graph with maximum degree Δ. On the other hand, it is not hard to
construct examples of infinite graphs with D G( ) = Δ − 1. Simply attach Δ − 1 new leaves to a
vertex of degree 1 in any infinite graph. Hence, the bound given in Theorem 3 (which we recall
below) is tight.
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Theorem 3. Let G be an infinite connected graph with maximum degree ≥Δ 3, then
≤D G( ) Δ − 1.

Proof. If G is a leafless tree, then we are done by Theorem 6.
Hence, we may assume that G has either a cycle or a vertex of degree 1. If there is a

cycle, then let C be an induced cycle, P be a geodesic ray which meets C only at its
starting point, and let s be a neighbour of the starting point of P on C. Define
R P C s= + − . If G is a tree with leaves, then let R be a ray starting at a leaf. In both
cases define r as an endvertex of R.

We will now inductively define domain distinguishing partial colourings ci of G R( , )

with connected domain S c= dom( )i i . For c0 colour all vertices of R with colour 0. This is
trivially domain distinguishing for G R( , ) and clearly S R=0 is connected.

For the recursion step define an equivalence relation on ⧹V Si by x y~ if x and y have
the same neighbours in Si . Denote by x[ ] the equivalence class of x with respect to this
relation. Let ∉v Si be an uncoloured vertex which lies as close as possible to r . Then v has
a neighbour s in Si . Since Si is connected, s has at most Δ − 1 neighbours outside Si
whence ≤ v[ ] Δ − 1. Colour all vertices in v[ ] with different colours. If ≤ v[ ] Δ − 2,
avoid the colour 0. The resulting colouring ci+1 clearly is domain distinguishing for G S( , )i .
By Lemma 4 and the induction hypothesis it is also domain distinguishing for G R( , ) .

The sequence ci satisfies the conditions of Lemma 5, thus we get a limit colouring c
which is distinguishing for G R( , ) . To show that c is distinguishing it suffices to show that
every colour preserving automorphism must fix R pointwise.

This can be achieved by showing that R is the unique monochromatic ray of colour 0
satisfying the following property:

(*) the first vertex is either a leaf, or has a common neighbour outside R with another
vertex of R.

Clearly R satisfies (*). If v is a neighbour of R, then ≤ v[ ] Δ − 2. This is obvious, if v
is a neighbour of an inner vertex of the ray induced by R. For the starting vertex it follows
from the fact that this vertex either has degree 1 or has a common neighbour with an
inner vertex of the ray. Hence, no neighbour of R is coloured with colour 0 showing that
any other ray satisfying (*) must be disjoint from R.

Further, observe that if u and v are neighbours which are both coloured 0 then they
must have been coloured in different steps of the construction. If v is coloured later than
u, then Δ − 1 neighbours of u (including v) are coloured in the same step as v.

Now let Q q q q= …0 1 2 be a monochromatic ray of colour 0 disjoint from R. We claim
that the vertices of Q are coloured in order, that is, qi is coloured before qi+1 . Indeed, if
qi+1 is coloured earlier than qi , then let q be the first vertex of ≥q j i{ }j that is coloured.

Both neighbours of q on Q are coloured later than q. Hence, by the observation above
vertex q has at least 2(Δ − 1) neighbours, a contradiction to Δ being the maximum
degree.

At least one neighbour of q0 is coloured before q0 , so if q0 is a leaf, then q1 can't be
coloured after q0 . Furthermore, once q1 is coloured all neighbours of q0 are coloured. But
for i > 0 the only neighbour of qi which is not coloured later than qi is qi−1 , whence qi
can't have any common neighbours with q0 outside Q. Thus, Q does not satisfy (*). □
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5 | OUTLOOK AND OPEN QUESTIONS

As already mentioned, the recent proof of Tucker's infinite motion conjecture given by Babai
[2] depends on the classification of finite simple groups. An obvious question is, whether this
dependency can be avoided; the results of the present article suggest that this may be easier if
we bound the maximum degree.

Question 12. Is there a combinatorial proof that graphs with maximum degree Δ and
infinite motion have distinguishing number at most 2?

While Theorem 1 establishes a link between the motion and the distinguishing number of a
graph, it is likely that this connection is a lot stronger for graphs with bounded maximum
degree. The following question was posed by Babai at the BIRS/CMO workshop on ‘Symmetry
Breaking in Discrete Structures’ in September 2018.

Question 13. Is there a function f such that any graph with maximum degree Δ whose
motion is larger than f (Δ) admits a distinguishing colouring with 2 colours?

Results from [4] show that f (3) = 2, and it follows from [13] that f (4) exists if we restrict
ourselves to finite, vertex transitive graphs. While the present article shows that graphs with
maximum degree 4 and 5 can be treated combinatorially, our methods are not strong enough to
answer the above question for Δ = 4 or Δ = 5.

Problem 14. Find f (4) and f (5) as defined in the above question, or show that the
values do not exist.
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