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The distinguishing index D ′(G) of a graph G is the least number of colours in an 
edge colouring, not necessarily proper, such that the identity is the only automorphism 
preserving it. This invariant is not defined for graphs having K2 as a component or more 
than one isolated vertex, and all other graphs we call admissible. In this paper we consider 
the following Turán-type problem: given an integer d ≥ 2, what is a maximum size of 
an admissible graph G of order n such that D ′(G) > d? The main result is the following 
theorem. If d ≥ 2 and G is an admissible graph of order n ≥ d + 4 and size

‖G‖ >

(
n − d − 1

2

)
+ d + 1,

then D ′(G) ≤ d except for a few small graphs of order at most 7. We also exhibit all 
extremal graphs of order n ≥ 9, that is, graphs G with ‖G‖ = (n−d−1

2

)+d +1 and D ′(G) > d.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction and main result

For a simple, finite graph G = (V , E), let c : E −→ {1, . . . , d} be an edge colouring, not necessarily proper. We say that c
breaks an automorphism ϕ ∈ Aut(G) if ϕ does not preserve c, that is, there exists an edge that is mapped by ϕ into an edge 
with a different colour. If a colouring c breaks every nontrivial automorphism of G , then we say that c is a distinguishing 
d-colouring. Following [6], the least integer d for which a distinguishing d-colouring exists is called the distinguishing index
of a graph G , and denoted by D ′(G). Clearly, D ′(G) is defined for all graphs G without K2 as a component and with at most 
one isolated vertex. We call such graphs admissible, and the set of all of them we denote by G . Investigations of this graph 
invariant, introduced by us in 2015, have been later undertaken by a dozen of other authors (e.g., in [1,10–12,14]).

There is a general upper bound for the distinguishing index of a connected graph.

Theorem 1.1. (Kalinowski, Pilśniak [6]) If G is a connected graph of order n ≥ 3, then

D ′(G) ≤ �(G)

except for three small cycles C3, C4, C5 .
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The second author characterized all graphs for which the equality is achieved. A tree is called symmetric (respectively, 
bisymmetric) if it has a central vertex v0 (resp. a central edge e0), all pendant vertices are at the same distance to v0 (resp. 
e0), and all vertices that are not pendant are of the same degree.

Theorem 1.2. (Pilśniak [13]) If G is a connected graph, then D ′(G) = �(G) if and only if either G is a cycle of length at least six or a 
symmetric or a bisymmetric tree or K4 or K3,3 .

For complete graphs, it was shown in [6] that D ′(Kn) = 3 if n = 3, 4, 5, and D ′(Kn) = 2 if n ≥ 6. This is a consequence 
of the fact that D ′(Kn) = 2 if and only if there exists an asymmetric graph (i.e. a graph with a trivial automorphism group) 
of order n, and such graphs exist for n ≥ 6. Clearly, if we delete some edges from the complete graph Kn with n ≥ 6, then 
the resulting graph may still have the distinguishing index at most two. In this paper, we investigate the following question 
which is typical in extremal graph theory. What is the maximum size of a connected graph with D ′(G) > 2? We also answer 
a more general question for the property {G ∈ G : D ′(G) > d}, for any d ≥ 2. Moreover, we determine extremal graphs, i.e. 
graphs G with D ′(G) ≥ d and maximum size.

More formally, we define f (n, d) as the maximum possible size of a graph G of order n with D ′(G) > d, that is,

f (n,d) = max{‖G‖ : G ∈ G, |G| = n, D ′(G) > d}.
In other words, f (n, d) is the least number such that the inequality ‖G‖ > f (n, d) implies D ′(G) ≤ d.

It follows from Theorem 1.1 that C3 is the only graph with the distinguishing index equal to its order, hence f (n, n − 1)

is defined only for n = 3. Trivially, f (n, 1) = (n
2

)
for D ′(Kn) > 1, n ≥ 3. If d ≥ 2, then the number f (n, d) is defined for all 

n ≥ d + 2 since D ′(K1,n−1) = n − 1 > d.
It should be noted, however, that the property {G ∈ G : D ′(G) ≤ d} is not monotone, as it is typical for Turán-type 

problems. To see this, consider an asymmetric tree T and insert an edge e between two pendant vertices. Then D ′(T + e) =
2 > D ′(T ) = 1. This property is neither increasing since D ′(K1,n−1 + e) = n − 3 < D ′(K1,n−1) = n − 1 for n ≥ 5.

To formulate our main result, we use the following standard notation. Let G1 and G2 be two graphs with disjoint vertex 
sets. By G1 ∪ G2 we denote their union, i.e. V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). By G1 + G2 we 
denote their join, i.e. the union G1 ∪ G2 together with all the edges joining the sets V (G1) and V (G2).

Clearly, D ′(K1 + (Kn−d−2 ∪ Kd+1)) = d + 1 since every pendant edge has to have a distinct colour (see Fig. 1). The aim of 
this paper is to prove the following.

Theorem 1.3. (Main result) Let n, d be a pair of integers such that n ≥ 8 for d = 2, and n ≥ d + 4 for d ≥ 3. Then

f (n,d) =
(

n − d − 1

2

)
+ d + 1.

Moreover, K1 + (Kn−d−2 ∪ Kd+1) is a unique connected graph of order n and size f (n, d) with the distinguishing index greater than d, 
unless d = 2 and n = 8. The only disconnected G of order n and size ‖G‖ = f (n, d) with D ′(G) > d is Kn−3 ∪ K3 for d = 2 and n ≥ 8.

...

Kn−d−1

Fig. 1. The extremal graph K1 + (Kn−d−2 ∪ Kd+1) with the distinguishing index d + 1.

Our paper is organized as follows. In Section 2 we recall some known results we use further in the paper. The proof of 
Theorem 1.3 for d = 2 is given in Section 3. Using different arguments, we prove Theorem 1.3 for d ≥ 3 in Section 4. The 
sharpness of our main result is discussed in Section 5. In particular, we determine the values of f (n, d) for n ≤ d + 3. We 
terminate the last section with a conjecture.

2. Preliminary results

In this section we recall some known results that are used further in the paper.
We say that a graph G is almost spanned by a subgraph H if G − v is spanned by H for some v ∈ V (G). The following 

results of Pilśniak [13] provide very useful sufficient conditions for a graph to have the distinguishing index at most two.
2
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Lemma 2.1. (Pilśniak [13]) If a graph G is spanned or almost spanned by an asymmetric subgraph H, then

D ′(G) ≤ 2.

A graph is traceable if it contains a Hamilton path.

Theorem 2.2. (Pilśniak [13]) If G is a traceable graph of order n ≥ 7, then D ′(G) ≤ 2.

A graph G is called K1,s-free if G does not contain K1,s as an induced subgraph. Recently, Gorzkowska, Kargul, Musiał 
and Pal proved the following theorem in [3].

Theorem 2.3. (Gorzkowska, Kargul, Musiał, Pal [3]) Let G be a connected graph of order n ≥ 6 and let s ≥ 3. If G is K1,s-free, then

D ′(G) ≤ s − 1.

Some results from our recent joint paper with Imrich and Woźniak are used in Section 4.

Theorem 2.4. (Imrich, Kalinowski, Pilśniak, Woźniak [5]) If G is a connected graph without pendant edges, then

D ′(G) ≤
⌈√

�(G)
⌉

+ 1.

Given a vertex a of a graph H , by Aut(H)a we denote the stabilizer of the vertex a, i.e.

Aut(H)a = {ϕ ∈ Aut(H) : ϕ(a) = a}.
For two vertices a, b, we denote Aut(H)a,b = Aut(H)a ∩ Aut(H)b .

Lemma 2.5. (Imrich, Kalinowski, Pilśniak, Woźniak [5]) Let a, b be two vertices of a connected graph H of maximum degree �, such 
that

dist(a, v) + dist(v,b) = dist (a,b)

for every vertex v ∈ V (H). Then H admits an edge colouring with �√� colours breaking every nonidentity automorphism of 
Aut(H)a,b.

In the proof of Theorem 1.3, we also apply some known results which provide sufficient conditions for the existence of 
long paths or cycles. The first one is a Turán-type result for traceable graphs.

Theorem 2.6. (Erdős, Gallai [2]) If G is a graph of order n and

‖G‖ >

(
n − 2

2

)
+ 2,

then G is traceable.

Let c(G) denote the circumference of a graph G , i.e. the length of a longest cycle in G .

Theorem 2.7. (Woodall [15]) Let G be a graph of order n and let 1 ≤ r ≤ n−1
2 . Then c(G) > n − r whenever

‖G‖ >

(
n − r

2

)
+

(
r + 1

2

)
.

An amplification of Woodall’s theorem for 2-connected graphs was proved by Kopylov in [9]. It is worth mentioning that 
in 2016 this result was discussed and strengthened by Füredi, Kostochka and Verstraëte in [4]. Define

h(n, c,k) =
(

c − k

2

)
+ k(n − c + k).

Theorem 2.8. (Kopylov [9]) Let 4 ≤ c ≤ n − 1, and k = ⌊ c−1
2

⌋
. If G is a 2-connected graph of order n such that

‖G‖ > max {h(n, c,2),h(n, c,k)} ,

then c(G) ≥ c.
3
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Applying the approach of Kemnitz and Schiermeyer [8], the following upper bound for the size of the subgraph induced 
by vertices of a longest cycle in a nonhamiltonian graph G can be easily derived from the proof of Lemma 14 in [7]. For 
completeness, we attach the proof.

Proposition 2.9. (Kalinowski, Pilśniak, Schiermeyer, Woźniak [7]) Let C be a longest cycle in a graph G = (V , E) of order n and let

k = max{|N(u) ∩ V (C)| : u ∈ V (G) \ V (C)}.
If k ≥ 2 and c(G) < n, then

‖G[V (C)]‖ ≤
(

c(G)

2

)
− k

2
(c(G) − k − 1).

Proof. Fix an orientation of C . For two vertices x, y ∈ V (C), denote by C[x, y] the path of C from x to y along 
this orientation. If x ∈ V (C), then x+ denotes its successor along the orientation of C . For two sets A, B ⊆ V , denote 
E(A, B) = {xy ∈ E : x ∈ A, y ∈ B}. For a subgraph F of G and x ∈ V (G), let dF (x) = |N(x) ∩ V (F )|.

Let u be a vertex of G outside of C with k neighbours u1, . . . , uk on C . Then the set X = {u+
1 , . . . , u+

k } is independent 
since C is a longest cycle in G . Moreover, for any pair u+

i , u+
j with i �= j and any z ∈ C[u++

i , u j] we have u+
i z+ /∈ E or 

zu+
j /∈ E , for the same reason. Let C1 = C[u++

i , u j], C2 = C[u++
j , ui]. Then

dC (u+
i ) + dC (u+

j ) = dC1(u+
i ) + dC1(u+

j ) + dC2(u+
i ) + dC2(u+

j ) ≤
|V (C1)| + 1 + |V (C2)| + 1 = |V (C)|.

Summing up this inequality for all 
(k

2

)
possible pairs of vertices and dividing by k − 1 we obtain

|E(X, V (C) \ X)| =
k∑

i=1

dC (u+
i ) ≤ k

2
c(G).

As X is an independent set, we have

‖G[V (C)]‖ = |E(X, V (C) \ X)| + |E(V (C) \ X, V (C) \ X)| ≤ k

2
c(G) +

(
c(G) − k

2

)
=

1

2
(c(G)2 + k2 − kc(G) − c(G) + k) =

(
c(G)

2

)
− k

2
(c(G) − k − 1). �

3. Proof of main result for d = 2

We split the proof of Theorem 1.3 into two parts, because the method we apply in the next section for d ≥ 3 cannot be 
used directly for d = 2. In this section, we confirm the case d = 2 by proving the following.

Theorem 3.1. If G is a graph of order n ≥ 8 and size

‖G‖ >

(
n − 3

2

)
+ 3,

then D ′(G) ≤ 2. Moreover, if n ≥ 9, then K1 + (Kn−4 ∪ K3) and Kn−3 ∪ K3 are the only graphs of order n and size 
(n−3

2

) + 3 with the 
distinguishing index greater than two.

Proof. Let G = (V , E) be an admissible graph of order n ≥ 8 and size ‖G‖ ≥ (n−3
2

) + 3.
Clearly, if G is disconnected, then either G = Kn−3 ∪ K3 with D ′(Kn−3 ∪ K3) = 3, or G = H ∪ K1 for some graph H

(because the sequence 
(k

2

) + (n−k
2

)
, k = 2, . . . , �n/2, is strictly decreasing). In the latter case

‖H‖ ≥
(|H| − 2

2

)
+ 3,

hence, H is traceable by Theorem 2.6, therefore D ′(G) ≤ 2 by Theorem 2.2.
Let then G be connected. In view of Theorem 2.2, we may assume that G is not traceable. Hence, c(G) ≤ n − 2. It is easy 

to see that Theorem 2.7 implies c(G) ≥ n − 4. Let C be a longest cycle of G and let v1, . . . , vc(G) be consecutive vertices of 
C . We consider three cases corresponding to the circumference c(G).

Case c(G) = n − 2.
4
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Let V \ V (C) = {u1, u2}. Without loss of generality, we may assume that v1u1 ∈ E . Then the tree T = C + v1u1 − v3 v4 is 
asymmetric because the length of C is at least six. As T is an almost spanning subgraph of G , Lemma 2.1 implies D ′(G) ≤ 2.

Case c(G) = n − 3.
Let V \ V (C) = {u1, u2, u3}. If G[{u1, u2, u3}] contains an edge, then without loss of generality we may assume that 

v1u1, u1u2 ∈ E . The tree T = C + v1u1 + u1u2 − v2 v3 is an asymmetric almost spanning subgraph of G . Hence, D ′(G) ≤ 2
by Lemma 2.1. Then suppose that the set {u1, u2, u3} is independent.

Fig. 2. The graph K2 + (K2 ∪ K4), where dashed edges induce its almost spanning asymmetric tree.

Let n = 8 and ‖G‖ >
(n−3

2

) + 3 = 13. We have c(G) = 5, hence no vertex of C is a cut vertex of G , otherwise G would be 
traceable. Consequently, G is 2-connected, the set of the three vertices outside C is independent, each of them is adjacent 
to the same pair of vertices of C because C is a longest cycle of G of length 5. By Proposition 2.9, G[V (C)] has at most (5

2

)− (5 − 3) = 8 edges, so ‖G‖ = 14. It follows that G = K2 + (K2 ∪ K4). This graph has an almost spanning asymmetric tree 
(see Fig. 2), so D ′(G) ≤ 2. Thus the theorem is true for n = 8.

Let now n ≥ 9 and ‖G‖ ≥ (n−3
2

) + 3. Assume first that there are two vertices, say u2, u3, such that for every ϕ ∈ Aut(G)

with ϕ(u2) = u3, there is a vertex v ∈ V (C) with ϕ(v) �= v . We colour the edges of the asymmetric tree T = C − v3 v4 + v1u1
with colour 1, and all other edges of G with colour 2, thus obtaining a distinguishing 2-colouring of G since u2, u3 are the 
only vertices without incident edges coloured with 1.

Suppose now that every permutation of the vertices u1, u2, u3 can be extended to an automorphism ϕ of G by setting 
ϕ(v) = v for every v ∈ V (C). Consequently, the sets N(ui), i ∈ {1, 2, 3}, coincide and do not contain any two consecutive 
vertices on C since C is a longest cycle in G . Let k = d(ui), i ∈ {1, 2, 3}.

If k = 1, then G is isomorphic to the extremal graph K1 + (Kn−4 ∪ K3) with D ′(G) = 3, and we are done.

Fig. 3. Two graphs of order 9 and circumference 6 with asymmetric almost spanning subgraphs (dashed).

For k ∈ {2, 3}, we use Proposition 2.9. Setting c(G) = n − 3, we obtain

‖G‖ ≤
(

n − 3

2

)
− k

2
(n − k − 4) + 3k.

On the other hand, ‖G‖ ≥ (n−3
2

) + 3, therefore n ≤ k + 10 − 6
k . Hence, if k = 2, then n = 9, and it is easily seen that G

has to have a subgraph isomorphic to one of two graphs depicted in Fig. 3, each having an almost spanning asymmetric 
subgraph. Thus, D ′(G) ≤ 2. If k = 3, then n ≤ 11 by the above inequality. Hence, 6 ≤ c(G) ≤ 8 since C is a longest cycle. 
Therefore, without loss of generality, we may assume that ui v1, ui v3 ∈ E , i ∈ {1, 2, 3}. Let also ui v j ∈ E, i ∈ {1, 2, 3}, for 
some j ∈ {5, . . . , n − 4}. In this case, the subgraph H = C + u1 v1 + u2 v1 + u2 v3 + u2 v j − v3 v4 is an asymmetric almost 
spanning subgraph of G .

Finally, let k ≥ 4. Assuming v1u1 ∈ E , we colour the edges of the tree C + v1u1 − v3 v4 and all edges incident with 
u2 with colour 1, while all remaining edges of G get colour 2. The subgraph H coloured with 1 is an almost spanning 
asymmetric subgraph of G . To see this, it is enough to observe that u2 is the only vertex of degree at least k of H without 
an incident pendant edge.

Case c(G) = n − 4.
Theorem 2.7 implies that the circumference of G can be equal to n − 4 only if 8 ≤ n ≤ 11 because 

(n−4
2

) + (5
2

)
<

(n−3
2

) + 3
for n ≥ 12.

We infer from Proposition 2.9 that ‖G‖ ≤ (n−4
2

) − k
2 (n − k − 5) + 4k + mk , where k is a maximum number of neighbours 

on C of a vertex outside C , and mk denotes the number of edges in a subgraph G0 induced by the four vertices outside 
5
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the longest cycle C . Clearly, k ≤ n−4
2 since c(G) = n − 4, so k ≤ 3 for n ≤ 11. Observe that mk ≤ 3 since otherwise, by 

Theorem 2.6, the subgraph G0, and thus the whole graph G , would be traceable. Moreover, mk = 0 whenever the vertices 
outside C have common neighbours at distance two on C , and this is always the case for k = 3 since n ≤ 11, as well as for 
k = 2 and n = 8, 9.

Fig. 4. A distinguishing 2-colouring of K3 + K7.

Furthermore, ‖G‖ ≥ (n−3
2

) + 3 by assumption. Thus, we have to check whether these two constraints on the size of G
are consistent for six possible cases of a pair n, k. This holds only in two cases. Namely, for n = 8, k = 2, we get a graph 
G = K2 + K6 (with D ′(G) = 3, but this does not contradict the theorem), and for n = 10, k = 3, we get a graph K3 + K7
whose distinguishing 2-colouring is shown in Fig. 4. �
4. Proof of main result for d ≥ 3

In this section, we prove Theorem 1.3 for d ≥ 3, that is, we prove the following.

Theorem 4.1. Let d ≥ 3 and let G be an admissible graph of order n ≥ d + 4 and size

‖G‖ ≥
(

n − d − 1

2

)
+ d + 1.

Then D ′(G) ≤ d unless G = K1 + (Kn−d−2 ∪ Kd+1).

The proof is preceded by three simple observations and a key proposition that settles the claim for 2-connected graphs.
Two edge colourings c1, c2 of a graph G are called nonisomorphic if for every nontrivial automorphism ϕ of G , there exist 

an edge e such that c2(ϕ(e)) �= c1(e).

Lemma 4.2. If G is a traceable graph of order n ≥ 4, then G admits at least two nonisomorphic distinguishing 3-colourings of edges.

Proof. Let P be a Hamilton path of G . We colour one pendant edge of P with colour 1, the other edges of P with 2, and 
all remaining edges outside of P with colour 3. Clearly, this colouring is distinguishing. Colour 1 is used only once, while 
colour 2 is used at least twice since the length of P is at least three. To obtain another colouring, we exchange colours 1 
and 2. �
Lemma 4.3. If G is a connected graph of order n ≤ 7 and without pendant edges, then D ′(G) ≤ 3.

Proof. Assume first that G is a 2-connected graph of order n ≤ 7. Clearly, D ′(K3) = 3. The claim holds for traceable graphs 
by Lemma 4.2. If G is not traceable, then 4 ≤ c(G) ≤ n − 2. Let v1, . . . , vc(G) be consecutive vertices of a longest cycle C .

If c(G) = 4, then G has two or three vertices outside of C , and they are adjacent to the same pair, say v1, v3, of 
nonconsecutive vertices of C . Thus, there are four or five paths of length 2 joining v1 to v3 which we colour with distinct 
pairs of colours (1, 1), (1, 2), (2, 2), (1, 3), (2, 3). If c(G) = 5, then there are two vertices outside of C , each adjacent either to 
v1, v3 or to v1, v4. Thus, there are at most three vertices of degree 2 that can be permuted, and we can easily distinguish 
them and the vertices of C with three colours.

Suppose that the connectivity of G equals 1. We have just shown that the distinguishing index of each block of G is not 
greater than 3. The only question appears if there are isomorphic blocks in G . This is possible only if G consists either of 
two or three triangles, or of two isomorphic blocks of order four: K4, K4 − e, C4. It is easy to check that D ′(G) ≤ 3 in each 
of these cases. �
Lemma 4.4. If G is a connected graph of order n ≥ 5, then D ′(G) ≤ n − 3 except for K1,n−1, K5, C5 .

Proof. If �(G) ≤ n − 2, then Theorem 1.1 and Theorem 1.2 imply that D ′(G) < n − 2 unless G = C5.
Let �(G) = n −1. Then G is spanned by a star K1,n−1 with a central vertex v1 and pendant vertices v2, . . . , vn . For n = 5, 

it is an easy exercise to check that each such graph G satisfies D ′(G) ≤ 2 unless G ∈ {K1,4, K5}.
If n ≥ 6, then we can use Theorem 2.3 to infer that D ′(G) ≤ n − 3 whenever G is K1,n−2-free. Assume then that G �=

K1,n−1 contains an induced star K1,n−2 with pendant vertices v3, . . . , vn−1. Hence, G is isomorphic to a graph obtained 
6
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from the star K1,n−2 by adding p edges v2 v3, . . . , v2 v p+2, where 1 ≤ p ≤ n − 2. Suppose first that p ≤ n − 3. Then G can be 
decomposed into two subgraphs G1 = G[{v1, v2, . . . , v p+2}] ∼= K2 + K p , and G2 = G[{v1, v p+3, . . . , vn}] ∼= K1,n−p−2. No edge 
of G1 can be mapped by an automorphism of G onto an edge of G2, and vice versa, hence we can use the same colours for 
both subgraphs. By Theorem 2.4,

D ′(G1) ≤
⌈√

�(G1)
⌉

+ 1 =
⌈√

p + 1
⌉

+ 1 ≤
⌈√

n − 2
⌉

+ 1 ≤ n − 3.

The edges of G2 can be coloured with n − 2 − p ≤ n − 3 distinct colours. Finally, for p = n − 2, we have G ∼= K2 + Kn−2 and 
G − v1 v2 ∼= K2,n−2. Again, Theorem 2.4 implies

D ′(G − v1 v2) ≤
⌈√

�(G − v1 v2)
⌉

+ 1 =
⌈√

n − 2
⌉

+ 1 ≤ n − 3.

Thus D ′(G) ≤ n − 3 since a colour of the edge v1 v2 does not matter. �
Now, we prove Theorem 4.1 for 2-connected graphs.

Proposition 4.5. If d ≥ 3 and G is a 2-connected graph of order n ≥ d + 4 and size

‖G‖ ≥
(

n − d − 1

2

)
+ d + 1,

then D ′(G) ≤ d.

Proof. Let d ≥ 3 and let G = (V , E) be a graph satisfying the assumptions. The set of colours we use is {1, . . . , d}. The only 
2-connected graph with circumference 3 is K3, therefore c(G) ≥ 4 since n ≥ d + 4 ≥ 7. On the other hand, if c(G) ≥ n − 1, 
then G is traceable, hence D ′(G) ≤ 2 by Theorem 2.2. Thus we may assume that 4 ≤ c(G) ≤ n − 2. Let C be a longest cycle 
of G .

Suppose first that c(G) = 4. Clearly, either G = K2,n−2 or G = K2 + Kn−2 since G is a 2-connected graph without cycles of 
length 5 or longer. These two graphs differ only by one edge and ‖K2 + Kn−2‖ = ‖K2,n−2‖ +1 = 2n −3. Each of them contains 
exactly n − 2 vertices of degree 2 that can be permuted arbitrarily. If we show that n − 2 < d2, then we get a distinguishing 
d-colouring of G by colouring the pair of edges incident to each vertex of degree 2 with a distinct pair of colours including 
(1, 2) but excluding (2, 1) to break also any automorphism switching the two vertices of higher degree. Thus, we have to 
justify that the inequality 2n − 3 ≥ (n−d−1

2

) + d + 1 implies n − 2 < d2. Let an = 2n − 3 and bn = (n−d−1
2

) + d + 1. We have 
an+1 − an = 2 while bn+1 − bn = n − d − 1 ≥ 3, hence the sequence an − bn is decreasing. Therefore, it suffices to verify that 
an − bn < 0 for n − 2 = d2. Indeed,

ad2+2 − bd2+2 = −d

2
(d3 − 2d2 − 2d + 1) < 0

since d3 − 2d2 − 2d > 0 for d > 1 + √
3.

Assume now that c(G) ≥ 5. Denote R = V \ V (C) and r = |R|.

Claim 4.6. r ≤ (d − 1)2 + 1, that is, c(G) ≥ n − (d − 1)2 − 1.

Proof. As ‖G‖ ≥ (n−d−1
2

) + d + 1, to this end, due to Theorem 2.8 of Kopylov, it suffices to show that

h(n, c,k) <

(
n − d − 1

2

)
+ d + 1 (1)

for c = n − (d − 1)2 − 1 and for both k = 2 and k = � c−1
2 �. Recall that h(n, c, k) = (c−k

2

) + k(n − c + k).
For k = 2, we have

h(n,n − (d − 1)2 − 1,2) =
(

n − d2 + 2d − 4

2

)
+ 2(d2 − 2d + 4)

= 1

2

[
n2 − (2d2 − 4d + 9)n + d4 − 4d3 + 17d2 − 26d + 36

]
.

The right-hand side of the inequality (1) equals(
n − d − 1

)
+ d + 1 = 1 [n2 − (2d + 3)n + d2 + 5d + 4].
2 2

7
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Thus, we obtain the inequality

−(2d2 − 4d + 9)n + d4 − 4d3 + 17d2 − 26d + 36 < −(2d + 3)n + d2 + 5d + 4

which holds for

n >
d4 − 4d3 + 16d2 − 31d + 32

2(d2 − 3d + 3)
= 1

2
(d2 − d + 10) + d + 1

d2 − 3d + 3
.

On the other hand, according to our assumptions,

n = r + c(G) ≥ (d − 1)2 + 1 + 5 = d2 − 2d + 7.

Clearly, d+1
d2−3d+3

≤ 4
3 and d2 − 2d + 7 > 1

2 (d2 − d + 13) for d ≥ 3 because the quadratic trinomial d2 − 3d + 1 has two zeros 
less than 3. Therefore, ‖G‖ > h(n, n − (d − 1)2 − 1, 2) for every graph G in question.

Take now k = � c−1
2 � = �n−(d−1)2−2

2 �. If c − 1 is even, then

h

(
n, c,

⌊
c − 1

2

⌋)
=

(
c − c−1

2
2

)
+ c − 1

2

(
n − c + c − 1

2

)

= 1

8

(
−c2 + 4cn − 4n + 1

)
.

Thus for c = n − (d − 1)2 − 1, we obtain

h

(
n,n − d2 + 2d − 2,

⌊
n − d2 + 2d − 3

2

⌋)

= 1

8

[
−(n − d2 + 2d − 2)2 + 4n(n − d2 + 2d − 2) − 4n + 1

]

= 1

8

[
3n2 − (2d2 − 4d + 8)n − d4 + 4d3 − 8d2 + 8d − 3

]
.

Hence, the inequality (1) holds whenever

1

8

[
3n2 − (2d2 − 4d + 8)n − d4 + 4d3 − 8d2 + 8d − 3

]

<
1

2

[
n2 − (2d + 3)n + d2 + 5d + 4

]
,

that is, when

n2 + (2d2 − 12d − 4)n + d4 − 4d3 + 12d2 + 12d + 19 > 0.

This is a quadratic inequality with respect to n which is true for any d ≥ 3 and any n, because its discriminant �(d) is 
negative for d ≥ 3. Indeed,

�(d) = (2d2 − 12d − 4)2 − 4(d4 − 4d3 + 12d2 + 12d + 19) = 4(−8d3 + 20d2 + 12d − 55),

which is a decreasing function for d ≥ 3 since its derivative �′(d) = 16(−6d2 + 10d + 3) has two zeros, both less than 3, 
hence �′(d) < 0 for d ≥ 3. Moreover, �(3) = −60 < 0.

If c − 1 is odd, then

h

(
n, c,

⌊
c − 1

2

⌋)
=

(
c − c−2

2
2

)
+ c − 2

2

(
n − c + c − 2

2

)

= 1

8

(
−c2 + 4cn − 8n + 2c + 8

)

= 1

8

[
−(n − d2 + 2d − 2)2 + 4n(n − d2 + 2d − 2) − 8n + 2(n − d2 + 2d − 2) + 8

]

= 1

8

[
3n2 − (2d2 − 4d + 10)n − d4 + 4d3 − 10d2 + 12d

]
.

The inequality h 
(

n,n − d2 + 2d − 2,
⌊

n−d2+2d−3
s

⌋)
<

(n−d−1
2

) + d + 1 is equivalent to the following quadratic inequality

n2 + (2d2 − 12d − 2)n + d4 − 4d3 + 14d2 + 8d + 16 > 0.

Again, it holds for d ≥ 3 and any n, because its discriminant �(d) = 4(−8d3 + 20d2 + 4d − 15) is negative for d ≥ 3. To see 
this, note that �(3) = −156 < 0, and �(d) is a decreasing function for d ≥ 3 because its derivative �′(d) = 16(−6d2 +10d +
1) has two zeros less than 3. Thus the Claim is proved. �
8
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To complete the proof of Proposition 4.5, we show the existence of a distinguishing d-colouring of the graph G . Let 
v1 . . . vc(G) be consecutive vertices of a longest cycle C .

First, consider the case c(G) = 5. Every vertex outside of C is of degree 2 and is adjacent to a pair of vertices of C sharing 
at least one vertex, say v1 (see Fig. 5). Therefore, there are at most n − 4 vertices of degree 2 that can be permuted. Note 
that n − 4 ≤ (d − 1)2 + 1 + 5 − 4 < d2, therefore we can colour each pair of edges incident to such a vertex of degree 2 by 
a different pair of colours including (1, 2), and not using (2, 1).

· · · · · ·

v1

v2

v3v4

v5 · · ·

v1

v2

v3v4

v5

Fig. 5. Every 2-connected graph of circumference c(G) = 5 is a subgraph of one of these two graphs.

Suppose now that c(G) ≥ 6. Without loss of generality, we may assume that there is a vertex u1 ∈ V \ V (C) adjacent to 
the vertex v1 of C . The subgraph T = C + v1u1 − v3 v4 is an asymmetric tree. We colour the edges of T with colour d and 
the remaining edges of G[V (T )] we colour arbitrarily, say with colour 1. We do not use colour d anymore, so each vertex of 
T will be fixed by every automorphism of G preserving such a colouring.

Each vertex u ∈ V \ V (T ) lies on a path between two vertices of T , because G is 2-connected. Let P be a shortest such 
path, and let a, b ∈ V (T ) be the end vertices of P . Consider the subgraph H of G induced by the edges of all yet uncoloured 
paths between a and b of the same length as P . Observe that the edge ab, if existed, would be already coloured, hence ab
is not an edge of H . If there were a vertex u ∈ V (H) adjacent to both a and b, then the length of P would equal 2, so the 
degree of every vertex in V (H) \ {a, b} would be 2. Consequently, �(H) ≤ (d − 1)2 since there are at most (d − 1)2 vertices 
outside of T . By Lemma 2.5, the subgraph H admits an edge colouring with colours 1, . . . , d − 1 breaking all automorphisms 
from Aut(H)a,b . Consequently, each vertex of H will be fixed by every automorphism preserving our colouring. We colour 
each uncoloured edge of G[V (H) ∪ V (T )] arbitrarily, say with colour 1.

If V \ (V (H) ∪ V (T )) �= ∅, then we repeat this procedure replacing T with G[V (H) ∪ V (T )]. Thus we recursively obtain 
a distinguishing colouring of edges of G . �

To complete the proof of Theorem 4.1 for graphs which are not 2-connected, we make use of the following lemma.

Lemma 4.7. Let G be a graph of order n such that ‖G‖ ≥ (n−d−1
2

) + d + 1 with d ≥ 3. Let G1, G2 be two proper subgraphs of G of 
orders n1, n2 , respectively, such that E(G) = E(G1) ∪ E(G2) and |V (G1) ∩ V (G2)| ≤ 1. If n1 ≥ d + 3, then

‖G1‖ ≥
(

n1 − d

2

)
+ d.

Proof. Let G be a graph of order n satisfying the assumptions of the lemma. It follows that either G is disconnected or a 
unique common vertex of G1 and G2 is a cut vertex of G .

If |V (G1) ∩ V (G2)| = 1, then n2 = n −n1 +1. If V (G1) ∩ V (G2) =∅, then n2 = n −n1. Hence in both cases, ‖G2‖ ≤ (n−n1+1
2

)
and n ≥ n1 + 1. Consequently, ‖G1‖ ≥ (n−d−1

2

) + d + 1 − (n−n1+1
2

)
. The inequality

(
n − d − 1

2

)
+ d + 1 −

(
n − n1 + 1

2

)
≥

(
n1 − d

2

)
+ d

holds for every n ≥ n1 + 1. �
Lemma 4.7 asserts that G1 fulfils the assumptions of Theorem 4.1 with d − 1 if |G1| ≥ d + 3. Clearly, the claim holds also 

for the subgraph G2 whenever |G2| ≥ d + 3.

Proof of Theorem 4.1. Let G �= K1 +(Kn−d−2 ∪ Kd+1) be an admissible graph of order n ≥ d +4 and size ‖G‖ ≥ (n−d−1
2

)+d +1
for some d ≥ 3. The proof goes by induction on the number s of blocks of G . Observe that G contains at least one 2-
connected block because ‖G‖ ≥ n. If s = 1, then G is a 2-connected graph, so the claim follows directly from Proposition 4.5.

For the induction step, assume that the claim holds for any d ≥ 3, and for every admissible graph with at most s − 1
blocks satisfying the assumptions of Theorem 4.1. Let G have s ≥ 2 blocks. If δ(G) = 1, then G has at most d + 1 pendant 
edges, and it is easy to see that there is a pendant vertex u such that G − u �= K1 + (Kn−d−2 ∪ Kd). Let G1 = G − u
and let G2 = K2 be the pendant edge incident to u. Then G1 satisfies the assumptions of Lemma 4.7, therefore G1 has 
9
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a distinguishing colouring with colours 1, . . . , d − 1, by the induction hypothesis. We put colour d on the pendant edge 
incident to u.

Assume then that G does not have pendant edges. We choose a largest possible block G2 of G , containing at most one 
cut vertex of G . That is, G2 is either a pendant block with exactly one cut vertex z of G , or G2 is a 2-connected component 
of G . We divide the graph G into two subgraphs G1, G2 of orders n1, n2 respectively, such that V (G) = V (G1) ∪ V (G2), 
E(G) = E(G1) ∪ E(G2) and the intersection V (G1) ∩ V (G2) is either an empty set or equals {z}. Then the number of blocks 
of each of the subgraphs G1, G2 is less than that of G . It follows that, for each i ∈ {1, 2}, Lemma 4.7 implies that ‖Gi‖ ≥(ni−d

2

) + d unless ni ≤ d + 2. Therefore, we consider three cases.

Case 1. Let ni ≥ d + 3 if d ≥ 4, and ni ≥ 8 if d = 3, for both i ∈ {1, 2}. Then ‖Gi‖ ≥ (ni−d
2

) + d, i ∈ {1, 2}, by Lemma 4.7. 
If d ≥ 4, then D ′(Gi) ≤ d − 1, i ∈ {1, 2}, by the induction hypothesis. Also, if d = 3, then D ′(Gi) ≤ d − 1 = 2, i ∈ {1, 2}, 
by Theorem 3.1. We colour the edges of G1 with colours 1, . . . , d − 1 and we necessarily use colour d in a colouring of 
the block G2. Thus we obtain a distinguishing colouring of the whole graph G with d colours, breaking also a possible 
isomorphism of the block G2 and a subgraph of G1.

Case 2. Let d = 3 and n j ≤ 7 for some j ∈ {1, 2}. Thus we cannot use Theorem 3.1 for the graph G j in the induction 
step. For each i ∈ {1, 2}, we have D ′(Gi) ≤ 3, due to Lemma 4.3 if ni ≤ 7, or due to Theorem 3.1 if ni ≥ 8 (when we even 
have D ′(Gi) ≤ 2). If D ′(G1) �= D ′(G2), then G has a distinguishing 3-colouring, where colour 3 appears exclusively in the 
subgraph with the larger distinguishing index.

Only if ni ≤ 7 for both i ∈ {1, 2}, it is possible that D ′(G1) = D ′(G2) = 3. In this case, we have to break an automorphism 
of G which exchanges the block G2 with an isomorphic block of G1, if it exists. The constraints for ni and for the size of G
easily imply that G1 contains two blocks isomorphic to G2 only if G = K1 + 3K2, i.e. G consists of three triangles sharing 
a vertex. Clearly, D ′(K1 + 3K2) = 3. Otherwise, G1 contains at most one block G ′

2 isomorphic to G2. The only possible case 
when G ′

2 is a proper subgraph of G1 appears if G2 = K4 and G1 consists of K4 and K3 with a common vertex. But K4 has 
two nonisomorphic distinguishing 3-colourings due to Lemma 4.2, and we are done. Finally, suppose that G1 and G2 are 
isomorphic. It follows from Theorem 2.6 that they are traceable, because n ≥ 2n1 − 1 and 2 

[(n1−2
2

) + 2
]

<
(2n1−5

2

) + 4 for 
n1 ≤ 7. Again, we infer from Lemma 4.2 that D ′(G) ≤ 3.

Consequently, Theorem 4.1 holds for d = 3.
Case 3. Let d ≥ 4 and n j ≤ d + 2 for some j ∈ {1, 2}. Then D ′(G j) ≤ d − 1 by Lemma 4.4 for n j ≥ 5, or by Theorem 1.1 for 

n j ≤ 4. Analogously, D ′(Gi) ≤ d −1, for i �= j, if ni ≤ d +2. Also, if ni ≥ d +3 then D ′(Gi) ≤ d −1 by the induction hypothesis. 
Therefore, we can distinguishingly colour the graph G with d colours, using colour d only in G2.

This completes the proof of Theorem 4.1, and thus of Theorem 1.3. �
5. Remarks

In this section, we discuss the relevance of the assumptions of Theorem 1.3, that is, we determine the values f (n, d) not 
covered by our result. We end with a conjecture.

Let d = 2. We clearly have f (n, 2) = ‖Kn‖ = (n
2

)
for n = 3, 4, 5. Further, observe that D ′(K2 + Kn−2) = 3 for n = 6, 7, 8, 

hence f (n, 2) ≥ 2n − 3 >
(n−3

2

)+ 3 for n = 6, 7, and Kn−4 + K1 + K3 is not a unique connected graph of order n = 8 and size (n−3
2

) + 3 with the distinguishing index greater than two.
Let d ≥ 3. Trivially, f (n, n − 2) = ‖Kn‖ = (n

2

)
for n = 3, 4, and f (n, n − 2) = ‖K1,n−1‖ = n − 1, for n ≥ 5.

For d = n − 3, it follows from Lemma 4.4 that f (5, 2) = ‖K5‖ = 10, f (6, 3) = ‖K3 ∪ K3‖ = 6, and f (n, n − 3) = ‖K1,n−1‖ =
n − 1 for n ≥ 7. This is why we assume d ≤ n − 4 in Theorem 1.3.

We terminate with the following question. What is a maximum size of a graph G with D ′(G) > d and with bounded 
minimum degree? In other words, for suitable positive integers n, δ, d, we search for the value

g(n,d, δ) = max{‖G‖ : G ∈ G, |G| = n, δ(G) ≥ δ, D ′(G) > d}.
The vertex set of the graph Kδ + (Kn−dδ−δ−1 ∪ Kdδ+1) consists of a clique K of order n − dδ − 1 and an independent set A
of dδ + 1 vertices, each adjacent to the same set v1, . . . , vδ of vertices of the clique K . For each vertex u ∈ A, the sequence 
(v1u, . . . , vδu) of edges incident to u has to be coloured by a distinct sequence of colours in a distinguishing colouring. 
With d colours, we have only dδ such sequences. Hence, Kδ + (Kn−dδ−δ−1 ∪ Kdδ+1) > d. We believe that this is a unique 
connected extremal graph, whence we believe that the following conjecture is true.

Conjecture 5.1. Let d ≥ 2, δ ≥ 2 and n ≥ dδ + δ + 1. Then

g(n,d, δ) =
(

n − dδ − 1

2

)
+ δ(dδ + 1).

Moreover, Kδ + (Kn−dδ−δ−1 ∪ Kdδ+1) is a unique connected graph of order n, minimum degree at least δ, size g(n, d, δ), and the 
distinguishing index greater than d.
10
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