ORIGINAL PAPER

Paired Domination in Trees

Aleksandra Gorzkowska¹ · Michael A. Henning² · Elżbieta Kleszcz^{1,2} · Monika Pilśniak¹

Received: 18 December 2021 / Revised: 13 July 2022 / Accepted: 18 July 2022 $\ensuremath{\mathbb{C}}$ The Author(s) 2022

Abstract

A set *S* of vertices in a graph *G* is a paired dominating set if every vertex of *G* is adjacent to a vertex in *S* and the subgraph induced by *S* contains a perfect matching (not necessarily as an induced subgraph). The paired domination number, $\gamma_{pr}(G)$, of *G* is the minimum cardinality of a paired dominating set of *G*. In this paper, we show that if *T* is a tree of order at least 2, then $\gamma_{pr}(T) \leq 2\alpha(T) - \varphi(T)$ where $\alpha(T)$ is the independence number and $\varphi(T)$ is the *P*₃-packing number. We present a tight upper bound on the paired domination number of a tree *T* in terms of its maximum degree Δ . For $\Delta \geq 1$, we show that if *T* is a tree of order *n* with maximum degree Δ , then $\gamma_{pr}(T) \leq (\frac{54-4}{8d-4})n + \frac{1}{2}n_1(T) + \frac{1}{4}n_2(T) - (\frac{4-2}{(4d-2)})$, where $n_1(T)$ and $n_2(T)$ denote the number of vertices of degree 1 and 2, respectively, in *T*. Further, we show that this bound is tight for all $\Delta \geq 3$. As a consequence of this result, if *T* is a tree of order $n \geq 2$, then $\gamma_{pr}(T) \leq \frac{5}{8}n + \frac{1}{2}n_1(T) + \frac{1}{4}n_2(T)$, and this bound is asymptotically best possible.

Keywords Paired domination · Trees · Independence number

Research supported in part by the University of Johannesburg.

Elżbieta Kleszcz elzbieta.kleszcz@agh.edu.pl

> Aleksandra Gorzkowska agorzkow@agh.edu.pl

Michael A. Henning mahenning@uj.ac.za

Monika Pilśniak pilsniak@agh.edu.pl

- ¹ Department of Discrete Mathematics, AGH University, al. Mickiewicza 30, Krakow 30-059, Poland
- ² Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa

Mathematics Subject Classification 05C69

1 Introduction

A *dominating set* of a graph G is a set $S \subseteq V(G)$ such that every vertex of $V(G) \setminus S$ is adjacent to some vertex in S. A *paired dominating set*, abbreviated PD-set, of an isolate-free graph G is a dominating set S of G with the additional property that the subgraph G[S] induced by S contains a perfect matching M (not necessarily induced). With respect to the matching M, two vertices joined by an edge of M are *paired* and are called *partners* in S. The *paired domination number*, $\gamma_{pr}(G)$, of G is the minimum cardinality of a PD-set of G. We call a PD-set of G of cardinality $\gamma_{pr}(G)$ a γ_{pr} -set of G. We note that the paired domination number $\gamma_{pr}(G)$ is an even integer. For a recent survey on paired domination in graphs, we refer the reader to the book chapter [3].

We in general follow the graph theory notation in [5]. In particular, we denote the *degree* of a vertex v in a graph G by $d_G(v)$. A vertex of degree 0 is called an *isolated* vertex, and a graph is *isolate-free* if it contains no isolated vertex. The maximum (minimum) degree among the vertices of G is denoted by $\Delta(G)$ ($\delta(G)$, respectively). A *leaf* of a tree T is a vertex of degree 1 in T, and a *support vertex* of T is a vertex with a leaf neighbor.

The *distance* d(u, v) between two vertices u and v in a connected graph G, equals the minimum length of a (u, v)-path in G from u to v. A shortest, or minimum length, path between two vertices u and v is called a (u, v)-geodesic. A geodesic is any shortest path in a graph. The *diameter* diam(G) of G is the maximum distance among all pairs of vertices in G. A *diametral path* in G is a geodesic which has length equal to diameter of G.

A rooted tree *T* distinguishes one vertex *r* called the *root*. For each vertex $v \neq r$ of *T*, the *parent* of *v* is the neighbor of *v* on the unique (r, v)-path, while a *child* of *v* is any other neighbor of *v*. A *descendant* of *v* is a vertex $u \neq v$ such that the unique (r, u)-path contains *v*. We let D(v) denote the set of descendants of *v*, and we define $D[v] = D(v) \cup \{v\}$. The *maximal subtree* at *v* is the subtree of *T* induced by D[v], and is denoted by T_v .

The *independence number* $\alpha(G)$ of a graph *G* is the maximum cardinality of an independent set of vertices in *G*. For $k \ge 1$ an integer, we use the standard notation $[k] = \{1, ..., k\}$.

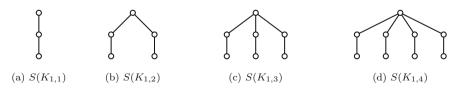


Fig. 1 The subdivided stars $S(K_{1,1})$, $S(K_{1,2})$, $S(K_{1,3})$, and $S(K_{1,4})$

For $r \ge 1$ a subdivided star $S(K_{1,r})$ is the tree of order 2r + 1 obtained from a star $K_{1,r}$ by subdividing every edge exactly once. For example, the subdivided stars $S(K_{1,1})$, $S(K_{1,2})$, $S(K_{1,3})$, and $S(K_{1,4})$ are shown in Figs. 1a,b,c,d.

2 Known results in trees

The paired domination number of a path P_n on $n \ge 2$ vertices is essentially one-half its order.

Observation 1 For $n \ge 2$, we have $\gamma_{pr}(P_n) = 2 \lceil \frac{n}{4} \rceil$.

Every support vertex in a tree *T* is contained in every PD-set of *T*. Further we note that if every PD-set in *T* contains an independent set *I* of vertices, then in order to pair the vertices of *I* with (distinct) vertices in the PD-set of *T*, we have $\gamma_{pr}(T) \ge 2|I|$. For example, if *T* is a subdivided star $S(K_{1,r})$ for some $r \ge 2$, then *T* has order n = 2r + 1 and the set of *r* support vertices in *T* form an independent set and belong to every PD-set of *T*, implying that $\gamma_{pr}(T) \ge 2r$. However, we can pair each support vertex with its leaf neighbor to form a PD-set of *T*, implying that $\gamma_{pr}(T) \le 2r$. Consequently, $\gamma_{pr}(T) = 2r$. We state this formally as follows.

Observation 2 If T is a subdivided star of order n, then $\gamma_{pr}(T) = n - 1$.

In 1998 Haynes and Slater [4] obtained the following upper bound on the paired domination number of a tree of order at least 3.

Theorem 3 ([4]) If *T* is a tree of order $n \ge 3$, then $\gamma_{pr}(G) \le n - 1$ with equality if and only if *T* is the path P_3 or a subdivided star $S(K_{1,r})$ for $r \ge 2$.

Subsequent to the 1998 result of Theorem 3, several authors presented improved bounds on the paired domination number of a tree. We mention, for example, the 2004 paper by Chellali and Haynes [1], the 2006 paper by Raczek [6] and the 2014 paper by Dehgardi, Sheikholeslami and Khodkar [2]. In this paper, we present tight upper bounds on the paired domination number of a tree in terms of its order, maximum degree, and number of vertices of degree 1 and 2. We also present tight upper bounds on the paired domination number of a tree in terms of its independence number.

3 Main Results

In view of Observation 1, it is only of interest to determine upper bounds on the paired domination number of a tree with maximum degree at least 3. In this paper, we present a stronger result than the trivial upper bound of Theorem 3.

In order to state our first result, we define a P_3 -packing in a tree T as a collection of vertex disjoint paths P_3 (on three vertices) each of which contains at least one leaf of the original tree T. Further, we define the P_3 -packing number in T, denoted $\varphi(T)$, as the maximum cardinality of a P_3 -packing in T. We are now in a position to state the

following upper bound on the paired domination of a tree in terms of its independence number. We present a proof of Theorem 4 in Sect. 4.

Theorem 4 If T is a tree of order at least2, then $\gamma_{pr}(T) \leq 2\alpha(T) - \varphi(T)$, and this bound is tight.

The natural consequence of the definition of a P_3 -packing is its extension to the set of subdivided stars in trees. For this purpose, let T be a tree of maximum degree Δ where $\Delta \ge 3$. We define a subdivided star set of T as a set of vertex disjoint subdivided stars each of which is a subgraph of T. Further, the number of leaves of each such subdivided star belongs to the set $\{2, \ldots, \Delta - 1\}$, and every leaf from a subdivided star in the set is a leaf of T. More formally, a set $\mathcal{P} = \{T_1, \ldots, T_p\}$ is a subdivided star set of T if the following holds.

- T_i is a subdivided star $S(K_{1,n_i})$ where $2 \le n_i \le \Delta 1$ for every $i \in [p]$.
- Every leaf of T_i is a leaf of T for all $i \in [p]$.
- $V(T_i) \cap V(T_j) = \emptyset$ for $1 \le i < j \le p$.

Further, if $\mathcal{P} = \emptyset$, we define $\xi_{\mathcal{P}}(T) = 0$, and if $\mathcal{P} \neq \emptyset$, we define

$$\xi_{\mathcal{P}}(T) = \sum_{i=1}^{p} (n_i - 1) \text{ and } \Phi_{\Delta}(T) = \max \xi_{\mathcal{P}}(T)$$

where the maximum in the definition of $\Phi_{\Delta}(T)$ is taken over all subdivided star sets \mathcal{P} in the tree T (which satisfies $\Delta(T) = \Delta \ge 3$). A subdivided star set \mathcal{P} of T satisfying $\Phi_{\Delta}(T) = \xi_{\mathcal{P}}(T)$ we call an *optimal subdivided star set*. We note that taking $\mathcal{P} = \emptyset$, we have $\xi_{\mathcal{P}}(T) = 0$, and so $\Phi_{\Delta}(T) \ge 0$.

To illustrate this definition, let *T* be the tree of maximum degree $\Delta(T) = 6$ (here $\Delta = 6$) shown in Fig. 2. Let T_i be the subtree of *T* induced by the vertex v_i , the support vertices of v_i , and the leaves at distance 2 from v_i . We note that $T_i \cong S(K_{1,i+1})$ for $i \in [4]$. The set $\mathcal{P} = \{T_1, T_2, T_3, T_4\}$ is a subdivided star set satisfying $\xi_{\mathcal{P}}(T) = 1 + 2 + 3 + 4 = 10$, and so $\Phi_6(T) \ge 10$. From the structure of the tree *T* we can readily deduce that $\Phi_6(T) \le 10$. Consequently, $\Phi_6(T) = 10$.

Let $n_1(T)$ and $n_2(T)$ denote the number of vertices of degree 1 and 2, respectively, in a tree *T*, and let $n_{\geq 3}(T)$ denote the number of vertices of degree at least 3 in *T*. We note that if *T* is a tree of order $n \geq 3$, then $n = n_1(T) + n_2(T) + n_{\geq 3}(T)$. We are now in a position to state our second main result, a proof of which we present in Sect. 5.

Theorem 5 For $\Delta \ge 1$, if T is a tree of ordern with maximum degree $\Delta(T) = \Delta$, then

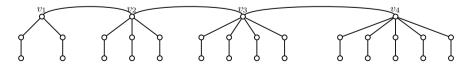


Fig. 2 A tree T with $\Delta(T) = 6$ and $\Phi_6(T) = 10$

$$4\gamma_{\rm pr}(T) \le 2n + 2n_1(T) + n_2(T) + \Phi_A(T), \tag{1}$$

and this bound is tight for all $\Delta \geq 3$.

We next present the following upper bound on the paired domination of a tree, a proof of which is presented in Sect. 6.

Theorem 6 For $\Delta \ge 1$, if *T* is a tree of ordern with maximum degree $\Delta(T) = \Delta$, then

$$\gamma_{\rm pr}(T) \le \left(\frac{5\varDelta - 4}{8\varDelta - 4}\right)n + \frac{1}{2}n_1(T) + \frac{1}{4}n_2(T) - \left(\frac{\varDelta - 2}{4\varDelta - 2}\right).$$
 (2)

As an immediate consequence of Theorem 6, we have the following upper bound on the paired domination number of a tree.

Corollary 7 If T is a tree of ordern ≥ 2 , then

$$\gamma_{\rm pr}(T) \le \frac{5}{8}n + \frac{1}{2}n_1(T) + \frac{1}{4}n_2(T),$$
(3)

and this bound is asymptotically best possible.

4 Proof of Theorem 4

In this section we give a proof of Theorem 4. Recall its statement.

Theorem 4. If *T* is a tree of order at least 2, then $\gamma_{pr}(T) \leq 2\alpha(T) - \varphi(T)$, and this bound is tight.

Proof We proceed by induction on the order $n \ge 2$ of a tree *T*. If n = 2, then $T = P_2$, and $\gamma_{pr}(T) = 2$, $\alpha(T) = 1$ and $\varphi(T) = 0$, and so $\gamma_{pr}(T) = 2\alpha(T) - \varphi(T)$. This establish the base case. Let $n \ge 3$ and assume that if *T'* is a tree of order *n'* where $2 \le n' < n$, then $\gamma_{pr}(T') \le 2\alpha(T') - \varphi(T')$. Let *T* be a tree of order *n*.

Suppose that *T* contains a strong support vertex *v*, and so *v* has at least two leaf neighbors in *T*. Let u_1 and u_2 be two leaf neighbors of *v*, and let $T' = T - u_1$. We can choose a maximum independent set in a tree to contain all its leaves, implying that $\alpha(T) = \alpha(T') + 1$. Further, we note that if \mathcal{P} is a maximum P_3 -packing in *T*, then either there is a path $P' \in \mathcal{P}$ that contains the vertex u_1 , in which case $\mathcal{P} \setminus \{P'\}$ is a P_3 -packing in *T'*, or no path in \mathcal{P} contain the vertex u_1 , in which case \mathcal{P} is a P_3 -packing in *T'*. Thus, $\varphi(T') \ge |\mathcal{P}| - 1 = \varphi(T) - 1$. Every PD-set of *T'* contains the support vertex *v*, implying that $\gamma_{\rm pr}(T) \le \gamma_{\rm pr}(T')$. Applying the inductive hypothesis to *T'*, we therefore have $\gamma_{\rm pr}(T) \le \gamma_{\rm pr}(T') \le 2\alpha(T') - \varphi(T') \le 2(\alpha(T) - 1) - (\varphi(T) - 1) < 2\alpha(T) - \varphi(T)$. Hence, we may assume that *T* contains no strong support vertex, that is, every support vertex in *T* has exactly one leaf neighbor.

Since *T* has order $n \ge 3$, our earlier assumptions imply that the tree *T* is not a star, and so diam(T) ≥ 3 . Further our assumptions imply that if diam(T) = 3, then $T = P_4$. In this case, $\gamma_{\rm pr}(T) = 2$, $\alpha(T) = 2$ and $\varphi(T) = 1$, and so $\gamma_{\rm pr}(T) < 2\alpha(T) - \varphi(T)$. Hence, we may assume that diam(T) ≥ 4 , for otherwise the desired result follows. Let $P: v_0v_1v_2...v_d$ be a longest path in *T*, and so $d = \text{diam}(T) \ge 4$. We now root the tree *T* at the vertex $r = v_d$. Since every support vertex in *T* has exactly one leaf neighbor, we note that $d_T(v_1) = 2$. We proceed further with the following series of claims.

claim 1 If $d_T(v_2) \ge 3$, then $\gamma_{pr}(T) \le 2\alpha(T) - \varphi(T)$.

Proof Suppose that $d_T(v_2) \ge 3$. Suppose firstly that the vertex v_2 is a support vertex with (unique) leaf neighbor u_1 . Let $T' = T - u_1$. We can choose a γ_{pr} -set of T' to contain the vertices v_1 and v_2 , implying that $\gamma_{nr}(T) \leq \gamma_{nr}(T')$. Every independent set in T' is an independent set in T, implying that $\alpha(T) \ge \alpha(T')$. We can choose a maximum P_3 -packing \mathcal{P} in T so that it contains the path $P' \in \mathcal{P}$ where $P' : v_0v_1v_2$. The set \mathcal{P} is a P_3 -packing in T', and so $\varphi(T') \geq |\mathcal{P}| = \varphi(T)$. Therefore applying the hypothesis the T',inductive to tree we have $\gamma_{\rm pr}(T) \leq \gamma_{\rm pr}(T') \leq 2\alpha(T') - \varphi(T') \leq 2\alpha(T) - \varphi(T)$. Hence, we may assume that v_2 is not a support vertex in T, and so every child of v_2 is a support vertex of degree 2 in Τ.

By supposition, $d_T(v_2) \ge 3$. Let w_1 be a child of v_2 different from v_1 , and let w_0 be the child of w_1 . We consider the tree $T' = T - \{w_0, w_1\}$. In this case, we note that $\alpha(T) = \alpha(T') + 1$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it the vertices w_0 and w_1 , and so $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2$. We can choose a maximum P_3 packing \mathcal{P} in T so that it contains the path $P' \in \mathcal{P}$ where $P' : v_0v_1v_2$. The set \mathcal{P} is a P_3 -packing in T', and so $\varphi(T') \ge |\mathcal{P}| = \varphi(T)$. Therefore applying the inductive hypothesis to the tree T', we have $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2 \le 2\alpha(T') - \varphi(T') + 2 \le 2(\alpha(T) - 1) - \varphi(T) + 2 = 2\alpha(T) - \varphi(T)$.

By Claim 1, we may assume that $d_T(v_2) = 2$, for otherwise the desired result follows. More generally, we may assume that every vertex at distance d - 2 from the root $r = v_d$ of the rooted tree *T* has degree equal to 2.

claim 2 If $d_T(v_3) = 2$, then $\gamma_{pr}(T) \leq 2\alpha(T) - \varphi(T)$.

Proof Suppose that $d_T(v_3) = 2$. If $T \cong P_5$, then the inequality holds. Thus, we may further assume that $T \ncong P_5$. In this case, we consider the tree $T' = T - \{v_0, v_1, v_2, v_3\}$. Every independent set in T' can be extended to an independent set in T by adding to it the vertices v_0 and v_2 , and so $\alpha(T) \ge \alpha(T') + 2$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it the vertices v_1 and v_2 , and so $\alpha(T) \ge \alpha(T') + 2$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it the vertices v_1 and v_2 , and so $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2$. We can choose a maximum P_3 -packing \mathcal{P} in T so that it contains the path $P' \in \mathcal{P}$ where $P' : v_0v_1v_2$. The set $\mathcal{P} \setminus \{P'\}$ is a P_3 -packing in T', and so $\varphi(T') \ge |\mathcal{P}| - 1 = \varphi(T) - 1$. Therefore, applying the inductive hypothesis to the tree T', we have $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2 \le 2\alpha(T') - \varphi(T') + 2 \le 2(\alpha(T) - 2) - (\varphi(T) - 1) + 2 < 2\alpha(T) - \varphi(T)$.

claim 3 If v_3 is a support vertex, then $\gamma_{\rm pr}(T) \leq 2\alpha(T) - \varphi(T)$.

Proof Suppose that the vertex v_3 has a leaf neighbor u_2 . In this case, we consider the tree $T' = T - \{v_0, v_1, v_2\}$. We can choose a maximum independent set of T' to contain the leaf u_2 . Such a maximum independent set can be extended to an independent set of T by adding to it the vertices v_0 and v_2 , and so $\alpha(T) \ge \alpha(T') + 2$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it the vertices v_1 and v_2 , and so $\alpha(T) \ge \alpha(T') + 2$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it the vertices v_1 and v_2 , and so $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2$. We can choose a maximum P_3 -packing \mathcal{P} in T so that it contains the path $P' \in \mathcal{P}$ where $P' : v_0v_1v_2$. The set $\mathcal{P} \setminus \{P'\}$ is a P_3 -packing in T', and so $\varphi(T') \ge |\mathcal{P}| - 1 = \varphi(T) - 1$. Therefore applying the inductive hypothesis to the tree T', we have $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2 \le 2\alpha(T') - \varphi(T') + 2 \le 2(\alpha(T) - 2) - (\varphi(T) - 1) + 2 < 2\alpha(T) - \varphi(T)$.

claim 4 If the vertex v_3 has a descendant at distance 3 that is different from v_0 , then $\gamma_{pr}(T) \le 2\alpha(T) - \varphi(T)$.

Proof Suppose that the vertex v_3 has a descendant w_0 at distance 3 that is different from v_0 . Let $w_0w_1w_2v_3$ be the path from w_0 to the vertex v_3 . By our earlier assumptions, the vertex w_0 is a leaf and $d_T(w_1) = d_T(w_2) = 2$. We now consider the tree $T' = T - \{v_0, v_1, v_2\}$. We can choose a maximum independent set of T' to contain the vertices w_0 and w_2 . Such a maximum independent set can be extended to an independent set of T by adding to it the vertices v_0 and v_2 , and so $\alpha(T) \ge \alpha(T') + 2$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it the vertices v_1 and v_2 , and so $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2$. We can choose a maximum P_3 -packing \mathcal{P} in T so that it contains the path $P' \in \mathcal{P}$ where $P' : v_0v_1v_2$. The set $\mathcal{P} \setminus \{P'\}$ is a P_3 -packing in T', and so $\varphi(T') \ge |\mathcal{P}| - 1 = \varphi(T) - 1$. Therefore applying the inductive hypothesis to the tree T', we have $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2 \le 2\alpha(T') - \varphi(T') + 2 \le 2(\alpha(T) - 2) - (\varphi(T) - 1) + 2 < 2\alpha(T) - \varphi(T)$.

By Claim 2, 3 and 4, we may assume that $d_T(v_3) \ge 3$ and that every child of v_3 different from v_2 is a support vertex of degree 2 in *T*. Let w_2 be an arbitrary child of v_3 different from v_2 , and let w_1 be the child of w_2 . Let ℓ be the number of children of v_3 . By assumption, $\ell \ge 2$ and every leaf in T_{v_3} different from v_0 is at distance 2 from v_3 , where T_{v_3} is the maximal subtree rooted at v_3 . Thus, T_{v_3} is obtained from a star $K_{1,\ell}$ by subdividing $\ell - 1$ edges once and subdividing the remaining edge of the star twice, and so T_{v_3} has order $2\ell + 2$. Let T' be the tree obtained from T by deleting the vertex v_3 and all descendants of v_3 , that is, $T' = T - V(T_{v_3})$. By our earlier assumptions, the tree T' has order at least 3.

Every independent set in T' can be extended to an independent set in T by adding to it the vertex v_2 and the ℓ leaves of T_{v_3} , and so $\alpha(T) \ge \alpha(T') + \ell + 1$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it 2ℓ vertices from the tree T_{v_3} , and so $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2\ell$. We can choose a maximum P_3 -packing \mathcal{P} in T so that it contains the paths $P' : v_0v_1v_2$ and $Q' : w_1w_2v_3$. The set $\mathcal{P} \setminus \{P', Q'\}$ is a P_3 -packing in T', and so $\varphi(T') \ge |\mathcal{P}| - 2 = \varphi(T) - 2$. Therefore applying the inductive hypothesis to the tree T', we have

$$\begin{split} \gamma_{\mathrm{pr}}(T) &\leq \gamma_{\mathrm{pr}}(T') + 2\ell \\ &\leq 2\alpha(T') - \varphi(T') + 2\ell \\ &\leq 2(\alpha(T) - \ell - 1) - (\varphi(T) - 2) + 2\ell \\ &= 2\alpha(T) - \varphi(T). \end{split}$$

This completes the proof of the upper bound.

That the upper bound in Theorem 4 is sharp may be seen as follows. For an even $k \ge 2$, let T_1, T_2, \ldots, T_k be vertex disjoint subdivided stars, that is, $T_i = S(K_{1,n_i})$ where $n_i \ge 1$. If $n_i \ge 2$, then let v_i denote the central vertex (of degree *i*) of the subdivided star T_i , while if $n_i = 1$, then let v_i be one of the two leaves of $T_i \cong P_3$. Let $T = T_k(n_1, \ldots, n_k)$ be the tree obtained from the disjoint union of the trees T_1, T_2, \ldots, T_k by adding the edges $v_i v_{i+1}$ for all $i \in [k-1]$, and so $v_1 v_2 \ldots v_k$ is a path in *T*. The resulting tree *T* satisfies $\gamma_{pr}(T) = 2\alpha(T) - \varphi(T)$ noting that

$$\gamma_{\rm pr}(T) = \sum_{i=1}^{k} 2n_i, \alpha(T) = \frac{1}{2}k + \sum_{i=1}^{k} n_i \text{ and } \varphi(T) = k.$$

In the special case when $n_i = 1$ for all $i \in [k]$, the tree $T = T_k(n_1, \ldots, n_k)$ is the 2corona of a path P_k , that is, $T = P_k \circ P_2$ is obtained from a path P_k by attaching a path of length 2 to each vertex of P_k so that the resulting paths are vertex-disjoint. In this case, $\gamma_{pr}(T) = 2k$, $\alpha(T) = \frac{3}{2}k$ and $\varphi(T) = k$, and so $\gamma_{pr}(T) = 2\alpha(T) - \varphi(T)$. For example, the 2-corona $T = P_6 \circ P_2$ of a path P_6 is illustrated in Fig. 3.

When k = 4 and $n_1 = 5$, $n_2 = n_3 = 4$ and $n_4 = 6$, the tree $T = T_k(n_1, ..., n_k)$, for example, is illustrated in Fig. 4. For this example, $\gamma_{\rm pr}(T) = 38$, $\alpha(T) = 21$ and $\varphi(T) = 4$, and so $\gamma_{\rm pr}(T) = 2\alpha(T) - \varphi(T)$.

5 Proof of Theorem 5

In this section we give a proof of Theorem 5. Recall its statement.

Theorem 5. For $\Delta \ge 1$, if *T* is a tree of order *n* with maximum degree $\Delta(T) = \Delta$, then

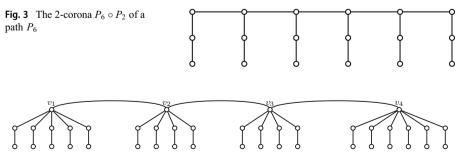


Fig. 4 The tree $T = T_4(5, 4, 4, 6)$

$$4\gamma_{\rm pr}(T) \le 2n + 2n_1(T) + n_2(T) + \Phi_{\Delta}(T),$$

and this bound is tight for all $\Delta \geq 3$.

Proof For a tree T of order n with maximum degree $\Delta(T) = \Delta$ where $\Delta \ge 1$, we define the *weight* of T by

$$w(T) = 2n + 2n_1(T) + n_2(T) + \Phi_A(T).$$

We prove by induction on $n + \Delta$ that $4\gamma_{pr}(T) \le w(T)$. If $\Delta = 1$, then $T = K_2$ and $\gamma_{pr}(T) = 2$, $n = n_1(T) = 2$, and $n_2(T) = \Phi_{\Delta}(T) = 0$, and so $4\gamma_{pr}(T) = 8 = w(T)$. If $\Delta = 2$, then T is a path P_n , where $n \ge 3$. In this case, $w(T) = 3n + 2 + \Phi_{\Delta}(T)$. If n = 5, then $\Phi_{\Delta}(T) = 1$, while if $n \ne 5$, then $\Phi_{\Delta}(T) = 0$. By Observation 1, we therefore have that $4\gamma_{pr}(T) < w(T)$. Hence, we may assume in what follows that $\Delta \ge 3$, for otherwise the desired result is immediate.

Since $\Delta(T) = \Delta$, we note that $n \ge \Delta + 1$, and so the smallest value of $n + \Delta$ is $2\Delta + 1$. If $n + \Delta = 2\Delta + 1$, then $n = \Delta + 1$ and T is a star $K_{1,\Delta}$. In this case, $\gamma_{\rm pr}(T) = 2$, $n_1(T) = \Delta$, $n_2(T) = 0$, and $\Phi_{\Delta}(T) = 0$, and so $4\gamma_{\rm pr}(T) = 8 < 4\Delta + 2 = w(T)$. This establishes the base cases. Let $n \ge \Delta + 2$ where $\Delta \ge 3$, and assume that if T' is a tree of order n' and maximum degree $\Delta(T') = \Delta'$ where $n' \le n$ and $\Delta' \le \Delta$ satisfying $n' + \Delta' < n + \Delta$, then $4\gamma_{\rm pr}(T') \le w(T')$. Let $\Delta \ge 3$ and let T be a tree of order n with $\Delta(T) = \Delta$. We proceed further with the following claim.

claim 1 If T contains a support vertex with at least two leaf neighbors, then $4\gamma_{pr}(T) \leq w(T)$.

Proof Suppose that there is a vertex v in T with at least two leaf neighbors, say v_1 and v_2 . Let S be a γ_{pr} -set of T. At most one of v_1 and v_2 belongs to the set S. Renaming v_1 and v_2 if necessary, we may assume that $v_1 \notin S$. We now consider the tree $T' = T - v_1$. The set S is a PD-set of T', and so $\gamma_{pr}(T') \leq |S| = \gamma_{pr}(T)$. Every PD-set of T' contains the support vertex v, implying that $\gamma_{pr}(T) \leq \gamma_{pr}(T')$. Consequently, $\gamma_{pr}(T') = \gamma_{pr}(T)$. Let T' have order n' with maximum degree $\Delta(T') = \Delta'$. We note that n' = n - 1, $n_1(T') = n_1(T) - 1$, $n_2(T') \leq n_2(T) + 1$ and $\Delta' \leq \Delta$. Every subdivided star set of T' is a subdivided star set of T, implying that $\Phi'_A(T') \leq \Phi_A(T)$. These observations imply that

$$w(T) - w(T') = 2(n - n') + 2(n_1(T) - n_1(T')) + (n_2(T) - n_2(T')) + (\Phi_A(T) - \Phi'_A(T')) \geq 2 + 2 - 1 + 0 = 3,$$

and so $w(T) \ge w(T') + 3$. Applying the inductive hypothesis to the tree T', we have

$$4\gamma_{\rm pr}(T) = 4\gamma_{\rm pr}(T') \le w(T') \le w(T) - 3 < w(T).$$

This completes the proof of Claim 1.

By Claim 1, we may assume that every support vertex of *T* has exactly one leaf neighbor, for otherwise the desired inequality, namely $4\gamma_{pr}(T) \le w(T)$ holds. Recall that $n \ge \Delta + 2$, and so diam $(T) \ge 3$. Let $P : v_0v_1 \dots v_d$ be a diametral path in *T*, and so v_1 and v_d are two vertices at maximum distance apart in *T* and $d = \text{diam}(T) \ge 3$. The vertices v_1 and v_{d-1} are support vertices in *T*. By Claim 1 and the maximality of the path *P*, both v_1 and v_{d-1} have degree 2 in *T* with v_0 and v_d , respectively, as their unique leaf neighbors.

If d = 3, then $T = P_4$, contradicting the fact that $\Delta(T) = \Delta \ge 3$. If d = 4, then T is a subdivided star $S(K_{1,\Delta})$ obtained from a star $K_{1,\Delta}$ by subdividing every edge exactly once. In this case, $\gamma_{\rm pr}(T) = 2\Delta = n - 1$. Moreover, $n_1(T) = n_2(T) = \Delta$ and $\Phi_{\Delta}(T) = \Delta - 2$. Thus,

$$w(T) = 2(2\varDelta + 1) + 2\varDelta + \varDelta + (\varDelta - 2) = 8\varDelta = 4\gamma_{pr}(T),$$

which yields equality in the desired bound. Hence, we may assume that $d \ge 5$. We now root the tree *T* at the vertex v_d . By Claim 1, at most one child of the vertex v_2 is a leaf. Further, by the maximality if the path *P*, every child of v_2 that is not a leaf is a support vertex of degree 2 in *T*. Let ℓ be the number of children of v_2 that are not leaves. We note that $1 \le \ell \le d - 1$ and that each child of v_2 that is not a leaf is a support vertex of degree 2. If v_2 has a leaf neighbor, then let $\ell_0 = 1$, while if v_2 is not a support vertex, let $\ell_0 = 0$.

claim 2 If $d_T(v_3) \ge 3$, then $4\gamma_{pr}(T) \le w(T)$.

Proof Suppose that $d_T(v_3) \ge 3$. In this case, we consider the tree T' obtained from T by deleting the vertex v_2 and all descendants of v_2 , that is, $T' = T - V(T_{v_2})$ where T_{v_2} is the maximal subtree rooted at v_2 . Let T' have order n' with maximum degree $\Delta(T') = \Delta'$. We note that $n' = n - 2\ell - \ell_0 - 1$, $n_1(T') = n_1(T) - \ell - \ell_0$, $n_2(T') \leq n_2(T) - \ell + 1$ and $\Delta' \leq \Delta$. Every optimal subdivided star set \mathcal{P}' of T' is a subdivided of Thus if $\ell = 1$. star set Τ. then $\Phi_{\Delta}(T) \ge \Phi_{\Delta}(T') = \Phi_{\Delta}(T') + \ell - 1 = \Phi_{\Delta}(T')$. If $\ell \ge 2$ and $\ell_0 = 0$, then the maximal subtree T_{ν_2} is a subdivided star $S(K_{1,\ell})$ that can be added to the set \mathcal{P}' , while if $\ell \ge 2$ and $\ell_0 = 1$, then removing the leaf neighbor of v_2 from the maximal subtree T_{v_2} produces a subdivided star $S(K_{1,\ell})$ that can be added to the set \mathcal{P}' , implying that $\Phi_A(T) \ge \Phi_A(T') + \ell - 1$. These observations imply that

$$\begin{split} \mathbf{w}(\mathbf{T}) - \mathbf{w}(\mathbf{T}') &= 2(n-n') + 2(n_1(T) - n_1(T')) \\ &+ (n_2(T) - n_2(T')) + (\varPhi_A(T) - \varPhi'_A(T')) \\ &\geq 2(2\ell + \ell_0 + 1) + 2(\ell + \ell_0) + (\ell - 1) + (\ell - 1) \\ &= 8\ell + 4\ell_0 \\ &\geq 8\ell, \end{split}$$

and so $w(T) \ge w(T') + 8\ell$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it the vertex v_2 and all children of v_2 of degree 2 together with their leaf neighbors, excluding the vertex v_0 . In the resulting PD-set of T, we note that v_1 and v_2 are paired, and every child of v_2 different from v_1 is paired with its (unique) child.

Thus, $\gamma_{\rm pr}(T) \leq \gamma_{\rm pr}(T') + 2\ell$. Applying the inductive hypothesis to the tree T', we have

$$4\gamma_{\rm pr}(T) = 4(\gamma_{\rm pr}(T') + 2\ell) \le w(T') + 8\ell \le w(T).$$

This completes the proof of Claim 2.

By Claim 2, we may assume that $d_T(v_3) = 2$, for otherwise the desired inequality holds. By our earlier assumptions, $d = \operatorname{diam}(T) \ge 5$. We consider the tree T'obtained from T by deleting the vertex v_3 and all descendants of v_3 , that is, $T' = T - V(T_{v_3})$ where T_{v_3} is the maximal subtree rooted at v_3 . Let T' have order n' with maximum degree $\Delta(T') = \Delta'$. We note that $n' \ge 2$ and $1 \le \Delta' \le \Delta$. Further, $n' = n - 2\ell - \ell_0 - 2$, $n_1(T') \le n_1(T) - \ell - \ell_0 + 1$, and $n_2(T') \le n_2(T) - \ell$. Every optimal subdivided star set \mathcal{P}' of T' is a subdivided star set of T. Analogous arguments as in the proof of Claim 2 show that $\Phi_{\Delta}(T) \ge \Phi_{\Delta}(T') + \ell - 1$. These observations imply that

$$\begin{split} \mathbf{w}(\mathbf{T}) - \mathbf{w}(\mathbf{T}') &= 2(n-n') + 2(n_1(T) - n_1(T')) \\ &+ (n_2(T) - n_2(T')) + (\Phi_A(T) - \Phi'_A(T')) \\ &\geq 2(2\ell + \ell_0 + 2) + 2(\ell + \ell_0 - 1) + \ell + (\ell - 1) \\ &= 8\ell + 4\ell_0 + 1 > 8\ell, \end{split}$$

and so $w(T) > w(T') + 8\ell$. Every γ_{pr} -set of T' can be extended to a PD-set of T by adding to it the vertex v_2 and all children of v_2 of degree 2 together with their leaf neighbors, excluding the vertex v_0 . Thus, $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2\ell$. Applying the inductive hypothesis to the tree T', we have

$$4\gamma_{\rm pr}(T) = 4(\gamma_{\rm pr}(T') + 2\ell) \le w(T') + 8\ell < w(T).$$

This completes the proof of Theorem 5.

That the upper bound in Theorem 5 is sharp may be seen as follows. For $\Delta \ge 3$ and $\ell \ge 1$, let $T_{\Delta,\ell}$ be the tree constructed as follows. Let $T_1 = S(K_{1,\Delta})$, and for $\ell \ge 2$, let T_2, \ldots, T_ℓ be $\ell - 1$ vertex disjoint copies of a subdivided star $S(K_{1,\Delta-1})$. Let v_i be the central vertex (of degree Δ) in T_i , and let u_i be an arbitrary neighbor of v_i in T_i for all $i \in [\ell]$. If $\ell = 1$, we define $T_{\Delta,\ell} = T_1$. For $\ell \ge 2$, let $T_{\Delta,\ell}$ be constructed from the disjoint union of the subdivided stars T_1, \ldots, T_ℓ by adding the $\ell - 1$ edges $u_i v_{i+1}$ for all $i \in [\ell - 1]$. For example, the tree $T_{5,4}$ is illustrated in Fig. 5. By construction, the tree $T_{\Delta,\ell}$ has maximum degree Δ .

Suppose that $T = T_{\Delta,1}$ for some $\Delta \ge 3$, and so $T = S(K_{1,\Delta})$. In this case, $\gamma_{pr}(T) = 2\Delta$, $n = 2\Delta + 1$, $n_1(T) = n_2(T) = \Delta$, and $\Phi_{\Delta}(T) = \Delta - 2$. Hence,

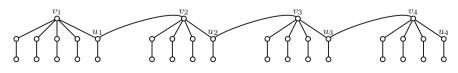


Fig. 5 The tree $T = T_{5,4}$

 \square

 $4\gamma_{\rm pr}(T) = 8\Delta = 2n + 2n_1(T) + n_2(T) + \Phi_{\Delta}(T)$, and so we have equality in Inequality (2).

Suppose that $T = T_{\Delta,\ell}$ for some $\Delta \ge 3$ and $\ell \ge 2$. The set of $(\Delta - 1)\ell + 1$ support vertices of *T* form an independent set, implying that $\gamma_{\rm pr}(T) \ge 2(\Delta - 1)\ell + 2$. However, we can pair each support vertex with its leaf neighbor to form a PD-set of *T*, implying that $\gamma_{\rm pr}(T) \le 2(\Delta - 1)\ell + 2$. Consequently, $\gamma_{\rm pr}(T) = 2(\Delta - 1)\ell + 2$. Moreover, $n(T) = 2\Delta\ell - \ell + 2$, $n_1(T) = \Delta\ell - \ell + 1$, $n_2(T) = \Delta\ell - 2\ell + 2$, and $\Phi_{\Delta}(T) = \ell(\Delta - 2)$. Hence, $4\gamma_{\rm pr}(T) = 8(\Delta - 1)\ell + 8 = 2n + 2n_1(T) + n_2(T) + \Phi_{\Delta}(T)$, and so we have equality in Inequality (2). We state this formally as follows.

Observation 8 For all integers $\Delta \ge 3$ and $\ell \ge 1$, the tree $T_{\Delta,\ell}$ satisfies equality in Inequality (2).

By Observation 8, the upper bound in Theorem 5 is tight.

6 Proof of Theorem 6

In this section we give a proof of Theorem 6. Recall its statement.

Theorem 6. For $\Delta \ge 1$, if T is a tree with maximum degree $\Delta(T) = \Delta$, then

$$\gamma_{\rm pr}(T) \le \left(\frac{5\varDelta - 4}{8\varDelta - 4}\right)n + \frac{1}{2}n_1(T) + \frac{1}{4}n_2(T) - \left(\frac{\varDelta - 2}{4\varDelta - 2}\right).$$

Proof Let *T* be a tree of order *n* with maximum degree $\Delta \ge 1$. Let $\mathcal{P} = \{T_1, \ldots, T_p\}$ be an optimal subdivided star set in the tree *T*. Thus, T_i is a subdivided star $S(K_{1,n_i})$ where $2 \le n_i \le \Delta - 1$ for every $i \in [p]$. The tree T_i has order $|V(T_i)| = 2n_i + 1$, and so

$$\Phi_{\Delta}(T) = \sum_{i=1}^{p} (n_i - 1) = \sum_{i=1}^{p} \left(\frac{n_i - 1}{2n_i + 1}\right) |V(T_i)| \le \left(\frac{\Delta - 2}{2\Delta - 1}\right) \sum_{i=1}^{p} |V(T_i)|.$$
(4)

Since \mathcal{P} is a subdivided star set, the trees in the set \mathcal{P} are vertex disjoint, implying that

$$\sum_{i=1}^{p} |V(T_i)| \le n.$$
(5)

We consider three cases.

Case 1. $\sum_{i=1}^{P} |V(T_i)| \le n-2$. In this case, by Inequalities (1) and (4), we have

$$\begin{aligned} 4\gamma_{\rm pr}(T) &\leq 2n + 2n_1(T) + n_2(T) + \Phi_A(T) \\ &\leq 2n + 2n_1(T) + n_2(T) + \left(\frac{\Delta - 2}{2\Delta - 1}\right)(n - 2) \\ &\leq \left(\frac{5\Delta - 4}{2\Delta - 1}\right)n + 2n_1(T) + n_2(T) - 2\left(\frac{\Delta - 2}{2\Delta - 1}\right) \end{aligned}$$

Case 2. $\sum_{i=1}^{\nu} |V(T_i)| = n - 1$. In this case, we have

$$n = 1 + \sum_{i=1}^{p} (2n_i + 1) = 1 + 3p + 2\sum_{i=1}^{p} (n_i - 1) = 2\Phi_A(T) + 3p + 1, \quad (6)$$

and

$$n_1(T) \ge \sum_{i=1}^p n_i = \sum_{i=1}^p ((n_i - 1) + 1) = \Phi_A(T) + p.$$
(7)

Let S be the set of support vertices that belong to the subdivided stars in our optimal subdivided star set \mathcal{P} of T. In this case, the set S can be extended to a PD-set S^{*} of T by adding to each vertex of S one of its neighbors in such a way as to maximize the pairs of vertices of S that form partners, implying that

$$\gamma_{\rm pr}(T) \le |S^*| \le 2|S| = \sum_{i=1}^p 2n_i = 2\sum_{i=1}^p ((n_i - 1) + 1) = 2\Phi_A(T) + 2p.$$
 (8)

We note that if the set *S* of support vertices is not an independent set, then we can pair *t* support vertices as partners in the PD-set *S*^{*} for some $t \ge 1$, implying that $\gamma_{\rm pr}(T) \le |S^*| \le 2(|S| - t)$, and we can improve the inequality in Equality (8). Indeed, the more pairs of support vertices in *S* that can be paired together as partners in *S*^{*}, the smaller the resulting set *S*^{*}.

We consider here the case when $\gamma_{pr}(T)$ is as large as possible, namely when the set S is an independent set, and so $|S^*| = 2|S|$ (the case when $|S^*| < 2|S|$ is simpler to handle). In this case, we note that since at most p edges of T are incident with support vertices of T that belong to one of the subdivided stars in our optimal subdivided star set \mathcal{P} , we have

$$n_2(T) \ge \left(\sum_{i=1}^p n_i\right) - p = (\Phi_A(T) + p) - p = \Phi_A(T).$$
 (9)

Hence, by Inequalities (6), (7), (8), and (9), we have

$$4\gamma_{\rm pr}(T) \le 8\Phi_{\rm A}(T) + 8p \le 2n + 2n_1(T) + n_2(T) + \Phi_{\rm A}(T) - 2. \tag{10}$$

By Inequalities (4) and (10), we have

$$\begin{aligned} 4\gamma_{\rm pr}(T) &\leq 2n + 2n_1(T) + n_2(T) + \Phi_A(T) - 2 \\ &\leq 2n + 2n_1(T) + n_2(T) + \left(\frac{\Delta - 2}{2\Delta - 1}\right)(n - 1) - 2 \\ &\leq \left(\frac{5\Delta - 4}{2\Delta - 1}\right)n + 2n_1(T) + n_2(T) - \left(\frac{5\Delta - 4}{2\Delta - 1}\right) \\ &< \left(\frac{5\Delta - 4}{2\Delta - 1}\right)n + 2n_1(T) + n_2(T) - 2\left(\frac{\Delta - 2}{2\Delta - 1}\right). \end{aligned}$$

Case 3. $\sum_{i=1}^{p} |V(T_i)| = n$. In this case, we have

$$n = \sum_{i=1}^{p} (2n_i + 1) = 2 \sum_{i=1}^{p} (n_i - 1) + 3p = 2\Phi_{\Delta}(T) + 3p.$$
(11)

Inequalities (7) and (8) hold as before. Analogously as in Case 2, we consider here the case when $\gamma_{\rm pr}(T)$ is as large as possible, namely when the set *S* is an independent set, and so $|S^*| = 2|S|$ (the case when $|S^*| < 2|S|$ is simpler to handle). In this case, we note that since at most p - 1 edges of *T* are incident with support vertices of *T* that belong to one of the subdivided stars in our optimal subdivided star set \mathcal{P} , we have

$$n_2(T) \ge \left(\sum_{i=1}^p n_i\right) - (p-1) = (\Phi_A(T) + p) - (p-1) = \Phi_A(T) + 1.$$
(12)

Hence, by Inequalities (7), (8), (11), and (12), we have

$$4\gamma_{\rm pr}(T) \le 8\Phi_{\rm A}(T) + 8p \le 2n + 2n_1(T) + n_2(T) + \Phi_{\rm A}(T) - 1.$$
(13)

By Inequalities (4) and (13), we have

$$\begin{aligned} 4\gamma_{\rm pr}(T) &\leq 2n + 2n_1(T) + n_2(T) + \Phi_{\Delta}(T) - 1 \\ &\leq 2n + 2n_1(T) + n_2(T) + \left(\frac{\Delta - 2}{2\Delta - 1}\right)n - 1 \\ &\leq \left(\frac{5\Delta - 4}{2\Delta - 1}\right)n + 2n_1(T) + n_2(T) - 1 \\ &< \left(\frac{5\Delta - 4}{2\Delta - 1}\right)n + 2n_1(T) + n_2(T) - 2\left(\frac{\Delta - 2}{2\Delta - 1}\right). \end{aligned}$$

In all three cases, the desired Inequality (3) in the statement of the theorem holds. This completes the proof of Theorem 6. \Box

For $\Delta \ge 3$ and $\ell \ge 1$, let $T_{\Delta,\ell}$ be the tree constructed in Sect. 5. If $T = T_{\Delta,1}$ for some $\Delta \ge 3$, then $T = S(K_{1,\Delta})$, and, by our earlier observations, we have $\gamma_{pr}(T) = 2\Delta$, $n = n(T) = 2\Delta + 1$, and $n_1(T) = n_2(T) = \Delta$, and we have equality in

Inequality (2). If $T = T_{\Delta,\ell}$ for some $\Delta \ge 3$ and $\ell \ge 2$, then, by our earlier observations, we have $\gamma_{\rm pr}(T) = 2(\Delta - 1)\ell + 2$, $n = n(T) = 2\Delta\ell - \ell + 2$, $n_1(T) = \Delta\ell - \ell + 1$, and $n_2(T) = \Delta\ell - 2\ell + 2$, and once again we have equality in Inequality (2). We state this formally as follows.

Observation 9 For $\Delta \ge 3$ and $\ell \ge 1$, the tree $T_{\Delta,\ell}$ satisfies equality in Inequality (3).

By Observation 9, the upper bound in Theorem 6 is tight. As a further application of Theorem 5, we have the following upper bound on the paired domination of a tree.

Theorem 10 For $\Delta \ge 1$, if T is a tree of ordern with maximum degree $\Delta(T) = \Delta$, then

$$\gamma_{\rm pr}(T) \le \frac{1}{2}n + \frac{3}{4}n_1(T) + \frac{1}{4}n_2(T).$$
 (14)

Proof Let T be a tree of order n with maximum degree $\Delta \ge 1$. We follow the notation employed in the proof of Theorem 6. Since \mathcal{P} is a subdivided star set, the trees in the set \mathcal{P} are vertex disjoint and the leaves of each tree in \mathcal{P} are leaves in the tree T, implying that

$$\Phi_{\Delta}(T) = \sum_{i=1}^{p} (n_i - 1) = \left(\sum_{i=1}^{p} n_i\right) - p \le n_1(T) - p.$$
(15)

By Inequalities (2), (4) and (15), we have

$$\begin{aligned} 4\gamma_{\rm pr}(T) &\leq 2n + 2n_1(T) + n_2(T) + \Phi_A(T) \\ &\leq 2n + 2n_1(T) + n_2(T) + (n_1(T) - p) \\ &< 2n + 3n_1(T) + n_2(T), \end{aligned}$$

which yields the desired Inequality (14) in the statement of the theorem.

Author Contributions All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Funding Dr Aleksandra Gorzkowska, prof. Monika Pilśniak and Elżbieta Tumidajewicz declare that no funds, grants, or other support were received during the preparation of this manuscript. Prof. Michael Henning declares that research was supported in part by the University of Johannesburg.

Data availability The authors confirm that no datasets were generated or analysed during the current study.

Declarations

Conflict of interests The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- 1. Chellali, M., Haynes, T.W.: Total and paired-domination numbers of a tree. AKCE Int. J. Graphs Comb. 1(2), 69–75 (2004)
- 2. Dehgardi, N., Sheikholeslami, S.M., Khodkar, A.: Bounding the paired-domination number of a tree in terms of its annihilation number. Filomat **28**(3), 523–529 (2014)
- Desormeaux, W. J., Haynes, T. W., Henning, M. A.: Paired domination in graphs. In: T. W. Haynes, S. T. Hedetniemi and M. A. Henning (eds) *Topics in Domination in Graphs*. Developments in Mathematics, 64. Springer, Cham. (2020) pp. 31–77. https://doi.org/10.1007/978-3-030-51117-3_3
- 4. Haynes, T.W., Slater, P.J.: Paired domination in graphs. Networks 32, 199-206 (1998)
- 5. Henning, M. A., Yeo, A.: *Total Domination in Graphs*. Series: Springer Monographs in Mathematics 2013 XIV, 178 pp. https://doi.org/10.1007/978-1-4614-6525-6
- Raczek, J.: Lower bound on the paired domination number of a tree. Australas. J. Combin. 34, 343–347 (2006)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.