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Abstract

A symmetric digraph
←→
G is obtained from an undirected graph G by replacing each

edge uv of G by a pair of opposite arcs −→uv and −→vu. An arc-colouring of a digraph is called
distinguishing if the only automorphism preserving it is the identity. The least number
of colours in a distinguishing arc-colouring, not necessarily proper, of

←→
G is called the

distinguishing index D′(
←→
G ). We study bounds for D′(

←→
G ). For proper distinguishing

arc-colourings, the least number of colours is called the distinguishing chromatic index of
←→
G . There are 15 possible types of proper arc-colourings of a digraph depending on the
definition of adjacent arcs. In this paper we investigate distinguishing chromatic indices of
←→
G for the nine remaining types not considered in our two previous papers. We formulate
several conjectures.
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1 Introduction
We use standard graph theory terminology and notation as in [21]. An edge-colouring of a
graph or a digraph is called general if it is not necessarily proper. By [k] we denote the set
{1, . . . , k} of k smallest positive integers.

We say that a colouring of a graph G breaks an automorphism φ ∈ Aut(G) if φ does
not preserve it. A colouring is distinguishing if it breaks all non-identity automorphisms.
The first paper on distinguishing colourings was published in 1977 by Babai [3]. He stud-
ied general distinguishing vertex-colourings of infinite trees. This work was related to his
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investigations of the computational complexity of the graph isomorphism problem the re-
sults of which he announced just a few years ago. A wide interest in symmetry breaking
by colourings was spawned by the paper [1] of Albertson and Collins in 1996. They intro-
duced the definition of the distinguishing number of a graph as the least number of colours
in a general distinguishing vertex-colouring. In 2006, Collins and Trenk in [6] initiated
investigations of proper distinguishing vertex-colourings. They defined the distinguishing
chromatic number χD(G) of a graph G as the least number of colours in a proper distin-
guishing vertex-colouring of G.

Ten years ago, Wilfried Imrich during his stay at our university as a visiting professor
introduced the first two authors to the topic of distinguishing colourings. A special issue
of ADAM dedicated to him is a good place to thank him for introducing us to the field.
Wilfried contributed significantly to this area as a co-author of a dozen of papers. He
was also one of the organizers of the BIRS workshop "Symmetry Breaking in Discrete
Structures" held in September 2018 in Oaxaca, Mexico.

Consequently in 2015, in paper [12] we introduced the distinguishing index D′(G) of
a graph G as the least number of colours in a general distinguishing edge-colouring of G.
In the same paper, its counterpart for proper colourings called the chromatic distinguishing
index, denoted by χ′

D(G), was also defined. Clearly, both invariants are defined for any
connected graph except K2.

The concept of distinguishing edge-colourings of a graph can be naturally extended to
arc-colourings of digraphs. By

←→
G we denote a symmetric digraph obtained from a simple

graph G by replacing each edge uv by a pair of opposite arcs −→uv,−→vu. The definition of
proper arc-colouring of a digraph depends on the definition of adjacent arcs. There are four
digraphs A1, A2, A3, A4 with two arcs having at least one vertex in common (see Figure 1):

• 2-cycle A1 with arcs −→uv,−→vu,

• 2-path A2 with arcs −→uv,−→vw,

• source A3 with arcs −→uv,−→uw,

• sink A4 with arcs −→uv,−→wv.

b
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Figure 1: Four weakly connected digraphs with two arcs

Thus, there are 15 possible definitions of a proper colouring of a digraph since there
are 15 possible definitions of adjacency of arcs corresponding to non-empty forbidden
monochromatic subsets of the set of the four digraphs Ai, i = 1, 2, 3, 4. We denote by
χ′
i(
←→
G ) the chromatic index of a symmetric digraph

←→
G , i.e. the least number of colours in

a proper arc-colouring of
←→
G , where "proper" means "without monochromatic digraph Ai".

We also use the notation χ′
i,j(
←→
G ), χ′

i,j,k(
←→
G ), χ′

i,j,k,l(
←→
G ) if more monochromatic two-arc

digraphs are forbidden. A bit surprisingly, only four types of proper arc-colourings of di-
graphs have been already investigated in literature. These are the types corresponding to
χ′
1,2 (Behzad [4]), χ′

1,2,3 or equivalently χ′
1,2,4 (Algor and Alon [2]), and χ′

3,4 (West [21]).
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Similarly, χ′
Di

(
←→
G ), χ′

Di,j
(
←→
G ), χ′

Di,j,k
(
←→
G ), χ′

Di,j,k,l
(
←→
G ) stands for the distinguish-

ing chromatic index of
←→
G , i.e. the least number of colours in a distinguishing proper arc-

colouring, where the indicated two-arc digraphs cannot be monochromatic.
This paper completes our investigations of distinguishing arc-colourings of symmetric

digraphs initiated in our papers [13, 14]. That is, we determine bounds for the distinguish-
ing chromatic indices and discuss their sharpness for all the cases which were not consid-
ered in our two previous papers. We restrict our investigations of distinguishing colourings
to connected graphs G to avoid dealing with isomorphic components. We also determine
bounds for the corresponding chromatic indices if they were not studied yet, what is rather
easy for these types of proper colourings. In the last section we summarize the results
by listing bounds for both indices for a general colouring and for all 15 types of proper
colourings.

2 Useful known facts
By Ĝ we denote a subdivision of a graph G, i.e. a graph obtained by replacing each edge
uv of G by a path uxv of length two.

If c is an arc-colouring of
←→
G , then we define a corresponding edge-colouring ĉ of Ĝ

by the following rule. If uv is an edge of G and x is a vertex of Ĝ adjacent to both u and v,
then ĉ(ux) = c(−→uv) and ĉ(vx) = c(−→vu). Sometimes it is more convenient to consider the
colouring ĉ of Ĝ instead of c, by using the following two facts proved in [13].

Proposition 2.1 ([13]). For every connected graph G, Aut(
←→
G ) ∼= Aut(G). Moreover, if

G is not a cycle, then Aut(
←→
G ) ∼= Aut(Ĝ) ∼= Aut(G).

Lemma 2.2 ([13]). Let G be a connected graph different from a cycle. Then an arc-
colouring c of

←→
G is distinguishing if and only if the corresponding edge-colouring ĉ is a

distinguishing edge-colouring of Ĝ.

If G is a cycle and the edge-colouring ĉ of Ĝ is distinguishing, then so also is the
arc-colouring c of

←→
G , but not necessarily conversely.

An edge-colouring of Ĝ can be also viewed as a colouring of the two halfedges of each
edge of the graph G, and distinguishing colourings of them have applications in computer
science (cf. [7, 8]). This is an additional motivation for our investigations.

In the next section we use the following sharp upper bound for the distinguishing index
D′(G) of a connected graph G.

Theorem 2.3 ([12]). If G is a connected graph, then

D′(G) ≤ ∆(G)

except for three small cycles C3, C4, C5 which need three colours.

This result was strengthened by the second author. A tree is symmetric (resp. bisymmet-
ric) if it has a central vertex vc (resp. a central edge ec), all leaves are of the same distance
from vc (resp. ec), and every vertex that is not a leaf has the same degree.

Theorem 2.4 ([16]). If G is a connected graph, then D′(G) = ∆(G) if and only if G is a
cycle Ck of length k ≥ 6, a symmetric or bisymmetric tree, K4 or K3,3.
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In Section 4 two of our other previous results concerning the distinguishing chromatic
index χ′(G) are used.

Theorem 2.5 ([12]). The chromatic distinguishing index of every connected graph G ̸= K2

with maximum degree ∆ satisfies the inequalities

∆ ≤ χ′
D(G) ≤ ∆+ 1

except for four small graphs C4,K4, C6,K3,3, whose distinguishing index equals ∆+ 2.

Theorem 2.6 ([12]). If T is a tree of order n ≥ 3, then χ′
D(T ) = ∆(T ) + 1 if and only if

T is a bisymmetric tree.

3 General colourings

In this section we consider general arc-colourings of
←→
G . Obviously, any general colouring

demands only 1 colour.
It follows from Lemma 2.2 that, for every connected graph G distinct from a cycle, the

distinguishing index of the symmetric digraph
←→
G equals the distinguishing index of the

graph Ĝ, that is, D′(
←→
G ) = D′(Ĝ). For a cycle Cn, we have D′(

←→
Cn) = 2 since it suffices

to use the same colour for all arcs except for one arc −→uv which gets another colour. Indeed,
this is a distinguishing colouring of

←→
Cn because it fixes two consecutive vertices u, v of

←→
Cn.

First we prove bounds for the distinguishing index of
←→
G in terms of the maximum

degree of the underlying graph G.

Theorem 3.1. For every connected graph G,

1 ≤ D′(
←→
G ) ≤

⌈√
∆(G)

⌉
.

Proof. Let T be a spanning tree of the graph G. We pick a leaf v1 and view it as a root of T .
We construct a distinguishing arc-colouring of

←→
G with colours from the set [⌈

√
∆(G)⌉].

First, we colour arcs of the symmetric digraph
←→
T as follows.

Let v2 be the only neighbour of v1 in T . We begin with colouring the pair of arcs
(−−→v1v2,−−→v2v1) by the pair (1, 1). Then we do not use the pair (1, 1) for a pair of opposite
arcs any more. Next we colour all other pairs of opposite arcs incident to v2 with distinct
ordered pairs of colours, but one of them we necessarily colour with the pair (1, 2), i.e. for
some neighbour v3 of v2, we colour the arc −−→v2v3 by 1, and the arc v3v2 by 2. Then we
proceed recursively according to the BFS ordering v1, v2, . . . , vn of vertices of the tree T
rooted at v1. Suppose that we have coloured all arcs incident to the vertices v1, . . . , vi−1

for some i ≥ 3. We colour all yet uncoloured pairs of opposite arcs incident to vi with
distinct pairs (α, β), where α is the colour of the arc outgoing from vi. We have enough
colours to do this since there are at most ∆(G) − 1 pairs of arcs to be coloured, and we
have ⌈

√
∆(G)⌉2− 1 distinct pairs of colours at our disposal, as the pair (1, 1) is excluded.

When the colouring of
←→
T is completed, we colour all uncoloured pairs of opposite arcs

of
←→
G with the pair (2, 2). In our arc-colouring of

←→
G , the vertex v1 is the only vertex with

an incident pair of opposite arcs coloured with (1, 1) and without an incident pair of arcs
coloured with (1, 2). Therefore, v1 is fixed by every automorphism of

←→
G preserving our

colouring.
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For i ≥ 0, let Si(v1) denote the i-th sphere centered at v1, i.e. the set of all vertices of T
whose distance in T from v1 equals i. Hence, each sphere Si(v1) is fixed setwise because
automorphisms preserve distances. But it is also fixed pointwise what can be easily shown
by induction on i. Indeed, each pair of opposite arcs between a vertex v ∈ Si−1(v1) and
its neighbour in Si(v1) has a distinct pair of colours (α, β). Consequently, each neighbour
of v is also fixed. Therefore, our colouring of

←→
G is distinguishing.

By Proposition 2.1, D′(
←→
G ) = 1 if and only if G is an asymmetric graph, i.e. Aut(G) =

{id}. The following result shows that the upper bound in Theorem 3.1 is tight as well.

Proposition 3.2. If T is a symmetric tree, then D′(
←→
T ) =

⌈√
∆(T )

⌉
.

Proof. By Theorem 3.1, we have D′(
←→
T ) ≤ ⌈

√
∆(T )⌉. On the other hand, suppose that

there exists a distinguishing arc-colouring c′ of
←→
T with less than ⌈

√
∆(T )⌉ colours. Let v0

be the central vertex of a symmetric tree T . Hence, every edge uv of T , such that u lies on
a path from v0 to v is coloured by an ordered pair (i, j), where i = c′(−→uv) and j = c′(−→vu).
This yields a distinguishing edge-colouring of T with less than ∆(T ) colours since the
number of such pairs (i, j) is less than ∆(T ). This contradicts the fact that D′(T ) = ∆(T )
stated in Theorem 2.4.

Recall that D′(G) ≤ ∆(G) for connected graphs G with few exceptions, due to Theo-
rem 2.3. We believe that Theorem 3.1 can be strengthened as follows.

Conjecture 3.3. If G is a connected graph, then

D′(
←→
G ) ≤

⌈√
D′(G)

⌉
.

We now confirm this conjecture for graphs G with D′(G) ≤ 3. This condition is
fulfilled by a couple of classes of graphs, e.g. regular graphs [15], graphs with a Hamilto-
nian path [16], 3-connected planar graphs [17], Cartesian powers of connected graphs [9],
connected graphs of maximum degree at most four without pendant edges [11], and for
claw-free graphs [16].

Proposition 3.4. If G is a connected graph with D′(G) ≤ 3, then

D′(
←→
G ) ≤ 2.

Proof. Let c be a distinguishing edge-colouring of G with three colours 1, 2, 3. Consider
the correspondence ι(1) = (1, 1), ι(2) = (2, 2), ι(3) = (1, 2). Every pair (−→uv,−→vu) of

←→
G

we colour with the pair ι(c(uv)). This yields a distinguishing arc-colouring of
←→
G since c

is distinguishing.

Conjecture 3.3 is also true for some bipartite graphs, including trees.

Proposition 3.5. Let G be a connected bipartite graph with the partition sets X and Y . If
G does not admit an automorphism that interchanges X and Y , or D′(G) is not a square
of an integer, then

D′(
←→
G ) ≤

⌈√
D′(G)

⌉
.
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Proof. The claim is true for even cycles since they are regular. Then assume G is a con-
nected bipartite graph different from a cycle. Clearly, if α is an automorphism of G, then
either α(X) = X and α(Y ) = Y , or α(X) = Y and α(Y ) = X .

Suppose that c is a distinguishing edge-colouring of G with the set [D′(G)] of colours.
Choose an injective map ι from the set [D′(G)] into the set [⌈

√
D′(G)⌉]2. Let e = uv be

any edge of G, where u ∈ X, v ∈ Y , and let x ∈ V (Ĝ) \ V (G) be a vertex subdividing
e. If ι(c(e)) = (i, j), then we define an edge-colouring ĉ of Ĝ by putting ĉ(ux) = i and
ĉ(xv) = j. Then ĉ is a distinguishing colouring unless there exists an automorphism α̂ of
Ĝ that maps a path of length two between vertices of G coloured with a pair (i, j) onto
a path coloured with (j, i). Since c is distinguishing, this would be possible only if the
corresponding automorphism α of G interchanged the sets X and Y .

Thus we are left with the case when
√

D′(G) is not an integer. Then ⌈
√
D′(G)⌉2 >

D′(G), and therefore the set [⌈
√
D′(G)⌉]2 has more elements than [D′(G)]. Consequently,

we can choose an injection ι such that there exists a pair (i, j) with (i, j) = ι(k) for some
k ∈ [D′(G)], while (j, i) ̸= ι(l) for any l ∈ [D′(G)]. It follows that α(X) = X for
every automorphism α preserving the edge-colouring ĉ of Ĝ defined above. Hence, ĉ is a
distinguishing edge-colouring of Ĝ.

The conclusion follows from Lemma 2.2.

Corollary 3.6. Every tree T satisfies the inequality D′(
←→
T ) ≤

⌈√
D′(T )

⌉
.

Proof. If a tree T has a central vertex, then the conclusion follows from Proposition 3.5
because T does not admit an automorphism interchanging the sets of bipartition.

Suppose then that T has a central edge e = uv. Let x be a vertex of Ĝ subdividing e.
For a distinguishing edge-colouring ĉ defined in the proof of Proposition 3.5, it suffices to
choose an injection ι such that ĉ(ux) ̸= ĉ(xv). Then ĉ breaks every automorphism of T
switching u and v.

In virtue of Proposition 3.2, there are graphs for which the bound in Conjecture 3.3
is achieved. There are also infinitely many graphs G satisfying the inequality D′(

←→
G ) <

⌈
√
D′(G)⌉. Let Fk be a windmill with k wings, that is, a graph obtained by gluing together

k triangles in one vertex, say w. If wu and wv are two edges of one of these triangles, then
they have to be coloured with two distinct colours in every distinguishing edge-colouring of
the windmill Fk. However, in

←→
F the pairs of arcs connecting w with u and v, respectively,

can have the same colouring if the arcs −→uv,−→vu have distinct colours. Then it is easy to
see that there are infinitely many windmills for which the bound in Conjecture 3.3 is not
achieved. The smallest one is F25 with D′(F25) = 5, while D′(

←→
F25) = 2 < ⌈

√
D′(F25)⌉.

4 Proper colourings
As it was already mentioned in the Introduction, there are 15 possible definitions of proper
arc-colourings depending on a collection of forbidden monochromatic two-arc digraphs.
In this section we study nine remaining cases that were not considered in our previous pa-
pers [13, 14]. The following observation will be useful in some cases of proper colourings
of
←→
G .
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Lemma 4.1 ([13]). Let c be an arc-colouring of
←→
G without monochromatic sources or

sinks. If there exists a vertex which is fixed by every automorphism of
←→
G preserving c, then

c is a distinguishing colouring.

In each of the next subsections, we use the term proper arc-colouring in the sense
indicated in the title of the subsection.

Given a set of forbidden monochromatic digraphs containing the source A3, if we re-
place it by the sink A4, then the corresponding invariants in question will be equal, since it
suffices to reverse the arcs in the coloured digraph. Hence, we consider both cases in the
same subsection.

4.1 Forbidden monochromatic 2-cycles and sources (or sinks)

First assume that monochromatic 2-cycles and sources are forbidden.

Proposition 4.2. For every graph G of maximum degree ∆ ≥ 2, we have χ′
1,3(
←→
G ) = ∆.

Proof. It is easy to observe that an arc-colouring c of
←→
G has no monochromatic 2-cycles

and sources if and only if the corresponding colouring ĉ is a proper edge-colouring of Ĝ.
Thus χ′

1,3(
←→
G ) = χ′(Ĝ). By Kőnig’s theorem, χ′(Ĝ) = ∆(Ĝ) since Ĝ is a bipartite

graph.

Now, we determine sharp bounds for the chromatic distinguishing index χ′
D1,3

(
←→
G ).

Proposition 4.3. For every connected graph G,

∆(G) ≤ χ′
D1,3

(
←→
G ) ≤ ∆(G) + 1.

Proof. Let us first consider a cycle Cn with n ≥ 3. To obtain a proper arc-colouring of
←→
Cn, we colour all arcs of a directed cycle

−→
Cn with colour 1, and all arcs of the opposite

directed cycle with colour 2. This is a unique proper colouring of
←→
Cn up to a permutation

of colours. To obtain a distinguishing colouring, it suffices to recolour exactly one arc, say
−→uv, with a third colour, thus fixing two consecutive vertices u, v of the cycle.

Suppose now that G is not a cycle. Then, as we have already observed in the last
paragraph of the proof of the previous proposition, an arc-colouring c of

←→
G is proper if and

only if the corresponding edge-colouring ĉ of Ĝ is proper. Therefore, χ′
D1,3

(
←→
G ) = χ′

D(Ĝ)

in virtue of Lemma 2.2. It follows from Theorem 2.5 applied to Ĝ that ∆(G) ≤ χ′
D(Ĝ) ≤

∆(G) + 1 since none of the four exceptional graphs C4,K4, C6,K3,3 is a subdivision of a
graph different from a cycle.

In virtue of Theorem 2.6, the lower bound in the above Proposition 4.3 is achieved by
each tree T . Indeed, χ′

D1,3
(
←→
T ) = χ′

D(T̂ ) and the subdivision T̂ cannot be a bisymmetric

tree because T̂ has an even number of edges. As we showed, the upper bound is achieved
by each cycle Cn. We conjecture that this is the case only for cycles.

Conjecture 4.4. If G ̸= K2 is a connected graph, then χ′
D1,3

(
←→
G ) = ∆(G) unless G =

Cn.

Now, assume that monochromatic 2-cycles and sinks are forbidden. By reversing arcs
in
←→
G , we immediately infer that χ′

1,4(
←→
G ) = χ′

1,3(
←→
G ) and χ′

D1,4
(
←→
G ) = χ′

D1,3
(
←→
G ).
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4.2 Forbidden monochromatic 2-paths and sources (or sinks)

By reversing arcs, we have χ′
2,4(
←→
G ) = χ′

2,3(
←→
G ) and χ′

D2,4
(
←→
G ) = χ′

D2,3
(
←→
G ). Hence,

we describe only the case when 2-paths and sources cannot be monochromatic.

Proposition 4.5. For every graph G,

∆(G) ≤ χ′
2,3(
←→
G ) ≤ ∆(G) + 1.

Proof. Clearly, χ′
2,3(
←→
G ) ≥ ∆(G) since monochromatic sources are forbidden. On the

other hand, let c′ be a proper edge-colouring of G. For every edge uv of G, we colour both
opposite arcs −→uv,−→vu of

←→
G with the same colour c′(uv). This yields an arc-colouring of

←→
G without monochromatic 2-paths and sources. Hence, χ′

2,3(
←→
G ) ≤ ∆(G)+1, due to the

theorem of Vizing.

It follows from the proof, that χ′
2,3(
←→
G ) = ∆(G) for every graph G of Class 1. As

monochromatic 2-paths and sources are forbidden, in any arc-colouring of a symmetric
digraph

←→
G with ∆(G) colours, each pair of opposite arcs incident to a vertex of degree

∆(G) in G, has to be coloured with the same colour. Consequently, χ′
2,3(
←→
G ) = ∆(G)+1

for every regular graph of Class 2. This encourages us to formulate the following bold
conjecture.

Conjecture 4.6. Every graph G satisfies the equality χ′
2,3(
←→
G ) = χ′(G).

Let us now move on to distinguishing colourings.

Proposition 4.7. For every connected graph G,

∆(G) ≤ χ′
D2,3

(
←→
G ) ≤ ∆(G) + 1.

Proof. The first inequality is obvious. By Theorem 2.5, there exists a distinguishing proper
edge-colouring c′ of the graph G with at most ∆(G) + 1 colours (it can be easily checked
that the claim holds for the four exceptional small graphs). In the symmetric digraph

←→
G ,

we colour each pair of opposite arcs −→uv,−→vu with the same colour c′(uv), thus obtaining a
proper distinguishing arc-colouring.

The lower bound is achieved for every tree T which is not bisymmetric. Indeed, by The-
orem 2.6, such a tree admits a distinguishing proper edge-colouring c′ with ∆(T ) colours.
If uv is an edge of T , then we colour both arcs −→uv,−→vu with c′(uv), and thus we get a
distinguishing proper arc-colouring of

←→
T .

The upper bound is achieved by every bisymmetric tree T . To see that, take any
proper arc-colouring c of

←→
T with ∆(T ) colours. Then each pair of opposite arcs creates

a monochromatic 2-cycle, and such a colouring is unique up to a permutation of colours.
Hence, c does not break any automorphism reversing the central edge, so it cannot be dis-
tinguishing. The upper bound is also achieved by every Class 2 regular graph G since
χ′
D2,3

(
←→
G ) ≥ χ′

2,3(
←→
G ) = ∆(G) + 1.
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4.3 Forbidden monochromatic sources and sinks

This type of proper arc-colouring of digraphs was studied by several authors (cf. [21]). It
is well known that χ′

3,4(
←→
G ) = ∆(G).

Proposition 4.8. For every connected graph G,

∆(G) ≤ χ′
D3,4

(
←→
G ) ≤ ∆(G) + 1.

Proof. Let c be a proper arc-colouring of
←→
G with ∆(G) colours. We pick an arc −→uv

and recolour it with an extra colour. Hence, the vertex u is fixed by every automorphism
preserving this new colouring since u is the only vertex with an outgoing arc with the extra
colour. The claim follows from Proposition 4.1.

Proposition 4.8 is tight. It is easily seen that χ′
D3,4

(
←→
Cn) = ∆(Cn) + 1 = 3. On the

other hand, χ′
D3,4

(
←→
Kn) = ∆(Kn), except for n ≤ 4, as we show below.

Proposition 4.9. χ′
D3,4

(
←→
Kn) = n− 1 for n ≥ 5.

Proof. Suppose first that n ≥ 7. To construct a distinguishing proper arc-colouring of
←→
Kn

we take a specific factorization F of Kn. As an initial factor F1 we take a Hamiltonian
cycle of Kn. The next factor F2 depends on the parity of n. If n is odd, then F2 is a
union of a triangle and a cycle of length n − 3 ≥ 4. For even n, the factor F2 is a perfect
matching of Kn that creates exactly one triangle with the edges of the Hamiltonian cycle
F1. Deletion of the arcs of F1 and F2 yields a regular graph of even degree which has a
2-factorization due to the classic theorem of Petersen.

The factors of F are 2-factors, with one possible exception which is a 1-factor. To each
2-factor F ∈ we assign two colours and choose an orientation of F in such a way that each
cycle of F becomes a directed cycle. Each such orientation is coloured with one and the
same colour, while the opposite orientation gets the other colour. When F is a 1-factor, then
we colour all arcs corresponding to the edges of F with the same colour. Our colouring of
the Hamiltonian cycle F1 breaks all automorphisms of Kn except rotations of F1. But the
colouring of F2 breaks them. Hence, this is a distinguishing arc-colouring of Kn.

For n = 6, let v1, . . . , v6 be the vertices of
←→
K6. We decompose

←→
K6 into five digraphs

(actually oriented graphs except one 2-cycle) H1, . . . , H5, and the arcs of each digraph Hi

get colour i. Namely, H1 is a directed Hamiltonian cycle v1 . . . v6v1, H2 is a union of the
directed 4-cycle v3v2v6v5v3 and a 2-cycle v1v4v1, H3 is a union of two directed triangles
v2v1v6v2 and v5v4v3v5, H4 is a directed Hamiltonian cycle v1v5v2v4v6v3v1, and H5 is an
opposite orientation of H4. The colouring of H1 and H2 is preserved only by a rotation of
H1 mapping v1 into v4, which is broken by the colouring of H4.

For n = 5, we decompose
←→
K5 into three directed Hamiltonian cycles H1 = v1 . . . v5v1,

H2 = v1v3v2v5v4v1, H3 = v1v5v2v4v3v1, and a union H4 of a directed triangle v2v1v4v2
and a 2-cycle v3v5v3. We colour each Hi with colour i. The colouring of H4 breaks each
rotation of H1.

We conclude this subsection with a conjecture.

Conjecture 4.10. If G is a connected graph, then χ′
D3,4

(
←→
G ) = ∆(G) unless G is a cycle

or K2 or K4.
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4.4 Forbidden monochromatic 2cycles, 2paths and sources (or sinks)

Here again, by reversing arcs, we have χ′
1,2,3(

←→
G ) = χ′

1,2,4(
←→
G ) and χ′

D1,2,3
(
←→
G ) =

χ′
D1,2,4

(
←→
G ). Therefore we can focus on arc-colourings without monochromatic 2-cycles,

2-paths and sources.
In 1989, Algor and Alon [2] introduced the directed star arboricity of a digraph D as

the least number of directed star forests into which D can be decomposed, where arcs of
each star are directed to its center. Clearly, for a symmetric digraph

←→
G this invariant co-

incides with χ′
1,2,3(

←→
G ). In 1997, Guiduli [10] showed that the directed star arboricity of

a symmetric digraph
←→
G equals the incidence chromatic number of the graph G, denoted

χinc(G), a concept introduced by Brualdi and Quinn Massey [5] in 1993, and then inves-
tigated by tens of authors (cf. a constantly updated special webpage [19]). Consequently,
χ′
1,2,3(

←→
G ) = χinc(G) for any graph G.

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e an edge of G
incident with v. Two incidences (v, e) and (w, f) are adjacent if either v = w, or e = f ,
or vw ∈ {e, f}. The incidence chromatic number of a graph G is the smallest number
of colours in a colouring of the set of incidences of G such that adjacent incidences get
distinct colours. It is known [5] that ∆(G) + 1 ≤ χinc(G), but no sharp upper bound
for χinc(G) was found. A current best general upper bound proved in [10] is χinc(G) ≤
∆(G) + 20 log∆(G) + 84, and there are infinitely many Paley graphs with χinc(G) =
∆(G) + Ω(log∆(G)).

For distinguishing colourings, we only have the following easy observation.

Proposition 4.11. If G is a connected graph, then

χinc(G) ≤ χ′
D1,2,3

(
←→
G ) = χ′

D1,2,4
(
←→
G ) ≤ χinc(G) + 1.

Proof. The left-hand side inequality is obvious. Let c be a proper arc-colouring of
←→
G with

χinc(G) colours. We recolour one arc of
←→
G , say outgoing from a vertex u, with an extra

colour. Thus u is fixed by every automorphism preserving the new colouring because u

is the only vertex of
←→
G with an outgoing arc with the extra colour. By Lemma 4.1, this

colouring is distinguishing.

Proposition 4.11 is tight. For complete graphs we have χinc(Kn) = χ′
D1,2,3

(
←→
Kn) =

n = ∆(Kn) + 1 since the arc-colouring where all arcs ingoing to the i-th vertex of
←→
Kn are

coloured with colour i, for i = 1, . . . , n, is proper and distinguishing. On the other hand,
it is not difficult to check that χ′

D1,2,3
(
←→
C3k) = χinc(C3k) + 1 = 4 for k ≥ 2. To see this,

observe that a proper arc-colouring of
←→
C3k with χ′

1,2,3(
←→
C3k) = 3 colours is unique up to

permutation of colours and is preserved by some rotation of C3k.

4.5 Forbidden monochromatic 2paths, sources and sinks

In this case, we can use the same arguments as in Subsection 4.2. Also, the examples
showing the sharpness can be similar. Hence, we omit proofs and discussion of sharpness
of the two propositions below.

Proposition 4.12. For every graph G, ∆(G) ≤ χ′
2,3,4(

←→
G ) ≤ ∆(G) + 1.
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Proposition 4.13. If G is a connected graph, then ∆(G) ≤ χ′
D2,3,4

(
←→
G ) ≤ ∆(G)+1.

4.6 Forbidden all four weakly connected monochromatic two-arc digraphs

In this subsection, an arc-colouring c of
←→
G is proper if and only if any two arcs with the

same colour do not have a vertex in common. Thus every colour class with respect to c
corresponds to a matching in G.

Proposition 4.14. For every graph G,

2∆(G) ≤ χ′
1,2,3,4(

←→
G ) ≤ 2∆(G) + 2.

Proof. Let G′ be a multigraph obtained from the symmetric digraph
←→
G by ignoring ori-

entations of arcs. In other words, G′ arises from the graph G by substituting all edges by
double edges. Clearly, χ′

1,2,3,4(
←→
G ) = χ′(G′), and by the well-known theorem of Viz-

ing [20] about the chromatic index of a multigraph ∆(G′) ≤ χ(G′) ≤ ∆(G′) + 2, where
∆(G′) = 2∆(G).

Theorem 4.15. For every connected graph G,

χ′
D1,2,3,4

(
←→
G ) = χ′

1,2,3,4(
←→
G ).

Whence, 2∆(G) ≤ χ′
D1,2,3,4

(
←→
G ) ≤ 2∆(G) + 2.

Proof. Let c′ : E(G′) → [χ′
1,2,3,4(

←→
G )] be a proper edge-colouring of the multigraph G′

defined in the previous proof. We pick a vertex w of degree ∆(G) in G. We define an arc-
colouring c of

←→
G based on the colouring c′ as follows. Without loss of generality we may

assume that [∆(G)] is the set of colours of arcs outgoing from w and [2∆(G)] \ [∆(G)]
is the set of colours of the ingoing arcs. Consider w as a root of a BFS spanning tree T
of the graph G. For each pair of edges uv ∈ E(G′), we orient them in such a way that
c(−→uv) < c(−→vu) if u precedes v in the BFS ordering of T .

Suppose now that φ ∈ Aut(
←→
G ) preserves the colouring c, and φ(w) = v. If v ̸= w,

then there is an in-neighbour u of v that precedes v in the BFS ordering. Then c(−→uv) ∈
[2∆(G)] \ [∆(G)] as −→uv is an arc ingoing to v = φ(w). Hence, c(−→vu) > ∆(G) by our
definition of c. However, the colours of all arcs outgoing from w, and hence from φ(w),
belong to the set [∆(G)], a contradiction. Therefore, φ is the identity, by Lemma 4.1.

Each of the three possible values of χ′
1,2,3,4(

←→
G ), and thus of χ′

D1,2,3,4
(
←→
G ), are at-

tained. If G is a Class 1 graph, then χ′
1,2,3,4(

←→
G ) = 2∆(G). To see this, it suffices to

consider two proper edge-colourings of G with disjoint sets of ∆(G) colours, and use them
for a proper arc-colouring of

←→
G .

We have χ′
1,2,3,4(

←−−→
C2k+1) = 2∆(C2k+1)+1 = 5 for every odd cycle C2k+1 with k ≥ 2.

Indeed, a maximal matching of C2k+1 contains k edges. Hence, χ′
D1,2,3,4

(
←−−→
C2k+1) > 4

since 4k is smaller than the numbers 2(2k + 1) of arcs of
←−−→
C2k+1. But it is not difficult

to decompose the multigraph C ′
2k+1, i.e. the cycle C2k+1 with doubled edges, into four

matchings Mi, i = 1, 2, 3, 4, of size k and a matching M5 of size two, and colour the arcs
of Mi with colour i, for i = 1, . . . , 5. Namely, let v1, . . . , v2k+1 be consecutive vertices of
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C2k+1. In our construction, the set of colours of the arcs incident to vi equals [5] \ {i}, for
i = 1, 2, 3, 4, and [4] for i = 5, . . . , 2k + 1.

For complete graphs of odd order we have, χ′
1,2,3,4(

←−−→
K2k+1) = 4k+2 = 2∆(K2k+1)+

2, since a maximal matching of K2k+1 is of size k. With 4k+1 colours we could properly
colour at most (4k + 1)k arcs, less than 2k(2k + 1), the number of arcs of

←−−→
K2k+1.

5 Summary of all cases
Table 1 presents lower and upper bounds for chromatic indices and distinguishing chro-
matic indices of symmetric digraphs

←→
G in terms of ∆ = ∆(G), according to definitions

of proper arc-colourings, i.e. forbidden sets of monochromatic two-arc digraphs Ai, i =
1, 2, 3, 4. These bounds are tight except for items 12 and 13 where only an asymptotic
bound ∆ + Θ(log∆), indicated in Table 1 by ⋆, is known. References for the results
not proved in this paper are provided (obviously, χ′

1(
←→
G ) = 2 since each 2-cycle can be

properly coloured by 2 colours).
For convenience, let us recall that A1 is a 2-cycle, A2 is a 2-path, A3 is a source and

A4 is a sink.

item chromatic index distinguishing chrom. index
none 1 1 ≤ D′(

←→
G ) ≤ ⌈

√
∆⌉

A1 χ′
1(
←→
G ) = 2 2 ≤ χ′

D1
(
←→
G ) ≤ ⌈

√
∆⌉+ 1 [13]

A2 2 ≤ χ′
2(
←→
G ) ≤ ⌈

√
∆⌉+ 1 [14] 2 ≤ χ′

D2
(
←→
G ) ≤ ⌈2

√
∆⌉ [14]

A3 χ′
3(
←→
G ) = ∆ [13] χ′

D3
(
←→
G ) = ∆ [13]

A4 χ′
4(
←→
G ) = ∆ [13] χ′

D4
(
←→
G ) = ∆ [13]

A1, A2 2 ≤ χ′
1,2(
←→
G ) ≤ ⌈

√
∆⌉+ 1 [18] 2 ≤ χ′

D1,2
(
←→
G ) ≤ ⌈2

√
∆⌉ [14]

A1, A3 χ′
1,3(
←→
G ) = ∆ ∆ ≤ χ′

D1,3
(
←→
G ) ≤ ∆+ 1

A1, A4 χ′
1,4(
←→
G ) = ∆ ∆ ≤ χ′

D1,4
(
←→
G ) ≤ ∆+ 1

A2, A3 ∆ ≤ χ′
2,3(
←→
G ) ≤ ∆+ 1 ∆ ≤ χ′

D2,3
(
←→
G ) ≤ ∆+ 1

A2, A4 ∆ ≤ χ′
2,4(
←→
G ) ≤ ∆+ 1 ∆ ≤ χ′

D2,4
(
←→
G ) ≤ ∆+ 1

A3, A4 χ′
3,4(
←→
G ) = ∆ [21] ∆ ≤ χ′

D3,4
(
←→
G ) ≤ ∆+ 1

A1, A2, A3 ∆+ 1 ≤ χ′
1,2,3(

←→
G ) ≤ ⋆ [10] ∆+ 1 ≤ χ′

D1,2,3
(
←→
G ) ≤ ⋆

A1, A2, A4 ∆+ 1 ≤ χ′
1,2,4(

←→
G ) ≤ ⋆ [10] ∆+ 1 ≤ χ′

D1,2,4
(
←→
G ) ≤ ⋆

A1, A3, A4 ∆ ≤ χ′
1,3,4(

←→
G ) ≤ ∆+ 1 [13] ∆ ≤ χ′

D1,3,4
(
←→
G ) ≤ ∆+ 1 [13]

A2, A3, A4 ∆ ≤ χ′
2,3,4(

←→
G ) ≤ ∆+ 1 ∆ ≤ χ′

D2,3,4
(
←→
G ) ≤ ∆+ 1

all four 2∆ ≤ χ′
1,2,3,4(

←→
G ) ≤ 2∆ + 2 2∆ ≤ χ′

D1,2,3,4
(
←→
G ) ≤ 2∆ + 2

Table 1: Bounds for chromatic indices and distinguishing chromatic indices for all types of
arc-colourings of symmetric digraphs. The second column contains forbidden monochro-
matic two-arc digraphs.
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