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Abstract

For any positive integer n, we determine all connected digraphs G of size at most four, such that a transitive tournament of order
n is G-decomposable. Among others, these results disprove a generalization of a theorem of Sali and Simonyi [Orientations of
self-complementary graphs and the relation of Sperner and Shannon capacities, European J. Combin. 20 (1999), 93–99].
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a digraph of order n with the vertex set V (G) and the arc set E(G). The outdegree of a vertex v ∈ V (G)

is denoted by d+(v), and its indegree by d−(v). The degree of a vertex v is the sum d(v)= d−(v)+ d+(v). A reverse
of a digraph G is the digraph

←−
G obtained from G by converting each arc (u, v) ∈ E(G) into (v, u). An oriented graph

is a digraph without directed cycles of length two. Replacing of every arc (u, v) in an oriented graph G by an edge uv

yields the underlying graph � of G, and then G is called an orientation of �.
A tournament is an orientation of a complete graph. A digraph G is called transitive when it satisfies the condition

of transitivity: if (u, v) and (v, w) are two arcs of G then (u, w) is an arc, too. A transitive tournament of order n will
be denoted by T T n. Since T T n is unique up to isomorphism, throughout the paper we will view it as shown in Fig. 1.
Namely, V (T T n) = {1, . . . , n} and E(T T n) = {(i, j) : 1� i < j �n}. The vertices 1, 2 and n will be called the first,
the second and the last vertex of T T n, respectively. We define the length of an arc (i, j) as the difference j − i.

Let G and H be two digraphs. We say that H can be decomposed into G (or H is G-decomposable, for short), if there
exists a partition of the arc set E(H) into pairwise disjoint subsets each of which creates a subgraph isomorphic to G.
An obvious necessary condition for the existence of a G-decomposition of H is the divisibility of |E(H)| by |E(G)|.

This paper has been inspired by a theorem of Sali and Simonyi [3] (for a nice, short proof consult Gyárfás [2]). Its
slightly weaker version can be formulated as follows.
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1 2 n-2 n-1 n

Fig. 1. Transitive tournament T T n.

Theorem (Sali and Simonyi [3]). If � is a self-complementary graph of order n, then there exists an orientation G of
� such that a transitive tournament T T n is G-decomposable.

One can try to generalize this result and pose a more general question. Suppose a complete graph Kn can be
decomposed into k copies of a graph �. Does there always exist an orientation G of � such that T T n is G-decomposable?
The above theorem of Sali and Simonyi answers this question in affirmative for k = 2. We will show that, in general,
the answer is negative.

2. Some lemmas

We start with an immediate consequence of the fact that the transitive tournament T T n is isomorphic to its reverse←−−
T T n.

Lemma 1. A transitive tournament T T n is G-decomposable if and only if it is
←−
G -decomposable.

The subsequent lemmas will be useful in disproving the existence of some decompositions of T T n.

Lemma 2. Assume that every subgraph of T T n isomorphic to G has at most two arcs in the set

F =
{
(i, j) ∈ E(T T n) : i� n

2
< j

}
.

If T T n can be decomposed into G, then the number of copies of G in a decomposition cannot be smaller than
�(n2 − 1)/8�.

Proof. Observe that |F | = �(n2 − 1)/4�. �

Lemma 3. Let G be a digraph of order at least three such that G has exactly one vertex x of indegree zero. Then T T n

cannot be G-decomposed in each of the following three cases:

(A) the underlying graph of G is a star with a center x,
(B) every vertex of G has outdegree zero, except for two vertices x and y with d+(x)= d+(y)= 2,
(C) d+(x)= 3, and every other vertex of G has outdegree less than two.

Proof. Let d denote the degree of the vertex x in G. Thus d �2 in case (A), d = 2 in case (B), and d = 3 in case (C).
Suppose there exists a decomposition of T T n into G. If the first vertex of T T n belongs to a copy of G, then it has to
be the vertex x. Hence, d divides the degree n− 1 of a vertex in T T n.

In the decomposition, there is a unique copy of G that contains the arc (1, 2) of T T n. In all other copies of G, the
second vertex of T T n cannot be different from x. Therefore d has to divide n− 1− c, where c = 1 in case (A), c = 3
in case (B), and c ∈ {1, 2} in case (C). In each case, this contradicts the divisibility of n− 1 by d. �

Lemma 4. If for every arc (u, v) ∈ E(G), at least one of its vertices u, v has both the outdegree and the indegree
positive, then T T n is not G-decomposable.
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Proof. Clearly, the longest arc (1, n) of T T n cannot belong to any copy of G. �

3. Decomposition into connected digraphs of size at most three

In this section we determine all cases when a transitive tournament T T n can be decomposed into a connected digraph
G of size at most three. Naturally, the size of G has to divide the size of T T n, and G must not contain a directed cycle.
It is clear that T T n can be decomposed into single arcs.

Theorem 5. There does not exist a decomposition of T T n into any connected digraph of size two.

Proof. By Lemma 1, it suffices to consider only two digraphs A1 and A2 shown in Fig. 2. It is easy to see that, by
Lemma 4, any T T n cannot be decomposed into copies of A1. By Lemma 3(A), the same is true for A2. �

It is well known (cp. [1]) that a complete graph Kn can be decomposed into a path P3 of length two if and only if
the size of Kn is even, i.e. n ≡ 0 or 1 (mod 4). We have thus shown that there does not exist an orientation of P3 that
would decompose any T T n. This gives a negative answer to the question formulated at the end of the Introduction.
Other counterexamples follow from Theorems 6 and 7.

Theorem 6. Let G be a connected digraph of size three. There exists a decomposition of T T n into G if and only if G
is isomorphic to one of the following digraphs (see Fig. 3):

1. B1, and n ≡ 1 or 3 (mod 6), n�3,
2. B5 or

←−
B5, and n ≡ 1 or 3 (mod 6), n�7,

3. B6, and n ≡ 0, 1, 3 or 4 (mod 6), n�4.

Proof. Since
(

n
2

)
has to be divisible by three, we exclude n ≡ 2 (mod 6) and n ≡ 5 (mod 6). Due to Lemma 1, we

consider only six subgraphs B1, B2, B3, B4, B5 and B6 of T T n (see Fig. 3). We immediately observe that, by Lemma
3(A), T T n cannot be decomposed into B2, and by Lemma 4, neither into B3 nor into B4.

The degree of every vertex of B1 equals two, hence vertices of T T n have to be of even degree, so either n ≡
1 (mod 6) or n ≡ 3 (mod 6). As it is well known (cp. [1]), for all such n�3, there exist Steiner triple systems that
give decompositions of a complete graph Kn into triangles. If we replace all edges of Kn by arcs to obtain a transitive
tournament, the resulting oriented triangles will always be isomorphic to B1.

Let us label the vertices of B5 with x, y, z, t , so that the arcs of B5 are: (x, y), (y, z) and (t, z). The vertices x, y

and t have positive outdegree, while d(z)= d−(z)= 2. Thus, in any decomposition of T T n into B5, the last vertex of
T T n has to be the vertex z in any copy of B5 it belongs to. As previously, this implies that either n ≡ 1 (mod 6) or
n ≡ 3 (mod 6), with n�7 (since T T 3 is not B5-decomposable).

From now on, to describe the required decompositions, we will use the following notation. Every copy of B5 in T T n

will be represented by a sequence of four integers (abcd) that indicate vertices of T T n corresponding to x, y, z and t ,
respectively. Consequently, a decomposition of T T 7 into B5 can be given by a set of seven sequences: (1273), (1364),
(2341), (2451), (2561), (2674), (3571).

Next, take any n of the form n= 6k + 1 with k�2. Partition the set V (T T n)\{n} = {1, . . . , n− 1} into six-element
sets V1, . . . , Vk , where

Vi = {i, 2k − i + 1, 4k − 2i + 1, 4k − 2i + 2, 5k − i + 1, 6k − i + 1}, i = 1, . . . , k.

A1

A2

Fig. 2. Directed subgraphs A1 and A2 of T T n.
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B1

B2

B3

B4

B5

B6

Fig. 3. Oriented graphs of size three to be considered in the proof of Theorem 6.

For i < j , let Sij denote the set of all arcs between Vi and Vj in T T n, i.e.

Sij = E(T T n) ∩ (Vi × Vj ∪ Vj × Vi).

Every arc of T T n belongs either to exactly one subgraph induced by Vi ∪ {n}, for some i, or to exactly one subgraph
induced by Sij for some i < j . For every i, the vertices of Vi ∪ {n} induce in T T n a transitive tournament of order
seven, and its decomposition into B5 has been already shown. Therefore, it suffices to find a B5-decomposition of the
subgraph induced by the set of arcs Sij for all i < j . To make it more readable, for fixed i and j, we denote the elements
of Vi and Vj as

Vi = {a, b, c, d, e, f }, Vj = {ă, b̆, c̆, d̆, ĕ, f̆ },
assuming that they are listed increasingly. Observe that the ordering of these integers is the following one:

a < ă < b̆ < b < c̆ < d̆ < c < d < ĕ < e < f̆ < f ,

since i < j . The desired decomposition follows: (aăbb̆), (ab̆că), (ac̆cd̆), (ad̆eb̆), (b̆df̆ c), (bc̆dă), (bd̆f c̆), (bĕf b̆),
(bf̆ f ă), (c̆ef̆ a), (d̆dĕa), (cĕeă). Thus, we have proved that T T ncan be decomposed into B5 (as well as into

←−
B5, by

Lemma 1) for n ≡ 1 (mod 6), n�7.
A B5-decomposition of T T 9 can be given by the following set of 12 sequences: (1243), (1385), (1453), (1574),

(1684), (1892), (2395), (2564), (2691), (2794), (3671), (3782). Let n = 6k + 3, k�2. Consider the partitioning of
V (T T n)\{n} into subsets V1, . . . , Vk−1 and W, where

W = {2k − 1, 2k, 2k + 1, 2k + 2, 4k + 1, 4k + 2, 4k + 3, 4k + 4}
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and

Vi = {i, 2k − i − 1, 4k − 2i + 1, 4k − 2i + 2, 5k − i + 4, 6k − i + 3}, i = 1, . . . , k − 1.

Each set Vi ∪ {n} induces T T 7, and W ∪ {n} induces T T 9. Observe that the ordering of the integers of Vi and Vj with
i < j is the same as for the previous case n= 6k+ 1. Therefore, it suffices to decompose a subgraph Hi formed by the
set of arcs

E(Hi)= E(T T n) ∩ (Vi ×W ∪W × Vi),

for each i = 1, . . . , k − 1. If we denote W = {a, b, c, d, e, f, g, h} and Vi = {ă, b̆, c̆, d̆, ĕ, f̆ }, then the sequence
of 14 integers (ăb̆abcdc̆d̆efghĕf̆ ) is strictly increasing. It is not difficult to derive that the digraph Hi is an edge-
disjoint union of eight digraphs, each of which is isomorphic to a subgraph of T T n induced by the set of five vertices
{ă, a, c̆, e, ĕ}. This is an oriented graph with an underlying graph K3,2 and it has the following B5-decomposition:
(ăaĕe), (ac̆eă).This completes the proof for the case when G is isomorphic to B5, and by Lemma 1, to

←−
B5.

T T n can be decomposed into B6 only if the size of T T n is divisible by three, hence n ≡ 0, 1, 3 or (4 mod 6).
We will show that this necessary condition is also sufficient in this case.

Let us label the vertices of B6 with x, y, z, t so that its arcs are: (x, y), (z, y), (z, t). First, we observe that the
oriented graph 	K3,3 with the vertex set {v1, . . . , v6} and the arc set {v1, v2, v3} × {v4, v5, v6}, is B6-decomposable.
Using the same convention as before, we represent a decomposition of 	K3,3 into B6 by the set of sequences:

(v1v5v2v4), (v2v6v3v5), (v3v4v1v6).

Let n= 6k. T T 6 has the following B6-decomposition: (1524), (3412), (4536), (4613), (5623). Next, for fixed k�2
we partition the vertex set of T T 6k into 2k triples T1, . . . , T2k , where Ti = {3i − 2, 3i − 1, 3i}, i = 1, . . . , 2k. The sum
of two consecutive triples T2j−1 ∪ T2j , with 1�j �k, induces a transitive tournament of order six. For any other pair
of triples Tp and Tq with p < q, the subgraph induced by the set of arcs Tp×Tq is isomorphic to 	K3,3. It easily follows
that T T 6k is B6-decomposable.

In case n = 6k + 3, we argue in a similar way. For k = 1, there exists a decomposition of T T 9 into B6: (1523),
(1634), (2413), (2659), (2718), (3546), (3829), (4739), (4879), (4967), (6857), (8912). If k�2, we partition the set
V (T T n) into 2k + 1 triples as above: Ti = {3i − 2, 3i − 1, 3i}, i = 1, . . . , 2k + 1. For each j = 1, . . . , k − 1, the sum
T2j−1 ∪ T2j induces T T 6. The sum of three last triples T2k−1 ∪ T2k ∪ T2k+1 induces T T 9. The arcs between any other
pair of triples create in T T n an oriented graph isomorphic to 	K3,3.

At last, let n ≡ 1 or 4 (mod 6), i.e. n = 3k + 1 with k�1. The transitive tournament T T 4 has the following
B6-decomposition: (1324), (3412). If k > 1, we partition the set V (T T 3k+1)\{n} into 3k triples Ti={3i−2, 3i−1, 3i},
i = 1, . . . , k. For every i, the set Ti ∪ {n} induces T T 4. The set of arcs Tp × Tq creates 	K3,3, whenever 1�p < q �3k.
Thus T T n is B6-decomposable for every n= 1 or 4 (mod 6). �

4. Decomposition into connected digraphs of size four

Theorem 7. Let G be a connected digraph of size four. There exists a decomposition of T T n into G if and only if n ≡ 0
or 1 (mod 8), and either G or its reverse

←−
G is isomorphic to one of four digraphs: C43, C46, C54 and C56 depicted

in Fig. 4.

Proof. Up to isomorphism, there are five connected graphs of size four. These are graphs C1, C2, C3, C4, C5 presented
in Fig. 5. We shall investigate all their orientations that are subgraphs of a transitive tournament. Due to Lemma 1,
we need not examine reverse orientations. By the necessary condition of decomposibility, we may assume that n ≡ 0
or 1 (mod 8).

Case C1: There are three such orientations of C1 (see Fig. 6).
Each vertex of C11 is of degree two, therefore a transitive tournament T T n could be decomposed into C11, only

if n were odd. Hence n = 8k + 1, for k ∈ N, and the number of copies of C11 in any decomposition would equal
k(8k + 1)= n2 − n/8.

On the other hand, C11 satisfies the assumption of Lemma 2. This leads to a contradiction.
It is easy to see that T T n is not decomposable neither into C12, by Lemma 4, nor into C13, by Lemma 3(B).
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C54

C56

C43

C46

Fig. 4. Four of five digraphs of size four that decompose T T n.

C1

C2

C3

C4

C5

Fig. 5. All connected graphs of size four.

Case C2: Fig. 7 presents all orientations of C2 in question.
Lemmas 4, 3(C) and 3(B) imply that T T n cannot be decomposed into C21, C22 and C23, respectively.
Case C3: Due to Lemma 1, we consider only three orientations of C3 (see Fig. 8).
By Lemma 3(A), the digraph C31 does not decompose T T n, and by Lemma 4, the same is true for C32 and C33.
Case C4: All orientations of C4, we have to consider, are depicted in Fig. 9.
Lemma 4 immediately excludes the digraphs C41 and C45. Further, Lemma 3(B) and (C) excludes C42 and C44,

too.



902 A. Görlich et al. / Discrete Mathematics 307 (2007) 896–904

C11 C12 C13

Fig. 6. Orientations of C1.

C21 C22 C23

Fig. 7. Orientations of C2.

C31 C32 C33

Fig. 8. Orientations of C3.

C41 C42 C43
z

u

t

x y

C44 C45 C46
x

y

z

t u

Fig. 9. Orientations of C4.

Let us label the vertices of C43 by x, y, z, t, u, so that its arcs are (x, y), (x, u), (z, u) and (t, u). Using the convention
introduced in the proof of Theorem 6, a decomposition of T T 8 into C43 can be represented as a set of sequences:
(12345), (13246), (18234), (23167), (25368), (36457), (56478). If n= 8k, for some k�2, then partition the vertex set
of T T n into sets W1, . . . , Wk , where Wi is the following set of eight consecutive integers:

Wi = {8i − 7, . . . , 8i}, i = 1, . . . , k.

Each set Wi induces a C43-decomposable tournament T T 8. For i < j , let Di,j indicate an oriented graph with the
vertex set V (Di,j ) =Wi ∪Wj and the edge set E(Di,j ) =Wi ×Wj . If we show that Di,j can be decomposed into
C43, then we will prove that T T 8k is C43-decomposible. To do this, it suffices to generalize in an obvious way the
following C43-decomposition (3,10,1,2,9), (4,9,1,2,10) of the subgraph D′ of T T n created by all eight arcs from the
set {1, 2, 3, 4} to the set {9, 10}. Indeed, each Dij is an arc-disjoint union of eight oriented graphs isomorphic to D′.



A. Görlich et al. / Discrete Mathematics 307 (2007) 896–904 903

There exists a decomposition of T T 9 into C43: (12345), (13246), (18234), (19237), (23468), (25349), (36578),
(56789), (69457). Let n= 8k + 1, k�2. Partition V (T T n)\{n} into sets W1, . . . , Wk as above, and note that Wi ∪ {n}
induces T T 9 and each Di,j is C43-decomposible.

Now, consider the oriented graph C46 and denote its vertices by x, y, z, t, u so that the arcs of C46 are: (x, y), (y, z),
(y, t), (u, t). A decomposition of T T 8 into C46 is represented by the following set of sequences: (12853), (13675),
(14687), (15862), (16872), (23481), (24571). For k�2, partition the vertex set of T T 8k into k subsets Υ1, . . . , Υk ,
where

Υi = {i, 2k − i + 1, 2k + 2i − 1, 2k + 2i, 8k − 4i + 1, 8k − 4i + 2, 8k − 4i + 3, 8k − 4i + 4},
for i = 1, . . . , k. In T T 8k , each set Υi induces T T 8. Hence, to show that T T 8k is decomposable into C46, it suffices
to find a C46-decomposition of the oriented subgraph D∗ij induced by the set of arcs

E(T T 8k) ∩ (Υi × Υj ∪ Υj × Υi)

for every i < j . Arrange the elements of both sets Υi and Υj in increasing order and denote them as

Υi = {a, b, c, d, e, f, g, h}, Υj = {ă, b̆, c̆, d̆, ĕ, f̆ , ğ, h̆}.

Note that the sequence of 16 integers (aăb̆bcdc̆d̆ĕf̆ ğh̆efgh) is increasing. The requested decomposition of D∗ij follows:

(ah̆ghă), (bh̆ef ă), (ağghc̆), (bğef b̆), (af̆ hgc̆), (df̆ f ed̆), (aĕhgă), (dĕf ec̆),

(aădeb̆), (ab̆ghd̆), (ăbd̆c̆a), (b̆bf̆ ĕc), (ăcf̆ ğd), (b̆cd̆h̆d), (b̆dd̆c̆c), (ad̆gf c̆).

T T 9 has the following decomposition into C46: (12963), (13582), (14672), (15894), (16798), (23491), (24581),
(25671), (37986). Let n=8k+1, k�2. Partition the set V (T T n)\{n}={1, . . . , 8k} into the same eight-element subsets
Υ1, . . . , Υk as above. To see that T T n is decomposable into C46, observe that Υi ∪ {n} induces a transitive tournament
of order 9, for each i, and the set of all other arcs is a disjoint union of arc sets of oriented graphs D∗ij with 1� i < j �k.
They are all C46-decomposable.

Case C5: By Lemma 1, we consider only six orientations of C5 (see Fig. 10).
Lemma 4 implies that any transitive tournament cannot be decomposed into C51.
Let G be one of the digraphs C52 and C53. Observe that G has exactly one vertex x with d−(x) = 2. Moreover

d+(x) = 0, so the last vertex of T T n must coincide with x in every copy of G it belongs to. Hence the degree of any
vertex in T T n must be even. It follows that n= 8k+ 1, for k ∈ N, and the number of copies of G in any decomposition
equals k(8k + 1)= n(n− 1)/8. By Lemma 2, there does not exist a decomposition of T T n into G.

Vertices of the digraph C54 can be labeled in such a way that its arc set consists of (x, y), (y, z), (t, z) and (t, u).
T T 8 has a C54-decomposition: (12435), (13625), (14756), (15823), (16738), (27845), (46817). For n= 8k with k�2,

C51

C52

C53

C54
x y z t u

C55

C56
x y z t u

Fig. 10. Orientations of C5.



904 A. Görlich et al. / Discrete Mathematics 307 (2007) 896–904

consider the following partitioning of V (T T n) into eight-element sets

Vi = {i, 2k − i + 1, 2k + 2i − 1, 2k + 2i, 5k − i + 1, 5k + i, 8k − 2i + 1, 8k − 2i + 2},
i = 1, . . . , k. Each set Vi induces T T 8, therefore, it suffices to decompose into C54 a digraph D′i,j with the vertex set
Vi ∪ Vj and the arc set

E(T T n) ∩ (Vi × Vj ∪ Vj × Vi),

for all i < j . To do this, denote

Vi = {a, b, c, d, e, f, g, h} and Vj = {ă, b̆, c̆, d̆, ĕ, f̆ , ğ, h̆},
assuming that the elements of each set are listed in increasing order, and observe that the sequence of 16 integers
(aăb̆bcdc̆d̆ĕef f̆ ğh̆gh) is increasing. A decomposition of D′ij follows:

(aăf ĕh), (ab̆hd̆f ), (ac̆hğg), (cc̆gb̆e), (cĕec̆f ), (af̆ hăg), (b̆dĕağ), (ăbc̆dğ),

(ăch̆ef̆ ), (ădf̆ cğ), (ăeğf f̆ ), (b̆bd̆ah̆), (b̆cd̆dh̆), (bf̆ gh̆h), (bĕgd̆e), (b̆f h̆bğ).

A decomposition of T T 9 into C54 is given by a set of sequences: (12436), (13526), (14657), (15823), (16739),
(17849), (38927), (45918), (47968). In T T 8k+1 with k�2, each set Vj ∪ {n} induces T T 9, and the digraph D′i,j is
C54-decomposible, as shown before. Thus, T T n can be decomposed into C54 for every n= 0, 1 (mod 8), n�8.

By Lemma 3(B), T T n cannot be decomposed into C55.
Let {x, y, z, t, u} be the vertex set of the digraph C56, so that (x, y), (z, y), (t, z) and (t, u) are the arcs of it. Then

the set of sequences (14325), (15426), (16538), (28637), (47218), (57648), (58713) represents a C56-decomposition
of T T 8, and (14325), (15426), (16537), (17638), (18729), (19748), (28649), (59312), (69857) that of T T 9. This time,
we partition the set {1, . . . , 8k} into k subsets

Ui = {2i − 1, 2i, 3k − i + 1, 3k + i, 5k − i + 1, 5k + i, 8k − 2i + 1, 8k − 2i + 2},
i= 1, . . . , k. As in previous cases, to prove that every T T n with n= 8k or n= 8k+ 1, is C56-decomposable, it suffices
to show that a digraph D′′i,j with the arc set

E(T T n) ∩ (Ui × Uj ∪ Uj × Ui),

has a C56-decomposition. If we denote Ui = {a, b, c, d, e, f, g, h} and Uj = {ă, b̆, c̆, d̆, ĕ, f̆ , ğ, h̆} for i < j , then the
sequence

(abăb̆c̆cdd̆ĕef f̆ ğh̆gh)

is increasing.The decomposition ofD′′i,j may look like this: (f̆ găad̆), (c̆hğab̆), (d̆hh̆ac̆), (aĕcăe), (af̆ dăf ), (f̆ hăbd̆),

(ğgh̆bb̆), (d̆gĕbc̆), (ef̆ cb̆g), (bğdb̆h),(ĕed̆cğ), (c̆f d̆dĕ), (f ğec̆g), (dh̆f ĕh), (bf̆ f b̆e), (eh̆cc̆d). �
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