A note on decompositions of transitive tournaments

Agnieszka Görlich, Rafał Kalinowski, Mariusz Meszka, Monika Pilśniak, Mariusz Woźniak
Department of Discrete Mathematics, Faculty of Applied Mathematics, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland

Received 30 October 2003; received in revised form 14 May 2004; accepted 22 November 2005
Available online 25 September 2006

Abstract

For any positive integer n, we determine all connected digraphs G of size at most four, such that a transitive tournament of order n is G-decomposable. Among others, these results disprove a generalization of a theorem of Sali and Simonyi [Orientations of self-complementary graphs and the relation of Sperner and Shannon capacities, European J. Combin. 20 (1999), 93-99]. © 2006 Elsevier B.V. All rights reserved.

MSC: 05C70; 05C35
Keywords: Transitive tournaments; Decomposition

1. Introduction

Let G be a digraph of order n with the vertex set $V(G)$ and the arc set $E(G)$. The outdegree of a vertex $v \in V(G)$ is denoted by $d^{+}(v)$, and its indegree by $d^{-}(v)$. The degree of a vertex v is the sum $d(v)=d^{-}(v)+d^{+}(v)$. A reverse of a digraph G is the digraph \bar{G} obtained from G by converting each $\operatorname{arc}(u, v) \in E(G)$ into (v, u). An oriented graph is a digraph without directed cycles of length two. Replacing of every arc (u, v) in an oriented graph G by an edge $u v$ yields the underlying graph Γ of G, and then G is called an orientation of Γ.

A tournament is an orientation of a complete graph. A digraph G is called transitive when it satisfies the condition of transitivity: if (u, v) and (v, w) are two arcs of G then (u, w) is an arc, too. A transitive tournament of order n will be denoted by $T T_{n}$. Since $T T_{n}$ is unique up to isomorphism, throughout the paper we will view it as shown in Fig. 1. Namely, $V\left(T T_{n}\right)=\{1, \ldots, n\}$ and $E\left(T T_{n}\right)=\{(i, j): 1 \leqslant i<j \leqslant n\}$. The vertices 1,2 and n will be called the first, the second and the last vertex of $T T_{n}$, respectively. We define the length of an arc (i, j) as the difference $j-i$.

Let G and H be two digraphs. We say that H can be decomposed into G (or H is G-decomposable, for short), if there exists a partition of the arc set $E(H)$ into pairwise disjoint subsets each of which creates a subgraph isomorphic to G. An obvious necessary condition for the existence of a G-decomposition of H is the divisibility of $|E(H)|$ by $|E(G)|$.

This paper has been inspired by a theorem of Sali and Simonyi [3] (for a nice, short proof consult Gyárfás [2]). Its slightly weaker version can be formulated as follows.

[^0]

Fig. 1. Transitive tournament $T T_{n}$.

Theorem (Sali and Simonyi [3]). If Γ is a self-complementary graph of order n, then there exists an orientation G of Γ such that a transitive tournament $T T_{n}$ is G-decomposable.

One can try to generalize this result and pose a more general question. Suppose a complete graph K_{n} can be decomposed into k copies of a graph Γ. Does there always exist an orientation G of Γ such that $T T_{n}$ is G-decomposable? The above theorem of Sali and Simonyi answers this question in affirmative for $k=2$. We will show that, in general, the answer is negative.

2. Some lemmas

We start with an immediate consequence of the fact that the transitive tournament $T T_{n}$ is isomorphic to its reverse $\overleftarrow{T T_{n}}$.

Lemma 1. A transitive tournament $T T_{n}$ is G-decomposable if and only if it is \overleftarrow{G}-decomposable.
The subsequent lemmas will be useful in disproving the existence of some decompositions of $T T_{n}$.
Lemma 2. Assume that every subgraph of $T T_{n}$ isomorphic to G has at most two arcs in the set

$$
F=\left\{(i, j) \in E\left(T T_{n}\right): i \leqslant \frac{n}{2}<j\right\} .
$$

If $T T_{n}$ can be decomposed into G, then the number of copies of G in a decomposition cannot be smaller than $\left\lceil\left(n^{2}-1\right) / 8\right\rceil$.

Proof. Observe that $|F|=\left\lceil\left(n^{2}-1\right) / 4\right\rceil$.
Lemma 3. Let G be a digraph of order at least three such that G has exactly one vertex x of indegree zero. Then $T T_{n}$ cannot be G-decomposed in each of the following three cases:
(A) the underlying graph of G is a star with a center x,
(B) every vertex of G has outdegree zero, except for two vertices x and y with $d^{+}(x)=d^{+}(y)=2$,
(C) $d^{+}(x)=3$, and every other vertex of G has outdegree less than two.

Proof. Let d denote the degree of the vertex x in G. Thus $d \geqslant 2$ in case (A), $d=2$ in case (B), and $d=3$ in case (C). Suppose there exists a decomposition of $T T_{n}$ into G. If the first vertex of $T T_{n}$ belongs to a copy of G, then it has to be the vertex x. Hence, d divides the degree $n-1$ of a vertex in $T T_{n}$.
In the decomposition, there is a unique copy of G that contains the $\operatorname{arc}(1,2)$ of $T T_{n}$. In all other copies of G, the second vertex of $T T_{n}$ cannot be different from x. Therefore d has to divide $n-1-c$, where $c=1$ in case (A), $c=3$ in case (B), and $c \in\{1,2\}$ in case (C). In each case, this contradicts the divisibility of $n-1$ by d.

Lemma 4. If for every arc $(u, v) \in E(G)$, at least one of its vertices u, v has both the outdegree and the indegree positive, then $T T_{n}$ is not G-decomposable.

Proof. Clearly, the longest arc $(1, n)$ of $T T_{n}$ cannot belong to any copy of G.

3. Decomposition into connected digraphs of size at most three

In this section we determine all cases when a transitive tournament $T T_{n}$ can be decomposed into a connected digraph G of size at most three. Naturally, the size of G has to divide the size of $T T_{n}$, and G must not contain a directed cycle. It is clear that $T T_{n}$ can be decomposed into single arcs.

Theorem 5. There does not exist a decomposition of $T T_{n}$ into any connected digraph of size two.
Proof. By Lemma 1, it suffices to consider only two digraphs $A 1$ and $A 2$ shown in Fig. 2. It is easy to see that, by Lemma 4, any $T T_{n}$ cannot be decomposed into copies of $A 1$. By Lemma 3(A), the same is true for $A 2$.

It is well known (cp. [1]) that a complete graph K_{n} can be decomposed into a path P_{3} of length two if and only if the size of K_{n} is even, i.e. $n \equiv 0$ or $1(\bmod 4)$. We have thus shown that there does not exist an orientation of P_{3} that would decompose any $T T_{n}$. This gives a negative answer to the question formulated at the end of the Introduction. Other counterexamples follow from Theorems 6 and 7 .

Theorem 6. Let G be a connected digraph of size three. There exists a decomposition of $T T_{n}$ into G if and only if G is isomorphic to one of the following digraphs (see Fig. 3):

1. $B 1$, and $n \equiv 1$ or $3(\bmod 6), n \geqslant 3$,
2. $B 5$ or $\overleftarrow{B 5}$, and $n \equiv 1$ or $3(\bmod 6), n \geqslant 7$,
3. $B 6$, and $n \equiv 0,1,3$ or $4(\bmod 6), n \geqslant 4$.

Proof. Since $\binom{n}{2}$ has to be divisible by three, we exclude $n \equiv 2(\bmod 6)$ and $n \equiv 5(\bmod 6)$. Due to Lemma 1 , we consider only six subgraphs $B 1, B 2, B 3, B 4, B 5$ and $B 6$ of $T T_{n}$ (see Fig. 3). We immediately observe that, by Lemma 3(A), $T T_{n}$ cannot be decomposed into $B 2$, and by Lemma 4, neither into $B 3$ nor into $B 4$.

The degree of every vertex of $B 1$ equals two, hence vertices of $T T_{n}$ have to be of even degree, so either $n \equiv$ $1(\bmod 6)$ or $n \equiv 3(\bmod 6)$. As it is well known (cp. [1]), for all such $n \geqslant 3$, there exist Steiner triple systems that give decompositions of a complete graph K_{n} into triangles. If we replace all edges of K_{n} by arcs to obtain a transitive tournament, the resulting oriented triangles will always be isomorphic to $B 1$.

Let us label the vertices of $B 5$ with x, y, z, t, so that the arcs of $B 5$ are: $(x, y),(y, z)$ and (t, z). The vertices x, y and t have positive outdegree, while $d(z)=d^{-}(z)=2$. Thus, in any decomposition of $T T_{n}$ into $B 5$, the last vertex of $T T_{n}$ has to be the vertex z in any copy of $B 5$ it belongs to. As previously, this implies that either $n \equiv 1(\bmod 6)$ or $n \equiv 3(\bmod 6)$, with $n \geqslant 7\left(\right.$ since $T T_{3}$ is not $B 5$-decomposable).

From now on, to describe the required decompositions, we will use the following notation. Every copy of $B 5$ in $T T_{n}$ will be represented by a sequence of four integers ($a b c d$) that indicate vertices of $T T_{n}$ corresponding to x, y, z and t, respectively. Consequently, a decomposition of $T T_{7}$ into $B 5$ can be given by a set of seven sequences: (1273), (1364), (2341), (2451), (2561), (2674), (3571).

Next, take any n of the form $n=6 k+1$ with $k \geqslant 2$. Partition the set $V\left(T T_{n}\right) \backslash\{n\}=\{1, \ldots, n-1\}$ into six-element sets V_{1}, \ldots, V_{k}, where

$$
V_{i}=\{i, 2 k-i+1,4 k-2 i+1,4 k-2 i+2,5 k-i+1,6 k-i+1\}, \quad i=1, \ldots, k .
$$

Fig. 2. Directed subgraphs $A 1$ and $A 2$ of $T T_{n}$.

Fig. 3. Oriented graphs of size three to be considered in the proof of Theorem 6.

For $i<j$, let $S_{i j}$ denote the set of all arcs between V_{i} and V_{j} in $T T_{n}$, i.e.

$$
S_{i j}=E\left(T T_{n}\right) \cap\left(V_{i} \times V_{j} \cup V_{j} \times V_{i}\right)
$$

Every arc of $T T_{n}$ belongs either to exactly one subgraph induced by $V_{i} \cup\{n\}$, for some i, or to exactly one subgraph induced by $S_{i j}$ for some $i<j$. For every i, the vertices of $V_{i} \cup\{n\}$ induce in $T T_{n}$ a transitive tournament of order seven, and its decomposition into $B 5$ has been already shown. Therefore, it suffices to find a $B 5$-decomposition of the subgraph induced by the set of arcs $S_{i j}$ for all $i<j$. To make it more readable, for fixed i and j, we denote the elements of V_{i} and V_{j} as

$$
V_{i}=\{a, b, c, d, e, f\}, \quad V_{j}=\{\breve{a}, \breve{b}, \breve{c}, \breve{d}, \breve{e}, \breve{f}\},
$$

assuming that they are listed increasingly. Observe that the ordering of these integers is the following one:

$$
a<\breve{a}<\breve{b}<b<\breve{c}<\breve{d}<c<d<\breve{e}<e<\breve{f}<f,
$$

since $i<j$. The desired decomposition follows: $(a \breve{a} b \breve{b}),(a \breve{b} c \breve{a}),(a \breve{c} c \breve{d}),(a \breve{d} e \breve{b}),(\breve{b} d \breve{f} c),(b \breve{c} d \breve{a}),(b \breve{d} f \breve{c}),(b \breve{e} f \breve{b})$, ($b \breve{f} f \breve{a}),(\breve{c} e \breve{f} a),(\breve{d} d \breve{e} a),(c \breve{e} e \breve{a})$. Thus, we have proved that $T T_{n}$ can be decomposed into $B 5$ (as well as into $\overleftarrow{B 5}$, by Lemma 1) for $n \equiv 1(\bmod 6), n \geqslant 7$.

A $B 5$-decomposition of $T T_{9}$ can be given by the following set of 12 sequences: (1243), (1385), (1453), (1574), (1684), (1892), (2395), (2564), (2691), (2794), (3671), (3782). Let $n=6 k+3, k \geqslant 2$. Consider the partitioning of $V\left(T T_{n}\right) \backslash\{n\}$ into subsets V_{1}, \ldots, V_{k-1} and W, where

$$
W=\{2 k-1,2 k, 2 k+1,2 k+2,4 k+1,4 k+2,4 k+3,4 k+4\}
$$

and

$$
V_{i}=\{i, 2 k-i-1,4 k-2 i+1,4 k-2 i+2,5 k-i+4,6 k-i+3\}, \quad i=1, \ldots, k-1 .
$$

Each set $V_{i} \cup\{n\}$ induces $T T_{7}$, and $W \cup\{n\}$ induces $T T_{9}$. Observe that the ordering of the integers of V_{i} and V_{j} with $i<j$ is the same as for the previous case $n=6 k+1$. Therefore, it suffices to decompose a subgraph H_{i} formed by the set of arcs

$$
E\left(H_{i}\right)=E\left(T T_{n}\right) \cap\left(V_{i} \times W \cup W \times V_{i}\right),
$$

for each $i=1, \ldots, k-1$. If we denote $W=\{a, b, c, d, e, f, g, h\}$ and $V_{i}=\{\breve{a}, \breve{b}, \breve{c}, \breve{d}, \breve{e}, \breve{f}\}$, then the sequence of 14 integers ($\breve{a} \breve{b}$ abcd $\breve{c} \breve{d}$ efghĕf) is strictly increasing. It is not difficult to derive that the digraph H_{i} is an edgedisjoint union of eight digraphs, each of which is isomorphic to a subgraph of $T T_{n}$ induced by the set of five vertices $\{\breve{a}, a, \breve{c}, e, \breve{e}\}$. This is an oriented graph with an underlying graph $K_{3,2}$ and it has the following $B 5$-decomposition: ($\breve{a} a \breve{e} e$), ($a \breve{c}$ e \breve{a}). This completes the proof for the case when G is isomorphic to $B 5$, and by Lemma 1 , to $\overleftarrow{B 5}$.
$T T_{n}$ can be decomposed into $B 6$ only if the size of $T T_{n}$ is divisible by three, hence $n \equiv 0,1,3$ or $(4 \bmod 6)$. We will show that this necessary condition is also sufficient in this case.

Let us label the vertices of $B 6$ with x, y, z, t so that its arcs are: $(x, y),(z, y),(z, t)$. First, we observe that the oriented graph $\vec{K}_{3,3}$ with the vertex set $\left\{v_{1}, \ldots, v_{6}\right\}$ and the arc set $\left\{v_{1}, v_{2}, v_{3}\right\} \times\left\{v_{4}, v_{5}, v_{6}\right\}$, is $B 6$-decomposable. Using the same convention as before, we represent a decomposition of $\vec{K}_{3,3}$ into $B 6$ by the set of sequences:
$\left(v_{1} v_{5} v_{2} v_{4}\right),\left(v_{2} v_{6} v_{3} v_{5}\right),\left(v_{3} v_{4} v_{1} v_{6}\right)$.
Let $n=6 k . T T_{6}$ has the following B6-decomposition: (1524), (3412), (4536), (4613), (5623). Next, for fixed $k \geqslant 2$ we partition the vertex set of $T T_{6 k}$ into $2 k$ triples $T_{1}, \ldots, T_{2 k}$, where $T_{i}=\{3 i-2,3 i-1,3 i\}, i=1, \ldots, 2 k$. The sum of two consecutive triples $T_{2 j-1} \cup T_{2 j}$, with $1 \leqslant j \leqslant k$, induces a transitive tournament of order six. For any other pair of triples T_{p} and T_{q} with $p<q$, the subgraph induced by the set of $\operatorname{arcs} T_{p} \times T_{q}$ is isomorphic to $\vec{K}_{3,3}$. It easily follows that $T T_{6 k}$ is $B 6$-decomposable.
In case $n=6 k+3$, we argue in a similar way. For $k=1$, there exists a decomposition of $T T_{9}$ into $B 6$: (1523), (1634), (2413), (2659), (2718), (3546), (3829), (4739), (4879), (4967), (6857), (8912). If $k \geqslant 2$, we partition the set $V\left(T T_{n}\right)$ into $2 k+1$ triples as above: $T_{i}=\{3 i-2,3 i-1,3 i\}, i=1, \ldots, 2 k+1$. For each $j=1, \ldots, k-1$, the sum $T_{2 j-1} \cup T_{2 j}$ induces $T T_{6}$. The sum of three last triples $T_{2 k-1} \cup T_{2 k} \cup T_{2 k+1}$ induces $T T_{9}$. The arcs between any other pair of triples create in $T T_{n}$ an oriented graph isomorphic to $\vec{K}_{3,3}$.

At last, let $n \equiv 1$ or $4(\bmod 6)$, i.e. $n=3 k+1$ with $k \geqslant 1$. The transitive tournament $T T_{4}$ has the following B6-decomposition: (1324), (3412). If $k>1$, we partition the set $V\left(T T_{3 k+1}\right) \backslash\{n\}$ into $3 k$ triples $T_{i}=\{3 i-2,3 i-1,3 i\}$, $i=1, \ldots, k$. For every i, the set $T_{i} \cup\{n\}$ induces $T T_{4}$. The set of arcs $T_{p} \times T_{q}$ creates $\vec{K}_{3,3}$, whenever $1 \leqslant p<q \leqslant 3 k$. Thus $T T_{n}$ is $B 6$-decomposable for every $n=1$ or $4(\bmod 6)$.

4. Decomposition into connected digraphs of size four

Theorem 7. Let G be a connected digraph of size four. There exists a decomposition of $T T_{n}$ into G if and only if $n \equiv 0$ or $1(\bmod 8)$, and either G or its reverse \overleftarrow{G} is isomorphic to one of four digraphs: C43,C46, C54 and C56 depicted in Fig. 4.

Proof. Up to isomorphism, there are five connected graphs of size four. These are graphs $C 1, C 2, C 3, C 4, C 5$ presented in Fig. 5. We shall investigate all their orientations that are subgraphs of a transitive tournament. Due to Lemma 1, we need not examine reverse orientations. By the necessary condition of decomposibility, we may assume that $n \equiv 0$ or $1(\bmod 8)$.

Case $C 1$: There are three such orientations of $C 1$ (see Fig. 6).
Each vertex of $C 11$ is of degree two, therefore a transitive tournament $T T_{n}$ could be decomposed into $C 11$, only if n were odd. Hence $n=8 k+1$, for $k \in \mathbb{N}$, and the number of copies of $C 11$ in any decomposition would equal $k(8 k+1)=n^{2}-n / 8$.

On the other hand, $C 11$ satisfies the assumption of Lemma 2. This leads to a contradiction.
It is easy to see that $T T_{n}$ is not decomposable neither into $C 12$, by Lemma 4, nor into $C 13$, by Lemma 3(B).

Fig. 4. Four of five digraphs of size four that decompose $T T_{n}$.

C2

C3

Fig. 5. All connected graphs of size four.
Case C2: Fig. 7 presents all orientations of $C 2$ in question.
Lemmas 4,3(C) and 3(B) imply that $T T_{n}$ cannot be decomposed into $C 21, C 22$ and $C 23$, respectively.
Case C3: Due to Lemma 1, we consider only three orientations of C3 (see Fig. 8).
By Lemma 3(A), the digraph C31 does not decompose $T T_{n}$, and by Lemma 4, the same is true for $C 32$ and $C 33$. Case C4: All orientations of $C 4$, we have to consider, are depicted in Fig. 9 .
Lemma 4 immediately excludes the digraphs $C 41$ and $C 45$. Further, Lemma 3(B) and (C) excludes $C 42$ and $C 44$, too.

Fig. 6. Orientations of $C 1$.

Fig. 7. Orientations of $C 2$.

Fig. 8. Orientations of $C 3$.

Fig. 9. Orientations of $C 4$.

Let us label the vertices of $C 43$ by x, y, z, t, u, so that its arcs are $(x, y),(x, u),(z, u)$ and (t, u). Using the convention introduced in the proof of Theorem 6, a decomposition of $T T_{8}$ into $C 43$ can be represented as a set of sequences: (12345), (13246), (18234), (23167), (25368), (36457), (56478). If $n=8 k$, for some $k \geqslant 2$, then partition the vertex set of $T T_{n}$ into sets W_{1}, \ldots, W_{k}, where W_{i} is the following set of eight consecutive integers:

$$
W_{i}=\{8 i-7, \ldots, 8 i\}, \quad i=1, \ldots, k .
$$

Each set W_{i} induces a $C 43$-decomposable tournament $T T_{8}$. For $i<j$, let $D_{i, j}$ indicate an oriented graph with the vertex set $V\left(D_{i, j}\right)=W_{i} \cup W_{j}$ and the edge set $E\left(D_{i, j}\right)=W_{i} \times W_{j}$. If we show that $D_{i, j}$ can be decomposed into $C 43$, then we will prove that $T T_{8 k}$ is $C 43$-decomposible. To do this, it suffices to generalize in an obvious way the following $C 43$-decomposition ($3,10,1,2,9$), ($4,9,1,2,10$) of the subgraph D^{\prime} of $T T_{n}$ created by all eight arcs from the set $\{1,2,3,4\}$ to the set $\{9,10\}$. Indeed, each $D_{i j}$ is an arc-disjoint union of eight oriented graphs isomorphic to D^{\prime}.

There exists a decomposition of $T T_{9}$ into $C 43$: (12345), (13246), (18234), (19237), (23468), (25349), (36578), (56789), (69457). Let $n=8 k+1, k \geqslant 2$. Partition $V\left(T T_{n}\right) \backslash\{n\}$ into sets W_{1}, \ldots, W_{k} as above, and note that $W_{i} \cup\{n\}$ induces $T T_{9}$ and each $D_{i, j}$ is $C 43$-decomposible.

Now, consider the oriented graph C46 and denote its vertices by x, y, z, t, u so that the arcs of $C 46$ are: $(x, y),(y, z)$, $(y, t),(u, t)$. A decomposition of $T T_{8}$ into $C 46$ is represented by the following set of sequences: (12853), (13675), (14687), (15862), (16872), (23481), (24571). For $k \geqslant 2$, partition the vertex set of $T T_{8 k}$ into k subsets $\Upsilon_{1}, \ldots, \Upsilon_{k}$, where

$$
\Upsilon_{i}=\{i, 2 k-i+1,2 k+2 i-1,2 k+2 i, 8 k-4 i+1,8 k-4 i+2,8 k-4 i+3,8 k-4 i+4\},
$$

for $i=1, \ldots, k$. In $T T_{8 k}$, each set Υ_{i} induces $T T_{8}$. Hence, to show that $T T_{8 k}$ is decomposable into $C 46$, it suffices to find a $C 46$-decomposition of the oriented subgraph $D_{i j}^{*}$ induced by the set of arcs

$$
E\left(T T_{8 k}\right) \cap\left(\Upsilon_{i} \times \Upsilon_{j} \cup \Upsilon_{j} \times \Upsilon_{i}\right)
$$

for every $i<j$. Arrange the elements of both sets Υ_{i} and Υ_{j} in increasing order and denote them as

$$
\Upsilon_{i}=\{a, b, c, d, e, f, g, h\}, \quad \Upsilon_{j}=\{\breve{a}, \breve{b}, \breve{c}, \breve{d}, \breve{e}, \breve{f}, \breve{g}, \breve{h}\} .
$$

Note that the sequence of 16 integers ($a \breve{a} \breve{b} b c d \breve{c} \breve{d} \breve{e} \breve{f} \breve{g} \breve{h e f} g h$) is increasing. The requested decomposition of $D_{i j}^{*}$ follows: ($a \breve{h} g h \breve{a}),(b \breve{h e f} \breve{a}),(a \breve{g} g h \breve{c}),(b \breve{g} e f \breve{b}),(a \breve{f} h g \breve{c}),(d \breve{f} f e \breve{d}),(a \breve{e} h g \breve{a}),(d \breve{e} f e \breve{c})$,
($a \stackrel{a}{d} d \breve{b}),(a \breve{b} g h \breve{d}),(\breve{a} b \breve{d} \breve{c} a),(\breve{b} b \breve{f} \breve{e} c),(\breve{a} c \breve{f} \breve{g} d),(\breve{b} c \breve{d} \breve{h} d),(\breve{b} d \breve{d} \breve{c} c),(a \breve{d} g f \breve{c})$.
$T T_{9}$ has the following decomposition into C46: (12963), (13582), (14672), (15894), (16798), (23491), (24581), (25671), (37986). Let $n=8 k+1, k \geqslant 2$. Partition the set $V\left(T T_{n}\right) \backslash\{n\}=\{1, \ldots, 8 k\}$ into the same eight-element subsets $\Upsilon_{1}, \ldots, \Upsilon_{k}$ as above. To see that $T T_{n}$ is decomposable into $C 46$, observe that $\Upsilon_{i} \cup\{n\}$ induces a transitive tournament of order 9 , for each i, and the set of all other arcs is a disjoint union of arc sets of oriented graphs $D_{i j}^{*}$ with $1 \leqslant i<j \leqslant k$. They are all C46-decomposable.

Case C5: By Lemma 1, we consider only six orientations of C5 (see Fig. 10).
Lemma 4 implies that any transitive tournament cannot be decomposed into $C 51$.
Let G be one of the digraphs $C 52$ and $C 53$. Observe that G has exactly one vertex x with $d^{-}(x)=2$. Moreover $d^{+}(x)=0$, so the last vertex of $T T_{n}$ must coincide with x in every copy of G it belongs to. Hence the degree of any vertex in $T T_{n}$ must be even. It follows that $n=8 k+1$, for $k \in \mathbb{N}$, and the number of copies of G in any decomposition equals $k(8 k+1)=n(n-1) / 8$. By Lemma 2, there does not exist a decomposition of $T T_{n}$ into G.
Vertices of the digraph $C 54$ can be labeled in such a way that its arc set consists of $(x, y),(y, z),(t, z)$ and (t, u). $T T_{8}$ has a C54-decomposition: (12435), (13625), (14756), (15823), (16738), (27845), (46817). For $n=8 k$ with $k \geqslant 2$,

Fig. 10. Orientations of $C 5$.
consider the following partitioning of $V\left(T T_{n}\right)$ into eight-element sets

$$
V_{i}=\{i, 2 k-i+1,2 k+2 i-1,2 k+2 i, 5 k-i+1,5 k+i, 8 k-2 i+1,8 k-2 i+2\}
$$

$i=1, \ldots, k$. Each set V_{i} induces $T T_{8}$, therefore, it suffices to decompose into $C 54$ a digraph $D_{i, j}^{\prime}$ with the vertex set $V_{i} \cup V_{j}$ and the arc set

$$
E\left(T T_{n}\right) \cap\left(V_{i} \times V_{j} \cup V_{j} \times V_{i}\right),
$$

for all $i<j$. To do this, denote

$$
V_{i}=\{a, b, c, d, e, f, g, h\} \quad \text { and } \quad V_{j}=\{\breve{a}, \breve{b}, \breve{c}, \breve{d}, \breve{e}, \breve{f}, \breve{g}, \breve{h}\},
$$

assuming that the elements of each set are listed in increasing order, and observe that the sequence of 16 integers ($a \stackrel{a}{ } \breve{b} b c d \breve{c} \breve{d} \breve{e} e f \breve{f} \breve{g} \breve{h} g h$) is increasing. A decomposition of $D_{i j}^{\prime}$ follows:
($a \breve{a} f \breve{e} h),(a \breve{b} h \breve{d} f),(a \breve{c} h \breve{g} g),(c \breve{c} g \breve{b} e),(c \breve{e} e \breve{c} f),(a \breve{f} h a ̆ g),(b \breve{b} d \breve{e} a \breve{g}),(\breve{a} b c ̆ d \breve{g})$,
($\left.\breve{a} c \breve{h e} \breve{f}^{\prime}\right),(\breve{a} d \breve{f} c \breve{g}),(\breve{a} e \breve{g} f \breve{f}),(\breve{b} b \breve{d} a \breve{h}),(\breve{b} c \breve{d} d \breve{h}),(b \breve{f} g \breve{h} h),(b \breve{e} g \breve{d} e),(\breve{b} f \breve{h} b \breve{g})$.
A decomposition of $T T_{9}$ into $C 54$ is given by a set of sequences: (12436), (13526), (14657), (15823), (16739), (17849), (38927), (45918), (47968). In $T T_{8 k+1}$ with $k \geqslant 2$, each set $V_{j} \cup\{n\}$ induces $T T_{9}$, and the digraph $D_{i, j}^{\prime}$ is $C 54$-decomposible, as shown before. Thus, $T T_{n}$ can be decomposed into $C 54$ for every $n=0,1(\bmod 8), n \geqslant 8$.

By Lemma 3(B), $T T_{n}$ cannot be decomposed into $C 55$.
Let $\{x, y, z, t, u\}$ be the vertex set of the digraph $C 56$, so that $(x, y),(z, y),(t, z)$ and (t, u) are the arcs of it. Then the set of sequences (14325), (15426), (16538), (28637), (47218), (57648), (58713) represents a $C 56$-decomposition of $T T_{8}$, and (14325), (15426), (16537), (17638), (18729), (19748), (28649), (59312), (69857) that of $T T_{9}$. This time, we partition the set $\{1, \ldots, 8 k\}$ into k subsets

$$
U_{i}=\{2 i-1,2 i, 3 k-i+1,3 k+i, 5 k-i+1,5 k+i, 8 k-2 i+1,8 k-2 i+2\},
$$

$i=1, \ldots, k$. As in previous cases, to prove that every $T T_{n}$ with $n=8 k$ or $n=8 k+1$, is $C 56$-decomposable, it suffices to show that a digraph $D_{i, j}^{\prime \prime}$ with the arc set

$$
E\left(T T_{n}\right) \cap\left(U_{i} \times U_{j} \cup U_{j} \times U_{i}\right)
$$

has a $C 56$-decomposition. If we denote $U_{i}=\{a, b, c, d, e, f, g, h\}$ and $U_{j}=\{\breve{a}, \breve{b}, \breve{c}, \breve{d}, \breve{e}, \breve{f}, \breve{g}, \breve{h}\}$ for $i<j$, then the sequence
($\left.a b a \breve{b} \breve{b} c{ }^{2} c d \breve{e} \breve{e} e f \breve{f} \breve{g} \breve{h} \breve{g} h\right)$
is increasing. The decomposition of $D_{i, j}^{\prime \prime}$ may look like this: ($\left.\breve{f} g \breve{a} a \breve{d}\right),(\breve{c} h \breve{g} a \breve{b}),(\breve{d} h \breve{h a c}),(a \breve{e} c a ̆ e),(a \breve{f} d \breve{a} f),(\breve{f} h a ̆ b \breve{d})$, $(\breve{g} g \breve{h} b \breve{b}),(\breve{d} g e \breve{e} b),(e \breve{f} c \breve{b} g),(b \breve{g} d \breve{b} h),\left(\breve{e}{ }^{2} \breve{d} c \breve{g}\right),(\breve{c} f \breve{d} d \breve{e}),(f \breve{g} e \breve{c} g),(d \breve{h} f \breve{e} h),(b \breve{f} f \breve{b} e),(e \breve{h} c \breve{c} d)$.

References

[1] J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers, Dordrecht, 1990.
[2] A. Gyárfás, Transitive tournaments and self-complementary graphs, J. Graph Theory 38 (2001) 111-112.
[3] A. Sali, G. Simonyi, Orientations of self-complementary graphs and the relation of Sperner and Shannon capacities, European J. Combin. 20 (1999) 93-99.

[^0]: E-mail addresses: forys@uci.agh.edu.pl (A. Görlich), kalinows@uci.agh.edu.pl (R. Kalinowski), meszka@uci.agh.edu.pl (M. Meszka), pilsniak@uci.agh.edu.pl (M. Pilśniak), mwozniak@uci.agh.edu.pl (M. Woźniak).

