TOTAL AND PAIRED DOMINATION STABILITY IN PRISMS

Aleksandra Gorzkowska ${ }^{1}$, Michael A. Henning 2
Monika Pilśniak ${ }^{1}$ and Elżbieta Tumidajewicz ${ }^{1,2}$
${ }^{1}$ AGH University
Department of Discrete Mathematics al. Mickiewicza 30, 30-059 Krakow, Poland
${ }^{2}$ Department of Mathematics and Applied Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa
e-mail: agorzkow@agh.edu.pl
mahenning@uj.ac.za
pilsniak@agh.edu.pl
etumid@agh.edu.pl

Abstract

A set D of vertices in an isolate-free graph is a total dominating set if every vertex is adjacent to a vertex in D. If the set D has the additional property that the subgraph induced by D contains a perfect matching, then D is a paired dominating set of G. The total domination number $\gamma_{t}(G)$ and the paired domination number $\gamma_{\mathrm{pr}}(G)$ of a graph G are the minimum cardinalities of a total dominating set and a paired dominating set of G, respectively. The total domination stability (respectively, paired domination stability) of G, denoted $\mathrm{st}_{\gamma_{t}}(G)$ (respectively, $\mathrm{st}_{\gamma_{\mathrm{pr}}}(G)$), is the minimum size of a non-isolating set of vertices in G whose removal changes the total domination number (respectively, paired domination number). In this paper, we study total and paired domination stability in prisms.

Keywords: total domination stability, paired domination stability, prism, hypercube.

2020 Mathematics Subject Classification: 05C69.

1148 A. Gorzkowska, M.A. Henning, M. Pilśniak and E. Tumidajewicz

1. Introduction

A dominating set of a graph G with vertex set $V(G)$ is a set D of vertices of G such that every vertex in $V(G) \backslash D$ is adjacent to a vertex in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. A dominating set of G having cardinality $\gamma(G)$ is called a γ-set of G.

The concept of domination stability in graphs was introduced in 1983 by Bauer, Harary, Nieminen and Suffel [5] and has been studied, for example, in [18]. Stability for other domination type parameters has been studied in the literature. For example, total domination stability, paired domination stability, 2-rainbow domination stability, exponential domination stability, and Roman domination stability are studied in $[1,4,7,11,14]$.

An isolate-free graph is a graph with no isolated vertex. A total dominating set, abbreviated TD-set, of an isolate-free graph G is a set D of vertices of G such that every vertex in $V(G)$ is adjacent to at least one vertex in D. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TD-set of G. A TD-set of G having cardinality $\gamma_{t}(G)$ is called a γ_{t}-set of G. A vertex v is totally dominated by a set D in G if the vertex v has a neighbor in D. Total domination in graphs is well studied in the literature [13].

The total version of domination stability was first studied by Henning and Krzywkowski [11]. To define this formally, we call a set $S \subseteq V(G)$ of vertices in G a non-isolating set if the graph $G-S$ is an isolate-free graph, where $G-S$ denotes the graph obtained from G by removing S and all edges incident with vertices in S. Let $\mathrm{NI}(G)$ denote the set of all non-isolating sets of vertices of G. The γ_{t}^{-}-stability of G, denoted $\operatorname{st}_{\gamma_{t}}^{-}(G)$, is the minimum size of a non-isolating set S of vertices in G whose removal decreases the total domination number. The γ_{t}^{+}-stability of G, denoted $\operatorname{st}_{\gamma_{t}}^{+}(G)$, is the minimum size of a non-isolating set of vertices in G whose removal increases the total domination number, if such a set exists. If no such non-isolating set exists whose removal increases the total domination number, we define st $\gamma_{\gamma_{t}}^{+}(G)=\infty$. As a trivial example, st $_{\gamma_{t}}^{-}\left(P_{7}\right)=2$ while $\mathrm{st}_{\gamma_{t}}^{+}\left(P_{7}\right)=\infty$. The total domination stability of G (or the γ_{t}-stability), denoted $\operatorname{st}_{\gamma_{t}}(G)$, is the minimum size of a non-isolating set S of vertices in G whose removal changes the total domination number. Thus,

$$
\operatorname{st}_{\gamma_{t}}(G)=\min _{S \in \mathrm{NI}(G)}\left\{|S|: \gamma_{t}(G-S) \neq \gamma_{t}(G)\right\}=\min \left\{\operatorname{st}_{\gamma_{t}}^{-}(G), \mathrm{st}_{\gamma_{t}}^{+}(G)\right\} .
$$

A paired dominating set, abbreviated PD-set, of an isolate-free graph $G=$ (V, E) is a set $D \subseteq V$ such that every vertex of G is adjacent to some vertex in D and the induced subgraph $G[D]$ contains a perfect matching M (not necessarily induced). Two vertices joined by an edge of M are said to be paired. The paired domination number of G, denoted by $\gamma_{\mathrm{pr}}(G)$, is the minimum cardinality of a PD-set of G, and a PD-set of G having cardinality $\gamma_{\mathrm{pr}}(G)$ is called a γ_{pr}-set of G.

Necessarily, the paired domination number of a graph is an even integer. Since every PD-set is a TD-set, we note that $\gamma_{t}(G) \leq \gamma_{\mathrm{pr}}(G)$ for all graphs G without isolated vertices. The concept of paired domination was first introduced and studied by Haynes and Slater in [10].

The paired version of domination stability was first studied by the authors in [7]. Unless otherwise stated, let G be an isolate-free graph. The γ_{pr}^{-}-stability of G, denoted st $\gamma_{\gamma_{\mathrm{pr}}}^{-}(G)$, and the γ_{pr}^{+}-stability of G, denoted $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}(G)$, respectively, are defined analogously to the total versions. The paired domination stability of G (or the $\gamma_{p r}$-stability), denoted st $\gamma_{\gamma_{\mathrm{pr}}}(G)$, is the minimum size of a non-isolating set S of vertices in G whose removal changes the paired domination number. Thus,

$$
\operatorname{st}_{\gamma_{\mathrm{pr}}}(G)=\min _{S \in \mathrm{NI}(G)}\left\{|S|: \gamma_{\mathrm{pr}}(G-S) \neq \gamma_{\mathrm{pr}}(G)\right\}=\min \left\{\operatorname{st}_{\gamma_{\mathrm{pr}}}^{-}(G), \mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}(G)\right\} .
$$

Note that if no such non-isolating set exists whose removal increases the paired domination number, we define $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}(G)=\infty$. As a trivial example, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(P_{5}\right)=1$ while st ${ }_{\gamma_{\mathrm{pr}}}^{+}\left(P_{5}\right)=\infty$. Following the original paper of Bauer et al. [5], we consider the null graph K_{0} (also called the order-zero graph), which is the unique graph having no vertices and hence has order zero, as a graph. As observed in [7], considering the null graph, the total domination and paired domination stability of a non-trivial graph is always defined. If G is a graph of order n and $\gamma_{t}(G)=2$, then $\operatorname{st}_{\gamma_{t}}^{-}(G)=n$ since removing all vertices from the graph G produces the null graph with total domination number zero. Analogously, if G is a graph of order n and $\gamma_{\mathrm{pr}}(G)=2$, then st $\gamma_{\mathrm{pr}}^{-}(G)=n$. Hence, it is only of interest for us to consider isolate-free graphs G with $\gamma_{t}(G) \geq 3$ when determining $\mathrm{st}_{\gamma_{t}}^{-}(G)$, and with $\gamma_{\mathrm{pr}}(G) \geq 4$ when determining $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G)$.

A perfect dominating set D in a graph G is a dominating set of G in which every vertex of G is dominated by exactly one vertex in D. Thus, if a graph G has perfect dominating set, then the set $N_{G}[v]$ for all $v \in D$, partition the set $V(G)$. It is clear that a perfect dominating set for a graph G is necessarily a γ-set of G.

The Cartesian product $G \square H$ of graphs G and H is the graph whose vertex set is $V(G) \times V(H)$ and two vertices $\left(g_{1}, h_{1}\right)$ and (g_{2}, h_{2}) are adjacent in $G \square H$ if either $g_{1}=g_{2}$ and $h_{1} h_{2}$ is an edge in H, or $h_{1}=h_{2}$ and $g_{1} g_{2}$ is an edge in G.

The prism of a graph G is the graph $G \square K_{2}$. Thus, it is defined by taking two disjoint copies G_{1} and G_{2} of G, called layers, and adding an edge between each pair of corresponding vertices. For each vertex v in G we denote its equivalent in G_{i} by v_{i} for $i \in[2]$, and refer to the vertices v_{1} and v_{2} as partners. If G is a bipartite graph, then we call the prism $G \square K_{2}$ the bipartite prism of G. If G is a cycle, then we call the prism $G \square K_{2}$ a cycle prism of G. It should be mentioned that the Cartesian products of graphs have wide applications to
numerous problems of theoretical computer science, where the information nets are very often modelled by prisms.

The relationship between domination parameters in the graph and its prism have been studied extensively. In particular, we note that total domination and paired domination in prisms have been studied, for example, in $[3,6,9,16]$.

Figure 1. The hypercube Q_{3}.
We denote by Q_{n} the n-dimensional hypercube, and so Q_{n} can be represented as the $n^{\text {th }}$ power of K_{2} with respect to the Cartesian product operation \square, that is, $Q_{1}=K_{2}$ and $Q_{n}=Q_{n-1} \square K_{2}$ for $n \geq 2$. The vertices are represented by binary sequences of length n and two vertices are adjacent if the corresponding sequences differ in exactly one coordinate. Note that the hypercube Q_{3}, illustrated in Figure 1, is the bipartite cycle prism of C_{4}.

For notation and graph theory terminology we generally follow [13].

2. Known Results and Motivation

We recall first trivial lower bounds on the total and paired domination numbers of a graph in terms of the maximum degree of the graph.

Observation 1. If G is an isolate-free graph of order n and maximum degree Δ, then $\gamma_{t}(G) \geq\left\lceil\frac{n}{\Delta}\right\rceil$ and $\gamma_{\mathrm{pr}}(G) \geq 2\left\lceil\frac{n}{2 \Delta}\right\rceil$.

Let G be a graph, and consider the prism $G \square K_{2}$ formed by taking two disjoint copies G_{1} and G_{2} of G. Let D be a γ-set of G, and let D_{i} be the set of vertices in G_{i} corresponding to D for $i \in[2]$. The set $D_{1} \cup D_{2}$ is a PD-set of G, with each vertex of D_{1} paired with its neighbor in D_{2}. Thus, $\gamma_{\mathrm{pr}}(G) \leq\left|D_{1}\right|+\left|D_{2}\right|=2|D|=2 \gamma(G)$. We state this observation formally.

Observation 2. If G is a graph, then $\gamma_{t}\left(G \square K_{2}\right) \leq \gamma_{\mathrm{pr}}\left(G \square K_{2}\right) \leq 2 \gamma(G)$.
Azarija, Henning, and Klavžar [3] proved that if G is a bipartite graph, then we have equality throughout the inequality chain in Observation 2. A simple proof of this result was given in [6].

Theorem 3 [3]. If G is a bipartite graph, then $\gamma_{t}\left(G \square K_{2}\right)=\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)=2 \gamma(G)$.

It is also shown in [3] that the bipartite condition in the statement of Theorem 3 is essential.

The γ_{t}^{-}-stability and the total domination stability of paths and cycles is computed in [11], while the γ_{pr}^{-}-stability and the paired domination stability of paths and cycles is computed in [7]. In the introductory paper [7] on paired domination stability, it is shown that the paired domination stability of a graph can be very different from its domination or total domination stability.

Our aim in this paper is to study total and paired domination stability in prisms. We show that the difference between γ_{pr}-stability and γ_{t}-stability is a small constant for some special but useful class of the Cartesian products. Additionally, γ_{pr} is very close to γ_{t} for such graphs. In Section 3 we determine γ_{t}^{-}-stability of cycle prisms (Theorem 6) and establish upper bounds for γ_{t}^{+}stability of these graphs (Theorems 7 and 8).

In Section 4 we determine γ_{pr}^{-}-stability of cycle prisms (Theorem 19) and we establish next upper bounds on the γ_{pr}^{+}-stability of these graphs (Theorem 21).

On the other hand, the following result establishes an upper bound on the γ_{t}^{-}-stability and γ_{pr}^{-}-stability of a general graph in terms of its maximum degree.

Theorem 4. If G is a connected graph with maximum degree Δ, then the following holds.
(a) ([11]) If $\gamma_{t}(G) \geq 3$, then $\operatorname{st}_{\gamma_{t}}^{-}(G) \leq 2 \Delta-1$, and this bound is sharp.
(b) ([7]) If $\gamma_{\mathrm{pr}}(G) \geq 4$, then $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G) \leq 2 \Delta$, and this bound is sharp.

Both bounds in Theorem 4 are tight for an infinite family of trees, as shown in $[7,11]$. In Section 4.1 we prove that the bound in Theorem 4(b) is tight for the family of hypercubes, Q_{n}, in the case when $n=2^{k}$ for all $k \geq 1$ (Theorem 12).

3. Total Domination Stability in Cycle Prisms

In this section, we investigate total domination stability of a cycle prism. Recall that for $n \geq 3, \gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. We begin by establishing the total domination number of a cycle prism.

Proposition 5. For $n \geq 3$,

$$
\gamma_{t}\left(C_{n} \square K_{2}\right)= \begin{cases}2 \gamma\left(C_{n}\right)-1 & \text { if } n \equiv 1(\bmod 6), \\ 2 \gamma\left(C_{n}\right) & \text { otherwise. }\end{cases}
$$

Proof. If n is even, then the result follows from Theorem 3. If $n \equiv 1(\bmod 6)$, then the result is known cf. [3, Proposition 16]. Suppose that $n(\bmod 6) \in\{3,5\}$. If $n=6 k+3$ for some $k \geq 0$, then $4 k+2=\lceil(12 k+6) / 3\rceil=\lceil 2 n / \Delta\rceil \leq$

1152 A. Gorzkowska, M.A. Henning, M. PilŚniak and E. Tumidajewicz
$\gamma_{t}\left(C_{n} \square K_{2}\right) \leq 2 \gamma\left(C_{n}\right)=2\lceil n / 3\rceil=4 k+2$. If $n=6 k+5$ for some $k \geq 0$, then $4 k+4=\lceil(12 k+10) / 3\rceil=\lceil 2 n / \Delta\rceil \leq \gamma_{t}\left(C_{n} \square K_{2}\right) \leq 2 \gamma\left(C_{n}\right)=2\lceil n / 3\rceil=4 k+4$. In both cases, we must have equality throughout the above inequality chains, implying that $\gamma_{t}\left(C_{n} \square K_{2}\right)=2 \gamma\left(C_{n}\right)$ when $n(\bmod 6) \in\{3,5\}$.

We note that the vertices totally dominated by a set D of vertices in a graph G are precisely those vertices that have a neighbor in D. We are now in a position to present a proof of the following result determining the γ_{t}^{-}-stability of a cycle prism.

Theorem 6. For $n \geq 4$,

$$
\operatorname{st}_{\gamma_{t}}^{-}\left(C_{n} \square K_{2}\right)= \begin{cases}1 & \text { if } n \equiv 4(\bmod 6), \\ 2 & \text { if } n(\bmod 6) \in\{1,2,5\}, \\ 4 & \text { if } n(\bmod 6) \in\{0,3\} .\end{cases}
$$

Proof. For $n \geq 4$, let $G=C_{n} \square K_{2}$. Let G_{1} and G_{2} be the two layers of the prism G, where G_{1} is the cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ and G_{2} is the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$. Let G be obtained from G_{1} and G_{2} by adding the edges $u_{i} v_{i}$ for $i \in[n]$. Suppose that $n \equiv 4(\bmod 6)$, and so $n=6 k+4$ for some $k \geq 0$. By Proposition 5, $\gamma_{t}(G)=4 k+4$. Letting $S=\left\{u_{n}\right\}$, the set $D=\left\{v_{n-1}\right\} \cup \bigcup_{i=0}^{2 k}\left\{u_{3 i+2}, v_{3 i+2}\right\}$ is a TD-set of $G-S$, implying that S is a non-isolating set of vertices in G such that $\gamma_{t}(G-S) \leq|D|=4 k+3<\gamma_{t}(G)$. Hence, $\operatorname{st}_{\gamma_{t}}^{-}(G) \leq|S|=1$, implying that $\operatorname{st}_{\gamma_{t}}^{-}(G)=1$.

Suppose that $n \equiv 1(\bmod 6)$, and so $n=6 k+1$ for some $k \geq 1$. By Proposition $5, \gamma_{t}(G)=4 k+1$. If $|S|=1$ and S is a non-isolating set of vertices in G, then $|V(G-S)|=12 k+1$ and $\Delta(G-S)=3$. Thus in this case, $\gamma_{t}(G-S) \geq\lceil(12 k+1) / 3\rceil=4 k+1=\gamma_{t}(G)$. Hence, if S is a non-isolating set of vertices in G such that $\gamma_{t}(G-S) \leq 4 k$, then $|S| \geq 2$, implying that st $_{\gamma_{t}}^{-}(G) \geq 2$. Letting $S=\left\{u_{n}, v_{n}\right\}$, the set $D=\bigcup_{i=0}^{2 k-1}\left\{u_{3 i+2}, v_{3 i+2}\right\}$ is a TD-set of $G-S$, implying that st $\bar{\gamma}_{t}^{-}(G) \leq 2$. Consequently, st $\bar{\gamma}_{\gamma_{t}}^{-}(G)=2$.

Suppose that $n \equiv 2(\bmod 6)$, and so $n=6 k+2$ for some $k \geq 1$. By Proposition $5, \gamma_{t}(G)=4 k+2$. Let S be a minimum non-isolating set of G such that $\gamma_{t}(G-S) \leq 4 k+1$. Let D be a γ_{t}-set of $G-S$, and so $|D|=\gamma_{t}(G-S) \leq 4 k+1$. Adding vertices to D if necessary, we may assume that $|D|=4 k+1$. Thus, $G[D]$ consists of at least one component of odd order at least 3 . This implies that at least two vertices in D have a common neighbor in D, and therefore that the number of vertices totally dominated by D is at most $3|D|-1=3(4 k+1)-1=12 k+2$. Since the number of vertices totally dominated by D is $|V(G-S)|=12 k+4-|S|$, we have $12 k+4-|S| \leq 12 k+2$, implying that st ${\gamma_{t}}_{-}^{-}(G)=|S| \geq 2$. We now consider the set $S=\left\{v_{1}, u_{8}\right\}$. Let $D_{1}=\left\{u_{2}, u_{3}, u_{4}, v_{6}, v_{7}\right\}$. If $k=1$, let $D=D_{1}$, while if $k \geq 2$, let $D_{k}=D_{1} \cup \bigcup_{i=3}^{2 k}\left\{u_{3 i+1}, v_{3 i+1}\right\}$. The resulting set D_{k} is a TD-set of
$G-S$, implying that $\gamma_{t}(G-S) \leq\left|D_{k}\right|=4 k+1$. Hence, st $_{\gamma_{t}}^{-}(G) \leq 2$. Consequently, $\operatorname{st}_{\gamma_{t}}^{-}(G)=2$.

Suppose that $n \equiv 5(\bmod 6)$, and so $n=6 k+5$ for some $k \geq 0$. By Proposition $5, \gamma_{t}(G)=4 k+4$. Let S be a minimum non-isolating set of G such that $\gamma_{t}(G-S) \leq 4 k+3$. Reasoning analogous to case when $n \equiv 2(\bmod 6)$ allows us to state that $\operatorname{st}_{\gamma_{t}}^{-}(G)=|S| \geq 2$. We now consider the set $S=$ $\left\{u_{1}, u_{5}\right\}$. Let $D_{1}=\left\{v_{2}, v_{3}, v_{4}\right\}$. If $k=0$, let $D=D_{1}$, while if $k \geq 1$, let $D_{k}=D_{1} \cup \bigcup_{i=2}^{2 k+1}\left\{u_{3 i+1}, v_{3 i+1}\right\}$. The resulting set D_{k} is a TD-set of $G-S$, implying that $\gamma_{t}(G-S) \leq\left|D_{k}\right|=4 k+3$. Hence, $\mathrm{st}_{\gamma_{t}}^{-}(G) \leq 2$. Consequently, $\mathrm{st}_{\gamma_{t}}^{-}(G)=2$.

Suppose that $n \equiv 0(\bmod 6)$, and so $n=6 k$ for some $k \geq 1$. By Proposition 5, $\gamma_{t}(G)=4 k$. Let S be a minimum non-isolating set of G such that $\gamma_{t}(G-S) \leq$ $4 k-1$. As previously, an easy calculation suffices to show that $\operatorname{st}_{\gamma_{t}}^{-}(G)=|S| \geq 4$. We now consider the set $S=\left\{u_{1}, u_{2}, u_{6}, v_{1}\right\}$. Let $D_{1}=\left\{v_{3}, v_{4}, v_{5}\right\}$. If $k=1$, let $D=D_{1}$, while if $k \geq 2$, let $D_{k}=D_{1} \cup \bigcup_{i=2}^{2 k-1}\left\{u_{3 i+2}, v_{3 i+2}\right\}$. The resulting set D_{k} is a TD-set of $G-S$, implying that $\gamma_{t}(G-S) \leq\left|D_{k}\right|=4 k-1$. Hence, $\mathrm{st}_{\gamma_{t}}^{-}(G) \leq 4$. Consequently, $\mathrm{st}_{\gamma_{t}}^{-}(G)=4$.

Suppose that $n \equiv 3(\bmod 6)$, and so $n=6 k+3$ for some $k \geq 1$. By Proposition $5, \gamma_{t}(G)=4 k+2$. Once more, we omit the calculation showing that $\operatorname{st}_{\gamma_{t}}^{-}(G)=|S| \geq 4$. We now let $S=\left\{u_{1}, u_{2}, u_{6}, v_{1}\right\}$ and $D_{k}=\left\{v_{3}, v_{4}, v_{5}\right\} \cup$ $\bigcup_{i=2}^{2 k}\left\{u_{3 i+2}, v_{3 i+2}\right\}$. The resulting set D_{k} is a TD-set of $G-S$, implying that $\gamma_{t}(G-S) \leq\left|D_{k}\right|=4 k+1$. Hence, $\operatorname{st}_{\gamma_{t}}^{-}(G) \leq 4$. Consequently, st $_{\gamma_{t}}^{-}(G)=4$.

We next establish upper bounds on the γ_{t}^{+}-stability of a cycle prism. For small values of $n \in\{3,4,5\}$, we note that $\mathrm{st}_{\gamma_{t}}^{+}\left(C_{n} \square K_{2}\right)=\infty$. Hence it is only of interest to consider values of $n \geq 6$. Firstly, we determine the exact value of the γ_{t}^{+}-stability of a cycle prism $C_{n} \square K_{2}$ when $n \equiv 0(\bmod 3)$.
Theorem 7. For $n \geq 6$ and $n \equiv 0(\bmod 3)$,

$$
\mathrm{st}_{\gamma_{t}}^{+}\left(C_{n} \square K_{2}\right)= \begin{cases}3 & \text { if } n \equiv 0(\bmod 6), \\ 4 & \text { if } n \equiv 3(\bmod 6) .\end{cases}
$$

Proof. For $n \geq 6$ and $n \equiv 0(\bmod 3)$, let $G=C_{n} \square K_{2}$. Let G_{1} and G_{2} be the two layers of the prism G, where G_{1} is the cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ and G_{2} is the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$. Let G be obtained from G_{1} and G_{2} by adding the edges $u_{i} v_{i}$ for $i \in[n]$. We show firstly that $\mathrm{st}_{\gamma_{t}}^{+}(G) \geq 3$. By Proposition $5, \gamma_{t}(G)=\frac{2}{3} n$. For $i \in[3]$, let $V_{i}=\left\{u_{j}, v_{j}: j \equiv i(\bmod 3)\right.$ and $\left.j \in[n]\right\}$. Let S be a minimum non-isolating set of G such that $\gamma_{t}(G-S)>\frac{2}{3} n$. Since each of the sets V_{1}, V_{2} and V_{3} is a TD-set of G of cardinality $\frac{2}{3} n=\gamma_{t}(G)$, we note that $\left|S \cap V_{i}\right| \geq 1$ for all $i \in[3]$, implying that $\mathrm{st}_{\gamma_{t}}^{+}(G)=|S| \geq 3$.

Suppose that $n \equiv 0(\bmod 6)$, and so $n=6 k$ for some $k \geq 1$. We show that in this case, $\operatorname{st}_{\gamma_{t}}^{+}(G) \leq 3$. By Proposition 5, $\gamma_{t}(G)=4 k$. Let $S=\left\{u_{1}, u_{3}, u_{5}\right\}$ and

1154 A. Gorzkowska, M.A. Henning, M. Pilśniak and E. Tumidajewicz
consider the graph $G-S$. If $k=1$, then $\gamma_{t}(G-S)=5>4=\gamma_{t}(G)$, implying that $\mathrm{st}_{\gamma_{t}}^{+}(G) \leq|S|=3$. Hence we may assume that $k \geq 2$. Every TD-set of $G-S$ contains the two vertices v_{2} and v_{4}. Let D be a γ_{t}-set of $G-S$. We show that $|D| \geq 4 k+1$. Let $V^{\prime}=\bigcup_{i=6}^{6 k}\left\{u_{i}, v_{i}\right\}$ and let $H=G\left[V^{\prime}\right]$. Note that H is isomorphic to $P_{6(k-1)+1} \square K_{2}$. Suppose that $v_{3} \in D$. If $v_{5} \in D$, then we can replace v_{5} in D with the vertex u_{6} or v_{7}. If $v_{6 k} \in D$, then we can replace $v_{6 k}$ in D with the vertex $u_{6 k-1}$. Hence, we may choose D so that $D \cap\left\{v_{5}, v_{6 k}\right\}=\emptyset$, implying that $|D| \geq\left|\left\{v_{2}, v_{3}, v_{4}\right\}\right|+\gamma_{t}(H)=3+\gamma_{t}\left(P_{6(k-1)+1} \square K_{2}\right)=3+2 \gamma\left(P_{6(k-1)+1}\right)=$ $3+2(2(k-1)+1)=4 k+1$.

Assume now that $v_{3} \notin D$. With this assumption, we can choose D so that $\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\} \subset D$. If $v_{6} \in D$, then we can replace v_{6} in D with the vertex u_{7}. If $v_{6 k} \in D$, then we can replace $v_{6 k}$ in D with the vertex $u_{6 k-1}$. Hence, we may choose D so that $D \cap\left\{v_{6}, v_{6 k}\right\}=\emptyset$. In order to totally dominate the vertices u_{6} and $u_{6 k}$, this implies that $u_{7} \in D$ and $u_{6 k-1} \in D$, respectively. Let $V^{\prime \prime}=V^{\prime} \backslash\left\{v_{6}, v_{6 k}\right\}$, and let $D^{\prime}=D \cap V^{\prime}$. Thus, $\left\{u_{7}, u_{6 k-1}\right\} \subset D^{\prime}$ and the set D^{\prime} totally dominates the set $V^{\prime \prime}$. Since $\left|V^{\prime \prime}\right|=12(k-1)$ and each vertex of D^{\prime} totally dominates at most three vertices, we note that $\left|D^{\prime}\right| \geq 4(k-1)$.

We show that $\left|D^{\prime}\right|>4(k-1)$. Suppose, to the contrary, that $\left|D^{\prime}\right|=4(k-1)$. This implies that each vertex of D^{\prime} uniquely totally dominates three vertices of V^{\prime}. By our earlier observations, $u_{7} \in D^{\prime}$. Since u_{6} has only one neighbor in $V^{\prime \prime}$, and since v_{7} has only two neighbors in $V^{\prime \prime}$, we note that $u_{6} \notin D^{\prime}$ and $v_{7} \notin D^{\prime}$, and therefore $u_{8} \in D^{\prime}$. This in turn implies that $D^{\prime} \cap\left\{v_{8}, u_{9}, v_{9}, u_{10}\right\}=\emptyset$. Therefore, $\left\{v_{10}, v_{11}\right\} \subset D^{\prime}$. If $k=2$, then as observed earlier, $u_{11} \in D^{\prime}$, and so $\left|D^{\prime}\right| \geq 5>4(k-1)$, a contradiction. Hence, $k \geq 3$. Since each vertex of D^{\prime} uniquely totally dominates three vertices of $V^{\prime \prime}$, and since $\left\{v_{10}, v_{11}\right\} \subset D^{\prime}$, we therefore have that $D^{\prime} \cap\left\{u_{11}, u_{12}, v_{12}, v_{13}\right\}=\emptyset$. Therefore, $\left\{u_{13}, u_{14}\right\} \subset D^{\prime}$. This in turn implies that $D^{\prime} \cap\left\{v_{14}, u_{15}, v_{15}, u_{16}\right\}=\emptyset$ and $\left\{v_{16}, v_{17}\right\} \subset D^{\prime}$. Continuing in this way, for each $i \in[k-1]$ we have $\left\{u_{6 i+1}, u_{6 i+2}, v_{6 i+4}, v_{6 i+5}\right\} \subseteq D^{\prime}$. However as observed earlier, $u_{6 k-1}=u_{6(k-1)+5} \in D^{\prime}$, implying that $\left|D^{\prime}\right| \geq 4(k-1)+1$, a contradiction. Hence, $\left|D^{\prime}\right|>4(k-1)$. Therefore, $|D| \geq 4+\left|D^{\prime}\right|>4 k=\gamma_{t}(G)$, implying that $\mathrm{st}_{\gamma_{t}}^{+}(G) \leq|S|=3$.

Suppose that $n \equiv 3(\bmod 6)$, and so $n=6 k+3$ for some $k \geq 1$. We show that in this case, $\mathrm{st}_{\gamma_{t}}^{+}(G) \leq 4$. By Proposition 5, $\gamma_{t}(G)=4 k+2$. Let $S=\left\{u_{1}, u_{3}, u_{5}, u_{7}\right\}$ and consider the graph $G-S$. If $k=1$, then $\gamma_{t}(G-S)=$ $7>6=\gamma_{t}(G)$, implying that $\mathrm{st}_{\gamma_{t}}^{+}(G) \leq|S|=4$. Hence we may assume that $k \geq 2$. Every TD-set of $G-S$ contains the three vertices v_{2}, v_{4} and v_{6}. Let D be a γ_{t}-set of $G-S$. In order to totally dominate the vertex v_{4}, we can choose D so that $v_{3} \in D$ or $v_{5} \in D$. By symmetry, we may assume that $v_{5} \in D$. With this assumption, we can choose D so that $v_{1} \in D$ in order to totally dominate the vertex v_{2}. Thus, $\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\} \subset D$. If $v_{7} \in D$, then we can replace v_{7} in D with the vertex u_{8} or the vertex v_{9}. If $v_{n}=v_{6 k+3} \in D$, then we can replace $v_{6 k+3}$
in D with the vertex $u_{6 k+2}$. Hence, we may choose D so that $D \cap\left\{v_{7}, v_{6 k+3}\right\}=\emptyset$. Let $V^{\prime}=\left\{u_{6 k+3}\right\} \cup \bigcup_{i=8}^{6 k+2}\left\{u_{i}, v_{i}\right\}$ and let $D^{\prime}=D \cap V^{\prime}$. Since each vertex of D^{\prime} totally dominates at most three vertices, in order to totally dominate the $12(k-1)+3$ vertices in V^{\prime} we note that $\left|D^{\prime}\right| \geq 4(k-1)+1=4 k-3$. We show that $\left|D^{\prime}\right|>4 k-3$. Suppose, to the contrary, that $\left|D^{\prime}\right|=4 k-3$. This implies that each vertex of D^{\prime} uniquely totally dominates three vertices of V^{\prime}. Since each of u_{8} and v_{8} has only two neighbors in V^{\prime}, this implies that $D^{\prime} \cap\left\{u_{8}, v_{8}\right\}=\emptyset$ and therefore that $\left\{u_{9}, v_{9}\right\} \subset D^{\prime}$. This in turn implies that $D^{\prime} \cap\left\{u_{10}, v_{10}, u_{11}, v_{11}\right\}=$ \emptyset, and therefore that $\left\{u_{12}, v_{12}\right\} \subset D^{\prime}$. Continuing in this way, we have that $\left\{u_{3 i}, v_{3 i}\right\} \subset D^{\prime}$ and $D^{\prime} \cap\left\{u_{3 i+1}, v_{3 i+1}, u_{3 i+2}, v_{3 i+2}\right\}=\emptyset$ for all $i \in[2 k] \backslash\{1,2\}$. This implies that the vertex $u_{6 k+3}$ is not totally dominated by D, a contradiction. Hence, $\left|D^{\prime}\right|>4 k-3$. Therefore, $|D|=5+\left|D^{\prime}\right|>5+(4 k-3)=4 k+2=\gamma_{t}(G)$, implying that $\mathrm{st}_{\gamma_{t}}^{+}(G) \leq|S|=4$.

It remains for us to show that $\operatorname{st}_{\gamma_{t}}^{+}(G) \geq 4$ in this case when $n=6 k+3$ for some $k \geq 1$. Let S be a minimum non-isolating set of G such that $\gamma_{t}(G-S)>\frac{2}{3} n$. As shown earlier, $|S| \geq 3$. We wish to show that $|S| \geq 4$. Suppose, to the contrary, that $|S|=3$. If $k=1$ (and so, $n=9$), then this can be readily checked. Hence we may assume that $k \geq 2$. By our earlier observations, $\left|S \cap V_{i}\right| \geq 1$ for all $i \in[3]$ where recall V_{i} is the set of all vertices of G with subscript congruent to i modulo 3. Thus, $\left|S \cap V_{i}\right|=1$ for all $i \in[3]$.

Suppose that S contains two adjacent vertices. Renaming vertices if necessary, we may assume that $\left\{u_{1}, u_{2}\right\} \subset S$. If $v_{6 k+3} \notin S$, then $\left(V_{1} \backslash\left\{u_{1}\right\}\right) \cup\left\{v_{6 k+3}\right\}$ is a TD-set of $G-S$ of cardinality $\left|V_{1}\right|=\gamma_{t}(G)$. If $v_{6 k+3} \in S$, then $\left(V_{2} \backslash\left\{u_{2}\right\}\right) \cup\left\{v_{3}\right\}$ is a TD-set of $G-S$ of cardinality $\left|V_{2}\right|=\gamma_{t}(G)$. Hence, $\gamma_{t}(G-S) \leq \gamma_{t}(G)$, a contradiction. Thus, the set S is an independent set in G. A detailed case analysis, which we omit, shows that $\gamma_{t}(G-S) \leq \gamma_{t}(G)$. We remark that our case analysis relies heavily on the fact that $n \equiv 3(\bmod 6)$. To illustrate this, consider an arbitrary vertex v of G. For notational convenience we may assume $v=u_{3}$. In this case, the set $D^{\prime}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\} \cup\left(\bigcup_{i=1}^{k}\left\{u_{6 i+1}, u_{6 i+2}\right\}\right) \cup\left(\bigcup_{i=1}^{k-1}\left\{v_{6 i+4}, v_{6 i+5}\right\}\right)$ is a γ_{t}-set of $G-u_{3}$. Thus for example, if $S=\left\{u_{1}, u_{3}, u_{5}\right\}$, then the set D^{\prime} is a TD-set of $G-S$, implying that $\gamma_{t}(G-S) \leq\left|D^{\prime}\right|=\gamma_{t}(G)$, a contradiction. Indeed, the fact that $n \equiv 3(\bmod 6)$ implies that there are many γ_{t}-sets of G, in addition to the sets V_{1}, V_{2} and V_{3}, and one can guarantee that at least one such set is always a TD-set of $G-S$ in this case when $|S|=3$, producing a contradiction. Hence, $|S| \geq 4$, and so st $\gamma_{\gamma_{t}}^{+}(G) \geq 4$. By our earlier observation, $\mathrm{st}_{\gamma_{t}}^{+}(G) \leq 4$. Consequently, $\mathrm{st}_{\gamma_{t}}^{+}(G)=4$ in this case when $n \equiv 3(\bmod 6)$.

We present next a proof of the following result establishing upper bounds on the γ_{t}^{+}-stability of a cycle prism $C_{n} \square K_{2}$ when $n \geq 7$ and $n \not \equiv 0(\bmod 3)$.

Theorem 8. For $n \geq 7$ and $n \not \equiv 0(\bmod 3)$,

$$
\mathrm{st}_{\gamma_{t}}^{+}\left(C_{n} \square K_{2}\right) \leq \begin{cases}5 & \text { if } n \equiv 1(\bmod 6), \\ 7 & \text { if } n(\bmod 6) \in\{2,5\}, \\ 8 & \text { if } n \equiv 4(\bmod 6) .\end{cases}
$$

Proof. For $n \geq 6$, let $G=C_{n} \square K_{2}$. Let G_{1} and G_{2} be the two layers of the prism G, where G_{1} is the cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ and G_{2} is the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$. Let G be obtained from G_{1} and G_{2} by adding the edges $u_{i} v_{i}$ for $i \in[n]$.

Suppose that $n \equiv 1(\bmod 6)$, and so $n=6 k+1$ for some $k \geq 1$. By Proposition $5, \gamma_{t}(G)=4 k+1$. We let $S=\left\{u_{1}, u_{3}, v_{1}, v_{3}, v_{5}\right\}$ and D be a γ_{t}-set of $G-S$. Necessarily, $\left\{u_{2}, u_{4}, v_{2}\right\} \subset D$ and we can choose the set D so that $u_{5} \in D$. Let $V^{\prime}=\left\{v_{6}\right\} \cup \bigcup_{i=7}^{6 k+1}\left\{u_{i}, v_{i}\right\}$.

In order to totally dominate the $12 k-9$ vertices in the set V^{\prime}, the set D contains at least $4 k-3$ vertices in addition to the four vertices in the set $\left\{u_{2}, u_{4}, u_{5}, v_{2}\right\}$. Suppose that D contains exactly $4 k-3$ additional vertices. In this case, each additional vertex uniquely totally dominates three new vertices. Hence neither $u_{6 k+1}$ nor $v_{6 k+1}$ belong to D since both these vertices have degree 2 in $G-S$. Hence, $\left\{u_{6 k}, v_{6 k}\right\} \subset D$ in order to totally dominate the vertices $u_{6 k+1}$ and $v_{6 k+1}$. Since each of $u_{6 k}$ and $v_{6 k}$ uniquely totally dominates three vertices, this implies that $\left\{u_{6 k-2}, u_{6 k-1}, v_{6 k-2}, v_{6 k-1}\right\} \cap D=\emptyset$ and that $\left\{u_{6 k-3}, v_{6 k-3}\right\} \subset D$. Continuing this argument, we have that $\bigcup_{i=3}^{2 k}\left\{u_{3 i}, v_{3 i}\right\} \subset D$.

At least two additional vertices are needed to totally dominate the three vertices v_{6}, u_{7} and v_{7}, implying that in addition to the vertices in $\left\{u_{2}, u_{4}, u_{5}, v_{2}\right\}$, the set D contains at least $2+4(k-1)=4 k-2$ additional vertices to totally dominate the vertices in V^{\prime}, a contradiction. Therefore, the set D contains at least $4 k-2$ vertices in addition to the vertices in $\left\{u_{2}, u_{4}, u_{5}, v_{2}\right\}$, implying that $\gamma_{t}(G-S)=|D| \geq 4 k+2>\gamma_{t}(G)$. Thus, $\mathrm{st}_{\gamma_{t}}^{+}(G) \leq|S|=5$.

Suppose that $n \equiv 2(\bmod 6)$, and so $n=6 k+2$ for some $k \geq 1$. By Proposition $5, \gamma_{t}(G)=4 k+2$. Let $S=\left\{u_{1}, v_{1}, u_{3}, v_{3}, u_{5}, v_{5}, v_{7}\right\}$ and consider the graph $G-S$. Let D be a γ_{t}-set of $G-S$. Necessarily, $\left\{u_{2}, v_{2}, u_{4}, v_{4}, u_{6}\right\} \subset D$ and we can choose the set D so that $u_{7} \in D$. If $k=1$, then the vertex u_{8} is needed in D to dominate the vertex v_{8}, implying that $\gamma_{t}(G-S)=|D|=7>6=\gamma_{t}(G)$. Suppose that $k \geq 2$ and let $V^{\prime}=\left\{v_{8}\right\} \cup \bigcup_{i=9}^{6 k+2}\left\{u_{i}, v_{i}\right\}$.

In order to totally dominate the $12 k-11$ vertices in the set V^{\prime}, the set D contains at least $4 k-3$ vertices in addition to the six vertices in the set $\left\{u_{2}, v_{2}, u_{4}, v_{4}, u_{6}, u_{7}\right\}$. Thus, $|D| \geq 6+(4 k-3)=4 k+3>\gamma_{t}(G)$. Hence, $\operatorname{st}_{\gamma_{t}}^{+}(G) \leq|S|=7$.

Suppose that $n \equiv 5(\bmod 6)$, and so $n=6 k+5$ for some $k \geq 1$. By Proposition $5, \gamma_{t}(G)=4 k+4$. As in the previous case when $n \equiv 2(\bmod 6)$, we let $S=\left\{u_{1}, v_{1}, u_{3}, v_{3}, u_{5}, v_{5}, v_{7}\right\}$ and consider the graph $G-S$. Let D be a γ_{t}-set of
$G-S$. Necessarily, $\left\{u_{2}, v_{2}, u_{4}, v_{4}, u_{6}\right\} \subset D$ and we can choose the set D so that $u_{7} \in D$. Let $V^{\prime}=\left\{v_{8}\right\} \cup \bigcup_{i=9}^{6 k+5}\left\{u_{i}, v_{i}\right\}$.

In order to totally dominate the $12 k-5$ vertices in the set V^{\prime}, the set D contains at least $4 k-1$ vertices in addition to the six vertices in the set $\left\{u_{2}, v_{2}, u_{4}, v_{4}, u_{6}, u_{7}\right\}$. Thus, $|D| \geq 6+(4 k-1)=4 k+5>\gamma_{t}(G)$. Hence, $\operatorname{st}_{\gamma_{t}}^{+}(G) \leq|S|=7$.

Suppose that $n \equiv 4(\bmod 6)$, and so $n=6 k+4$ for some $k \geq 1$. By Proposition $5, \gamma_{t}(G)=4 k+4$. Let $S=\left\{u_{1}, v_{1}, u_{3}, v_{3}, u_{5}, v_{5}, v_{7}, v_{9}\right\}$ and let D be a γ_{t}-set of $G-S$. We show that $|D| \geq 4 k+5$. Necessarily, $\left\{u_{2}, v_{2}, u_{4}, v_{4}, u_{6}, u_{8}\right\} \subset D$ and we can choose the set D so that $u_{7} \in D$. If $k=1$, then $\left\{u_{9}, u_{10}\right\} \subseteq D$ or $\left\{u_{10}, v_{10}\right\} \subseteq D$, and so $|D| \geq 9=4 k+5$, as claimed. Hence we may assume that $k \geq 2$. Suppose that $u_{9} \notin D$. In this case, $|D|=7+\gamma_{t}\left(P_{6 k-5} \square K_{2}\right)=$ $7+2 \gamma\left(P_{6 k-5}\right)=7+2(2 k-1)=4 k+5>\gamma_{t}(G)$. Assume now that $u_{9} \in D$ and let $V^{\prime}=\left\{v_{10}\right\} \cup \bigcup_{i=11}^{6 k+4}\left\{u_{i}, v_{i}\right\}$.

In order to totally dominate the $12 k-11$ vertices in the set V^{\prime}, the set D contains at least $4 k-3$ vertices in addition to the eight vertices in the set $\left\{u_{2}, v_{2}, u_{4}, v_{4}, u_{6}, u_{7}, u_{8}, u_{9}\right\}$. Thus, $|D| \geq 8+(4 k-3)=4 k+5$. Hence in all cases, $|D| \geq 4 k+5>\gamma_{t}(G)$, implying that $\operatorname{st}_{\gamma_{t}}^{+}(G) \leq|S|=8$.

As an immediate consequence of Theorems 6,7 and 8 we have the following result on the total domination stability of a cycle prism.

Corollary 9. For $n \geq 4$,

$$
\operatorname{st}_{\gamma_{t}}\left(C_{n} \square K_{2}\right)= \begin{cases}1 & \text { if } n \equiv 4(\bmod 6), \\ 2 & \text { if } n(\bmod 6) \in\{1,2,5\}, \\ 3 & \text { if } n \equiv 0(\bmod 6), \\ 4 & \text { if } n \equiv 3(\bmod 6) .\end{cases}
$$

Proof. By Theorems 6, 7 and 8 , the only remaining case that needs to be covered now is the fact that the γ_{t}^{+}-stability of $C_{n} \square K_{2}$ is greater than 1 in cases when $n(\bmod 6) \in\{1,2,5\}$. Let v be an arbitrary vertex of $C_{n} \square K_{2}$. We remark that removing one vertex from $C_{n} \square K_{2}$ does not produce isolated vertices. It is easily seen that there is a γ_{t}-set D of $C_{n} \square K_{2}$ such that $v \notin D$. Hence, D is a TD-set for $\left(C_{n} \square K_{2}\right)-\{v\}$, so we conclude that $\mathrm{st}_{\gamma_{t}}^{+}\left(C_{n} \square K_{2}\right)>1$.

It remains an open problem to determine the exact value of the γ_{t}^{+}-stability of a cycle prism $C_{n} \square K_{2}$ for $n \geq 7$ and $n \not \equiv 0(\bmod 3)$.

4. Paired Domination Stability in Prisms

In this section, we investigate paired domination stability of a prism. We consider three types of prisms, namely hypercubes, bipartite prisms, and cycle prisms.

1158 A. Gorzkowska, M.A. Henning, M. PilŚniak and E. Tumidajewicz

4.1. Hypercubes

In this subsection, we consider the class of prisms called hypercubes Q_{n} for $n \geq 1$. Recall that $Q_{1}=K_{2}$ and $Q_{n}=Q_{n-1} \square K_{2}$ for $n \geq 2$. To determine $\gamma\left(Q_{n}\right)$ turns out to be an intrinsically difficult problem. To date, exact values are only known for $n \leq 9$, and for two infinite families of hypercubes. These results are summarized in Table 1 and Theorem 10. The result $\gamma\left(Q_{9}\right)=62$ in Table 1 due to Östergård and Blass [17] actually presented a breakthrough back in 2001.

n	1	2	3	4	5	6	7	8	9
$\gamma\left(Q_{n}\right)$	1	2	2	4	7	12	16	32	62

Table 1. Domination numbers of hypercubes up to dimension 9.
Theorem 10 [3]. If $k \geq 1$, then $\gamma\left(Q_{2^{k}-1}\right)=2^{2^{k}-k-1}$ and $\gamma\left(Q_{2^{k}}\right)=2^{2^{k}-k}$.
A code in a graph $G=(V, E)$ is a subset $C \subset V$ such that any two vertices of C are at distance at least 3 in G. A perfect code is a code C with the property that C is a dominating set in G, cf. [15]. The first assertion of Theorem 10 is based on the fact that hypercubes $Q_{2^{k}-1}$ contain perfect codes, cf. [8], and the domination number of a graph with a perfect code is equal to the size of such a code. We note that Q_{n} contains a perfect code if and only if $n=2^{k}-1$ for some $k \geq 1$. The second assertion of Theorem 10 is due to van Wee [19].

As a consequence of Table 1 and Theorem 3, the exact values of $\gamma_{\mathrm{pr}}\left(Q_{n}\right)$ for $n \leq 10$ are given in Table 2.

n	2	3	4	5	6	7	8	9	10
$\gamma_{\mathrm{pr}}\left(Q_{n}\right)$	2	4	4	8	14	24	32	64	124

Table 2. Paired domination numbers of hypercubes up to dimension 10 .
Arumugam and Kala [2] established the following upper bound on the domination number of a hypercube.

Theorem 11 [2]. For all $n \geq 7$, we have $\gamma\left(Q_{n}\right) \leq 2^{n-3}$.
Total domination in Cartesian products has been studied in [12]. We focus on the paired domination and paired domination stability in hypercubes.

We are now in a position to prove the following theorem, that establishes the existence of a 2^{k}-regular connected graph G, where k can be chosen arbitrarily large, satisfying $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G)=2 \Delta(G)$. Thus, the family of hypercubes Q_{n}, where $n=2^{k}$ for some $k \geq 1$, shows that the upper bound in Theorem $4(\mathrm{~b})$ is tight.
Theorem 12. If Q_{n} is a hypercube such that $n=2^{k}$, for $k \geq 1$, then

$$
\operatorname{st}_{\gamma_{\mathrm{pr}}}^{-}\left(Q_{n}\right)=2 \Delta\left(Q_{n}\right)=2^{k+1} .
$$

Proof. Let $n=2^{k}$ for some integer $k \geq 1$, and consider the hypercube Q_{n}. We note that $\left|V\left(Q_{n}\right)\right|=2^{n}$ and $\Delta\left(Q_{n}\right)=n=2^{k}$. By Theorem 3 and Theorem 10, we have that $\gamma_{\mathrm{pr}}\left(Q_{n}\right)=2 \gamma\left(Q_{n-1}\right)=2 \cdot 2^{n-k-1}=2^{n-k}$. Suppose that there exists a non-isolating subset S of vertices in the hypercube Q_{n} such that $\gamma_{\mathrm{pr}}\left(Q_{n}-S\right)<$ $\gamma_{\mathrm{pr}}\left(Q_{n}\right)$ and $|S| \leq 2 \Delta\left(Q_{n}\right)-1=2^{k+1}-1$. Thus, $\left|V\left(Q_{n}-S\right)\right|=\left|V\left(Q_{n}\right)\right|-|S| \geq$ $2^{n}-2^{k+1}+1$. We note that $\Delta\left(Q_{n}-S\right) \leq \Delta\left(Q_{n}\right)=2^{k}$. By Observation 1 , we therefore have

$$
\gamma_{\mathrm{pr}}\left(Q_{n}-S\right) \geq \frac{\left|V\left(Q_{n}-S\right)\right|}{\Delta\left(Q_{n}-S\right)} \geq\left\lceil\frac{2^{n}-2^{k+1}+1}{2^{k}}\right\rceil=2^{n-k}-1 .
$$

Since the paired domination number of a graph is an even integer, this implies that $\gamma_{\mathrm{pr}}\left(Q_{n}-S\right) \geq 2^{n-k}=\gamma_{\mathrm{pr}}\left(Q_{n}\right)$, a contradiction. Hence, every nonisolating subset S of vertices in the hypercube Q_{n} such that $\gamma_{\mathrm{pr}}\left(Q_{n}-S\right)<\gamma_{\mathrm{pr}}\left(Q_{n}\right)$ has cardinality at least $2 \Delta\left(Q_{n}\right)$, that is, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(Q_{n}\right) \geq 2 \Delta\left(Q_{n}\right)$. By Theorem 4, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(Q_{n}\right) \leq 2 \Delta\left(Q_{n}\right)$. Consequently, st $_{\gamma_{\text {pr }}}^{-}\left(Q_{n}\right)=2 \Delta\left(Q_{n}\right)=2^{k+1}$.

We establish next the upper bound on the γ_{pr}^{+}-stability of a class of connected bipartite prisms.

Proposition 13. If $G=(X, Y ; E)$ is a connected bipartite graph, with $\gamma(G)<$ $\min \{|X|,|Y|\}$, then $\operatorname{st}_{\gamma_{\mathrm{pr}}}^{+}\left(G \square K_{2}\right) \leq \min \{|X|,|Y|\}$.

Proof. Let $G=(X, Y ; E)$ be a connected bipartite graph with $\gamma(G)<\min \{|X|$, $|Y|\}$. Without the loss of generality, let $\min \{|X|,|Y|\}=|X|=k$ and let G_{1} and G_{2} be two copies of G that form a graph $G \square K_{2}$ by adding a perfect matching between corresponding vertices in G_{1} and G_{2}. Let X_{i} and Y_{i} be the two partite sets of G_{i} for $i \in[2]$. Renaming the sets if necessary, we may assume that there is a perfect matching between the vertices of X_{1} and X_{2} (respectively, between Y_{1} and $\left.Y_{2}\right)$ in $G \square K_{2}$. Note that $\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)<2 k$ since we can choose a dominating set in G_{i} and its corresponding set in G_{3-i}. Let H be the (connected) graph obtained from $G \square K_{2}$ by removing the vertices in the set X_{1}, and so $H=G \square K_{2}-X_{1}$. We note that each vertex in Y_{1} has degree 1 in H. Further, the (unique) neighbor in H of each vertex in Y_{1} belongs to the set Y_{2}. Thus, each vertex of Y_{2} is a support vertex in H, and therefore belongs to every PD-set of H. Since the set Y_{2} is an independent set, this implies that every PD-set of H has cardinality at least $2\left|Y_{2}\right| \geq 2\left|X_{2}\right|=2 k>\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)$. Hence, the set X_{1} is a non-isolating set of vertices of $G \square K_{2}$ such that $\gamma_{\mathrm{pr}}\left(G \square K_{2}-X_{1}\right)>\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)$, implying that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}\left(G \square K_{2}\right) \leq k=\left|X_{1}\right|$.

$$
\text { From Proposition } 13 \text { we can immediately conclude the following result. }
$$

Corollary 14. For $n \geq 4$, we have $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}\left(Q_{n}\right) \leq 2^{n-2}$.

1160 A. Gorzkowska, M.A. Henning, M. PilŚniak and E. Tumidajewicz

Proof. Let $G=Q_{n}$ for some $n \geq 4$. We show that $\gamma_{\mathrm{pr}}(G)<2^{n-1}$ for all $n \geq 4$. By Table 2, this is true for small $n \in\{4,5, \ldots, 10\}$. For $n \geq 11$, by Theorems 3 and 11, we have that $\gamma_{\mathrm{pr}}(G)=2 \gamma\left(Q_{n-1}\right) \leq 2 \cdot 2^{n-4}<2^{n-1}$. Thus, $\gamma_{\mathrm{pr}}(G)<2^{n-1}$ for all $n \geq 4$. Further, with reasoning as in the proof of the Proposition 13 we conclude that the result follows.

It remains an open problem, however, to determine the exact value of the γ_{pr}^{+}-stability of a hypercube Q_{n} for $n \geq 4$.

4.2. Bipartite prisms

In this section, we study bipartite prisms. For this purpose, we first determine the γ^{-}-stability of a regular graph.

Lemma 15. For $r \geq 2$, if G is an r-regular graph that contains a perfect dominating set, then $\operatorname{st}_{\gamma}^{-}(G)=r+1$.

Proof. Let G be an r-regular graph of order n that contains a perfect dominating set. Since any perfect dominating set is necessarily a minimum dominating set, we have $n=k(r+1)$ for some integer $k \geq 1$, and $\gamma(G)=k$. Let S be a set of vertices of G such that $\gamma(G-S) \leq \gamma(G)-1=k-1$. We note that $|V(G-S)|=n-|S|$ and $\Delta(G-S) \leq \Delta(G)=r$. Thus,

$$
k-1 \geq \gamma(G-S) \geq \frac{|V(G-S)|}{\Delta(G-S)+1} \geq \frac{n-|S|}{r+1},
$$

and so, $|S| \geq n-(k-1)(r+1)=k(r+1)-(k-1)(r+1)=r+1$, implying that $\operatorname{st}_{\gamma}^{-}(G) \geq r+1$. However, if D is a perfect dominating set of G and $v \in D$, then removing v and all its neighbors from G produces a graph with domination number $|D|-1=\gamma(G)-1$, implying that $\operatorname{st}_{\gamma}^{-}(G) \leq r+1$. Consequently, $\operatorname{st}_{\gamma}^{-}(G)=r+1$.

We are now ready to prove a sharp upper bound on the γ_{pr}^{-}-stability of a bipartite prism.

Theorem 16. If G is a bipartite graph, then

$$
\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(G \square K_{2}\right) \leq 2 \mathrm{st}_{\gamma}^{-}(G),
$$

and this bound is sharp.
Proof. Let G be a bipartite graph, and consider the prism $G \square K_{2}$ formed by taking two disjoint copies G_{1} and G_{2} of G. Let S be a non-isolating set of vertices in G such that $\gamma(G-S)<\gamma(G)$ and $|S|=\operatorname{st}_{\gamma}^{-}(G)$. Let D be a γ-set of $G-S$. Let D_{i} and S_{i} be the set of vertices in G_{i} corresponding to the sets D and S, respectively, in G for $i \in[2]$.

We note that the set $S_{1} \cup S_{2}$ is a non-isolating set of vertices in $G \square K_{2}$. Further, we note that the graph $\left(G \square K_{2}\right)-\left(S_{1} \cup S_{2}\right)$ is isomorphic to ($G-S$) $\square K_{2}$. Additionally, in the graph $\left(G \square K_{2}\right)-\left(S_{1} \cup S_{2}\right)$ every vertex of the set D_{1} is adjacent to its partner in D_{2}. Hence, $D_{1} \cup D_{2}$ is a PD-set of $(G-S) \square K_{2}$. Therefore, $S_{1} \cup S_{2}$ is a non-isolating set in $G \square K_{2}$ such that $\gamma_{\mathrm{pr}}\left(\left(G \square K_{2}\right)-\left(S_{1} \cup\right.\right.$ $\left.\left.S_{2}\right)\right) \leq\left|D_{1} \cup D_{2}\right|=2|D|=2 \gamma(G-S)<2 \gamma(G)=\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)$. Consequently, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(G \square K_{2}\right) \leq\left|S_{1} \cup S_{2}\right|=2|S|=2 \mathrm{st}_{\gamma}^{-}(G)$.

It remains to show that this bound is tight. This may be seen by taking, for example, G to be a hypercube Q_{n}, where $n=2^{k}-1$ for some $k \geq 1$. In this case the graph $G \square K_{2}$ is isomorphic to Q_{n+1}, where $n+1=2^{k}$. Thus by Theorem 12, we have st $\bar{\gamma}_{\mathrm{pr}}\left(G \square K_{2}\right)=\operatorname{st}_{\gamma_{\mathrm{pr}}}^{-}\left(Q_{n+1}\right)=2 \Delta\left(Q_{n+1}\right)=2(n+1)$. As observed earlier, the hypercube $G=Q_{2^{k}-1}$ contain a perfect code, that is, the graph G contains a perfect dominating set. This implies by Lemma 15 that $\operatorname{st}_{\gamma}^{-}(G)=\operatorname{st}_{\gamma}^{-}\left(Q_{n}\right)=\Delta\left(Q_{n}\right)+1=n+1$. Thus, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(G \square K_{2}\right)=2 \mathrm{st}_{\gamma}^{-}(G)$.

We present next an additional example of a class of graphs G achieving equality in the upper bound of Theorem 16. For $k \geq 1$, let $G_{2 k}$ be the graph constructed as follows. Consider two copies of the path $P_{4 k}$ with respective vertex sequences $a_{1} b_{1} a_{2} b_{2} \cdots a_{2 k} b_{2 k}$ and $c_{1} d_{1} c_{2} d_{2} \cdots c_{2 k} d_{2 k}$. For each $i \in[2 k]$, join a_{i} to d_{i} and b_{i} to c_{i}. To complete the construction of the graph $G_{2 k}$, add the two edges $a_{1} b_{2 k}$ and $c_{1} d_{2 k}$. Let $\mathcal{G}=\left\{G_{2 k}: k \geq 1\right\}$. The graph $G_{4} \in \mathcal{G}$ is illustrated in Figure 2, where the framed vertices form a γ-set of G_{4}. We note that $G_{2 k}$ is a cubic graph of order $8 k$ for all $k \geq 1$, and that $G_{2 k}$ contains a perfect dominating set. In particular, $\gamma\left(G_{2 k}\right)=2 k$.

Figure 2. A graph $G_{4} \in \mathcal{G}$.
Proposition 17. If $G \in \mathcal{G}$, then $\operatorname{st}_{\gamma_{\mathrm{pr}}}^{-}\left(G \square K_{2}\right)=2 \mathrm{st}_{\gamma}^{-}(G)$.
Proof. Let G be an arbitrary graph in the family \mathcal{G}, and so $G=G_{2 k}$ for some $k \geq 1$. Thus, $\gamma(G)=2 k$. The graph G is a 3 -regular graph that contains a perfect dominating set, and so by Lemma 15 , we have st ${ }_{\gamma}^{-}(G)=4$.

We show next that st $\gamma_{\gamma_{\mathrm{pr}}}\left(G \square K_{2}\right)=8$. Let G_{1} and G_{2} be the two layers of the prism $G \square K_{2}$. Let D be a γ-set of G, and let D_{i} be the set of vertices in G_{i} corresponding to the set D in G for $i \in[2]$. The set $D_{1} \cup D_{2}$ is a PDset of $G \square K_{2}$, and so $\gamma_{\mathrm{pr}}\left(G \square K_{2}\right) \leq\left|D_{1}\right|+\left|D_{2}\right|=2|D|=2 \gamma(G)=4 k$. Since $G \square K_{2}$ is a 4 -regular graph of order $16 k$, by Observation 1 we have $\gamma_{\mathrm{pr}}\left(G \square K_{2}\right) \geq$

1162 A. Gorzkowska, M.A. Henning, M. PilŚniak and E. Tumidajewicz
$\left|V\left(G \square K_{2}\right)\right| / \Delta\left(G \square K_{2}\right)=16 k / 4=4 k$. Consequently, $\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)=4 k$. Let S be a non-isolating set of vertices in $G \square K_{2}$ such that $\gamma_{\mathrm{pr}}\left(\left(G \square K_{2}\right)-S\right)<\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)$, and so $\gamma_{\mathrm{pr}}\left(\left(G \square K_{2}\right)-S\right) \leq 4 k-2$. We note that $\left|V\left(\left(G \square K_{2}\right)-S\right)\right|=16 k-|S|$ and $\Delta\left(\left(G \square K_{2}\right)-S\right) \leq \Delta\left(G \square K_{2}\right)=4$. By Observation 1,

$$
4 k-2 \geq \gamma_{\mathrm{pr}}\left(\left(G \square K_{2}\right)-S\right) \geq \frac{\left|V\left(\left(G \square K_{2}\right)-S\right)\right|}{\Delta\left(\left(G \square K_{2}\right)-S\right)} \geq \frac{16 k-|S|}{4},
$$

and so, $|S| \geq 8$, implying that st ${ }_{\gamma_{\mathrm{pr}}}^{-}\left(G \square K_{2}\right) \geq 8$. However, removing from the γ_{pr}-set $D_{1} \cup D_{2}$ of $G \square K_{2}$ a vertex $v_{1} \in D_{1}$ and its partner $v_{2} \in D_{2}$, and all their neighbors in $G \square K_{2}$, produces a graph with PD-set $\left(D_{1} \cup D_{2}\right) \backslash\left\{v_{1}, v_{2}\right\}$. Thus, there exists a set of eight vertices whose removal from $G \square K_{2}$ decreases the paired domination number, implying that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(G \square K_{2}\right) \leq 8$. Consequently, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(G \square K_{2}\right)=8$.

4.3. Cycle prisms

As observed earlier, for $n \geq 3, \gamma\left(C_{n}\right)=\lceil n / 3\rceil$. We show first that the result of Theorem 3 can be extended to (odd) cycles.

Proposition 18. If G is a cycle, then $\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)=2 \gamma(G)$.
Proof. For $n \geq 3$, let G be a cycle C_{n} and consider the cycle prism of G, namely $G \square K_{2}$. We note that $\left|V\left(G \square K_{2}\right)\right|=2 n$ and that $G \square K_{2}$ is a cubic graph. By Observations 1 and 2, we have

$$
2\left\lceil\frac{n}{3}\right\rceil=2\left\lceil\frac{2 n}{2 \cdot 3}\right\rceil=2\left\lceil\frac{\left|V\left(G \square K_{2}\right)\right|}{2 \cdot \Delta\left(G \square K_{2}\right)}\right\rceil \leq \gamma_{\mathrm{pr}}\left(G \square K_{2}\right) \leq 2 \gamma(G)=2\left\lceil\frac{n}{3}\right\rceil .
$$

Consequently, we must have equality throughout the above inequality chain. In particular, $\gamma_{\mathrm{pr}}\left(G \square K_{2}\right)=2 \gamma(G)$.

We are now in a position to determine the γ_{pr}^{-}-stability of a cycle prism.
Theorem 19. For $n \geq 4$,

$$
\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}\left(C_{n} \square K_{2}\right)= \begin{cases}2 & \text { if } n(\bmod 6) \in\{1,4\}, \\ 4 & \text { if } n(\bmod 6) \in\{2,5\}, \\ 6 & \text { if } n(\bmod 6) \in\{0,3\} .\end{cases}
$$

Proof. For $n \geq 4$, let $G=C_{n} \square K_{2}$. Let G_{1} and G_{2} be the two layers of the prism G used to build the graph G, where G_{1} is the cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ and G_{2} is the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$. Let G be obtained from G_{1} and G_{2} by adding the edges $u_{i} v_{i}$ for $i \in[n]$.

Suppose that $n \equiv 1(\bmod 6)$, and so $n=6 k+1$ for some $k \geq 1$. By Proposition 18, $\gamma_{\mathrm{pr}}(G)=2 \gamma\left(C_{6 k+1}\right)=2\left\lceil\frac{6 k+1}{3}\right\rceil=4 k+2$. If $|S|=1$, then $|V(G-S)|$
$=12 k+1$ and $\Delta(G-S)=3$. Thus in this case, $\gamma_{\mathrm{pr}}(G-S) \geq 2\left\lceil\frac{12 k+1}{2.3}\right\rceil=$ $4 k+2=\gamma_{\mathrm{pr}}(G)$, a contradiction. Hence, $|S| \geq 2$, implying that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G) \geq 2$. Letting $S=\left\{u_{1}, v_{1}\right\}$, the graph $G-S$ is isomorphic to $P_{6 k} \square K_{2}$. In this case, by Theorem 3 we have $\gamma_{\mathrm{pr}}(G-S)=2 \gamma\left(P_{6 k}\right)=2\left\lceil\frac{6 k}{3}\right\rceil=4 k<4 k+2=\gamma_{\mathrm{pr}}(G)$. Thus, S is a non-isolating set of vertices in G such that $\gamma_{\mathrm{pr}}(G-S)<\gamma_{\mathrm{pr}}(G)$, implying that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G) \leq 2$. Consequently, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G)=2$.

Suppose that $n \equiv 4(\bmod 6)$. With computations analogous to the case when $n \equiv 1(\bmod 6)$ we obtain the desired result.

Suppose that $n \equiv 2(\bmod 6)$, and so $n=6 k+2$ for some $k \geq 1$. By Proposition 18, $\gamma_{\mathrm{pr}}(G)=2 \gamma\left(C_{6 k+2}\right)=2\left\lceil\frac{6 k+2}{3}\right\rceil=4 k+2$. If $|S| \leq 3$, then $|V(G-S)| \geq$ $12 k+1$ and $\Delta(G-S)=3$. Thus in this case, $\gamma_{\mathrm{pr}}(G-S) \geq 2\left\lceil\frac{12 k+1}{2 \cdot 3}\right\rceil=4 k+2=$ $\gamma_{\mathrm{pr}}(G)$, a contradiction. Hence, $|S| \geq 4$, implying that $\operatorname{st}_{\gamma_{\mathrm{pr}}}(G) \geq 4$. Letting $S=\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$, the graph $G-S$ is isomorphic to $P_{6 k} \square K_{2}$. Thus, by Theorem 3 we have $\gamma_{\mathrm{pr}}(G-S)=2 \gamma\left(P_{6 k}\right)=2\left\lceil\frac{6 k}{3}\right\rceil=4 k<4 k+2=\gamma_{\mathrm{pr}}(G)$. Hence, S is a non-isolating set of vertices in G such that $\gamma_{\mathrm{pr}}(G-S)<\gamma_{\mathrm{pr}}(G)$, implying that $\operatorname{st}_{\gamma_{\mathrm{pr}}}^{-}(G) \leq 4$. Consequently, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G)=4$.

Suppose that $n \equiv 5(\bmod 6)$. The result is obtained by analogous reasoning as in the case when $n \equiv 2(\bmod 6)$.

Suppose that $n \equiv 0(\bmod 6)$, and so $n=6 k$ for some $k \geq 1$. By Proposition 18, $\gamma_{\mathrm{pr}}(G)=2 \gamma\left(C_{6 k}\right)=2\left\lceil\frac{6 k}{3}\right\rceil=4 k$. If $|S| \leq 5$, then $|V(G-S)| \geq 12 k-5$ and $\Delta(G-S)=3$. Thus in this case, $\gamma_{\mathrm{pr}}(G-S) \geq 2\left\lceil\frac{12 k-5}{2 \cdot 3}\right\rceil=4 k=\gamma_{\mathrm{pr}}(G)$, a contradiction. Hence, $|S| \geq 6$, implying that $\operatorname{st}_{\gamma_{\mathrm{pr}}}^{-}(G) \geq 6$. Letting $S=$ $\left\{u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}\right\}$, the graph $G-S$ is isomorphic to $P_{6 k-3} \square K_{2}$. Thus, by Theorem 3 we have $\gamma_{\mathrm{pr}}(G-S)=2 \gamma\left(P_{6 k-3}\right)=2\left\lceil\frac{6 k-3}{3}\right\rceil=4 k-2<4 k=\gamma_{\mathrm{pr}}(G)$. Hence, S is a non-isolating set of vertices in G such that $\gamma_{\mathrm{pr}}(G-S)<\gamma_{\mathrm{pr}}(G)$, implying that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G) \leq 6$. Consequently, $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{-}(G)=6$.

Suppose that $n \equiv 3(\bmod 6)$. The calculations are analogous to the case when $n \equiv 0(\bmod 6)$.

We next consider the γ_{pr}^{+}-stability of a cycle prism $C_{n} \square K_{2}$. For small values of $n \in\{3,4,5,7\}$, we note that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}\left(C_{n} \square K_{2}\right)=\infty$. Hence it is only of interest to consider values of n where $n \geq 6$ and $n \neq 7$. For this purpose, we prove an additional lemma.

Let G be a path P_{k} for some $k \geq 1$, and consider the prism $G \square K_{2}$ formed by taking two disjoint copies G_{1} and G_{2} of G. Thus, G_{1} and G_{2} are the two layers of the prism, $G \square K_{2}$. If $k=1$, then G_{1} is isomorphic to K_{1}, and we let L_{k} be obtained from $G \square K_{2}$ by attaching two leaf neighbors to the vertex of G_{1}. Thus, L_{1} is isomorphic to $K_{1,3}$. For $k \geq 2$, let L_{k} be a graph of order $2 k+2$ obtained from $G \square K_{2}$ by attaching a leaf neighbor to each end-vertex of the path G_{1}. Let \mathcal{L} be the family of all such graphs L_{k}, and so $\mathcal{L}=\left\{L_{k}: k \geq 1\right\}$. We proceed further with the following lemma that computes the paired domination number of a graph that belongs to the family \mathcal{L}.

1164 A. Gorzkowska, M.A. Henning, M. PilŚniak and E. Tumidajewicz

Figure 3. The graph L_{3} from the family \mathcal{L}.

Lemma 20. If G is a graph in the family \mathcal{L} with order n, then

$$
\gamma_{\mathrm{pr}}(G)= \begin{cases}2\left\lceil\frac{n}{6}\right\rceil & \text { if } n \not \equiv 0(\bmod 12), \\ \frac{n}{3}+2 & \text { if } n \equiv 0(\bmod 12) .\end{cases}
$$

Proof. Let $G \in \mathcal{L}$ have order n, and so $G=L_{k}$ for some $k \geq 1$. Let G_{1} and G_{2} be the two layers of the prism $P_{k} \square K_{2}$ used to build the graph G, where G_{1} is the path $v_{1} v_{2} \cdots v_{k}$ and G_{2} is the path $u_{1} u_{2} \cdots u_{k}$. Let G be obtained from G_{1} and G_{2} by adding the two new vertices v_{0} and v_{k+1}, and adding the edges $v_{0} v_{1}, v_{k} v_{k+1}$, and the edges $u_{i} v_{i}$ for $i \in[k]$. We note that $\Delta(G)=3$ and $|V(G)|=n=2 k+2$. Thus, by Observation 1, we have $\gamma_{\mathrm{pr}}(G) \geq 2\left\lceil\frac{n}{6}\right\rceil=2\left\lceil\frac{k+1}{3}\right\rceil$.
Claim 1. If $n \not \equiv 0(\bmod 12)$, then $\gamma_{\mathrm{pr}}(G)=2\left\lceil\frac{k+1}{3}\right\rceil$.
Proof. Suppose that $n \not \equiv 0(\bmod 12)$, implying that $k \not \equiv 5(\bmod 6)$. We show that $\gamma_{\mathrm{pr}}(G) \leq 2\left\lceil\frac{k+1}{3}\right\rceil$. We proceed by induction on $k \geq 1$. If $k=1$ or $k=2$, then let $D=\left\{v_{1}, v_{2}\right\}$. If $k=3$, then let $D=\left\{u_{1}, v_{1}, u_{3}, v_{3}\right\}$. If $k=4$, then let $D=\left\{u_{1}, v_{1}, u_{4}, v_{4}\right\}$. If $k=6$, then let $D=\left\{u_{1}, v_{1}, u_{4}, v_{4}, u_{6}, v_{6}\right\}$. In all four cases, the resulting set D is a PD-set of G and satisfies $|D|=2\left\lceil\frac{k+1}{3}\right\rceil$. This establishes the base cases. Let $k \geq 7$, and assume that if $G^{\prime}=L_{k^{\prime}}$ for some k^{\prime} where $1 \leq k^{\prime}<k$ and $k^{\prime} \not \equiv 5(\bmod 6)$, then $\gamma_{\mathrm{pr}}\left(G^{\prime}\right)=2\left\lceil\frac{k^{\prime}+1}{3}\right\rceil$. We now consider the graph $G=L_{k}$. Let $S=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{k-2}, v_{k-1}, v_{k}, v_{k+1}\right\} \cup\left\{u_{1}, u_{2}, u_{k-1}, u_{k}\right\}$.

We note that the set $D=\left\{v_{1}, v_{2}, v_{k-1}, v_{k}\right\}$ is a PD-set of the subgraph, $G[S]$, of G induced by the set S. Let $G^{\prime}=G-S$, and note that G^{\prime} is isomorphic to $L_{k^{\prime}}$, where $k^{\prime}=k-6$. Thus, $1 \leq k^{\prime}<k$ and $k^{\prime} \not \equiv 5(\bmod 6)$. Applying the inductive hypothesis to G^{\prime}, we have $\gamma_{\mathrm{pr}}\left(G^{\prime}\right)=2\left\lceil\frac{k^{\prime}+1}{3}\right\rceil=2\left\lceil\frac{k+1}{3}\right\rceil-4$. Thus, $\gamma_{\mathrm{pr}}(G) \leq \gamma_{\mathrm{pr}}\left(G^{\prime}\right)+\gamma_{\mathrm{pr}}(G[S]) \leq\left(2\left\lceil\frac{k+1}{3}\right\rceil-4\right)+4=2\left\lceil\frac{k+1}{3}\right\rceil$, as desired. Hence, by induction, $\gamma_{\mathrm{pr}}(G) \leq 2\left\lceil\frac{k+1}{3}\right\rceil$. As observed earlier, we have $\gamma_{\mathrm{pr}}(G) \geq 2\left\lceil\frac{k+1}{3}\right\rceil$. Consequently, $\gamma_{\mathrm{pr}}(G)=2\left\lceil\frac{k+1}{3}\right\rceil$. This completes the proof of Claim 1 .

By Claim 1 , we may assume that $n \equiv 0(\bmod 12)$, for otherwise the desired result follows. With this assumption, $k \geq 5$ and $k \equiv 5(\bmod 6)$.

Suppose that $k=5$, and so $G=L_{5}$. Let D be a γ_{pr}-set of G. Since D contains all support vertices of G, we have $\left\{v_{1}, v_{5}\right\} \subseteq D$. In order to dominate the vertex u_{3}, the set D contains a vertex $v \in N_{G}\left[u_{3}\right]$. Thus, letting $A=\left\{v, v_{1}, v_{5}\right\}$, we note that the independent set A is a subset of D, implying that $\gamma_{\mathrm{pr}}(G) \geq 2|A|=6$.

Conversely, the set $\left\{v_{1}, v_{2}, u_{3}, v_{3}, v_{4}, v_{5}\right\}$ is a PD-set of G (with v_{1} and v_{2} paired, u_{3} and v_{3} paired, and v_{4} and v_{5} paired), and so $\gamma_{\mathrm{pr}}(G) \leq 6$. Consequently, $\gamma_{\mathrm{pr}}(G)=6=\frac{n}{3}+2$ and this establishes the base case as we will further proceed with induction on k.

We show firstly that when $k \geq 5$ and $k \equiv 5(\bmod 6)$, we have $\gamma_{\mathrm{pr}}(G) \leq \frac{n}{3}+2$. Let $k \geq 11$, and assume that if $5 \leq k^{\prime}<k$ where $k^{\prime} \equiv 5(\bmod 6)$, then $\gamma_{\mathrm{pr}}\left(L_{k^{\prime}}\right) \leq$ $\frac{2 k^{\prime}+2}{3}+2$. Let the set S be defined as in the proof of Claim 1. As before, we note that $\gamma_{\mathrm{pr}}(G[S]) \leq 4$. Let $G^{\prime}=G-S$, and note that G^{\prime} is isomorphic to $L_{k^{\prime}}$, where $k^{\prime}=k-6$. Thus, $5 \leq k^{\prime}<k$ and $k^{\prime} \equiv 5(\bmod 6)$. Applying the inductive hypothesis to G^{\prime}, we have $\gamma_{\mathrm{pr}}\left(G^{\prime}\right) \leq \frac{2 k^{\prime}+2}{3}+2=\frac{2 k+2}{3}-2=\frac{n}{3}-2$. Thus, $\gamma_{\mathrm{pr}}(G) \leq \gamma_{\mathrm{pr}}\left(G^{\prime}\right)+\gamma_{\mathrm{pr}}(G[S]) \leq\left(\frac{n}{3}-2\right)+4=\frac{n}{3}+2$, as desired.

We show next that when $k \geq 5$ and $k \equiv 5(\bmod 6)$, we have $\gamma_{\mathrm{pr}}(G) \geq \frac{n}{3}+2$. Let $k \geq 11$, and assume that if $5 \leq k^{\prime}<k$ where $k^{\prime} \equiv 5(\bmod 6)$, then $\gamma_{\mathrm{pr}}\left(L_{k^{\prime}}\right) \geq$ $\frac{2 k^{\prime}+2}{3}+2$. Let D be a γ_{pr}-set of G. Since D contains all support vertices of G, we have $\left\{v_{1}, v_{k}\right\} \subseteq D$.

We show that we can choose D so that $v_{2} \in D$ and the vertices v_{1} and v_{2} are paired in D. Suppose that the vertex v_{1} is paired with u_{1} in D. (The case when v_{1} is paired with v_{0} is analogous.) If $v_{2} \notin D$, then we can simply replace u_{1} in D with the vertex v_{2}, and in the resulting set pair v_{1} and v_{2}, as desired. Hence, we may assume that $v_{2} \in D$. If v_{2} is paired with u_{2}, then we can simply replace the pairs v_{1} and u_{1}, and v_{2} and u_{2}, with the new pairing v_{1} and v_{2}, and u_{1} and u_{2}, to yield the desired result. Hence, we may assume that v_{2} is paired with v_{3}. If now $u_{3} \in D$, then we contradict the minimality of the set D. Hence, $u_{3} \notin D$. In this case, the set $D^{\prime}=\left(D \backslash\left\{u_{1}\right\}\right) \cup\left\{u_{3}\right\}$ is a new γ_{pr}-set of G, with v_{1} and v_{2} paired, and u_{3} and v_{3} paired in D^{\prime}, once again yielding a γ_{pr}-set of G with the desired property that v_{1} and v_{2} are paired in the set. Hence, we may choose D so that $v_{2} \in D$ and the vertices v_{1} and v_{2} are paired in D.

With this choice of D, we note that $v_{0} \notin D$. If $u_{1} \in D$, then $u_{2} \in D$ and u_{1} and u_{2} are partners in D. In this case, the vertex u_{1} is only needed to partner the vertex u_{2}, and we can replace u_{1} in D with the vertex u_{3}. Hence, we may assume that $u_{1} \notin D$. If $v_{3} \in D$, then we can replace v_{3} in D with the vertex u_{4}. Hence, we may further assume that $v_{3} \notin D$. If $u_{2} \in D$, then $u_{3} \in D$ with u_{2} and u_{3} paired, and we can replace u_{2} in D with the vertex u_{4}. Hence, we can choose the set D so that $D \cap\left\{v_{0}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}\right\}=\left\{v_{1}, v_{2}\right\}$. Analogously, we can choose the set D so that $D \cap\left\{v_{k-2}, v_{k-1}, v_{k}, v_{k+1}, u_{k-1}, u_{k}\right\}=\left\{v_{k-1}, v_{k}\right\}$.

Let the set S be defined as in the proof of Claim 1, and consider the graph $G^{\prime}=G-S$. We note that G^{\prime} is isomorphic to $L_{k^{\prime}}$, where $k^{\prime}=k-6$. Thus, $5 \leq k^{\prime}<k$ and $k^{\prime} \equiv 5(\bmod 6)$. By our choice of the set D, we note that the set $D^{\prime}=D \backslash\left\{v_{1}, v_{2}, v_{k-1}, v_{k}\right\}$ is a PD-set of G^{\prime}, and so $\gamma_{\mathrm{pr}}\left(G^{\prime}\right) \leq\left|D^{\prime}\right|=|D|-4$. Applying the inductive hypothesis to G^{\prime}, we have $|D|-4 \geq \gamma_{\mathrm{pr}}\left(G^{\prime}\right) \geq \frac{2 k^{\prime}+2}{3}+2=$ $\frac{2 k+2}{3}-2=\frac{n}{3}-2$. Thus, $\gamma_{\mathrm{pr}}(G)=|D| \geq \frac{n}{3}+2$, as desired. As proven earlier,

1166 A. Gorzkowska, M.A. Henning, M. Pilśniak and E. Tumidajewicz
$\gamma_{\mathrm{pr}}(G) \leq \frac{n}{3}+2$. Consequently, $\gamma_{\mathrm{pr}}(G)=\frac{n}{3}+2$. This completes the proof of Lemma 20.

We are now in a position to establish upper bounds on the γ_{pr}^{+}-stability of a cycle prism $C_{n} \square K_{2}$ when $n \geq 6$ and $n \neq 7$.

Theorem 21. For $n \geq 6$ and $n \neq 7$,

$$
\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}\left(C_{n} \square K_{2}\right) \leq \begin{cases}3 & \text { if } n \equiv 0(\bmod 6), \\ 4 & \text { if } n(\bmod 6) \in\{2,3\}, \\ 5 & \text { if } n(\bmod 6) \in\{4,5\}, \\ 6 & \text { if } n \equiv 1(\bmod 6) .\end{cases}
$$

Proof. For $n \geq 6$ and $n \neq 7$, let $G=C_{n} \square K_{2}$. Let G_{1} and G_{2} be the two layers of the prism G used to build the graph G, where G_{1} is the cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ and G_{2} is the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$. Let G be obtained from G_{1} and G_{2} by adding the edges $u_{i} v_{i}$ for $i \in[n]$.

Suppose that $n \equiv 0(\bmod 6)$. In this case, $n=6 k$ for some $k \geq 1$, and $\gamma_{\mathrm{pr}}(G)=4 k$. We consider the non-isolating set $S=\left\{u_{1}, u_{3}, u_{5}\right\}$. Let D be a $\gamma_{p r}{ }^{-}$ set of $G-S$. Since D contains all support vertices of $G-S$, we have $\left\{v_{2}, v_{4}\right\} \subset D$. We can clearly choose the partner of v_{2} in D as the vertex v_{1}, and the partner of v_{4} in D as the vertex v_{5}. Thus, $D \cap\left\{u_{2}, v_{3}, u_{4}\right\}=\emptyset$. If $k=1$, then $v_{6} \in D$ in order to dominate the vertex u_{6}, implying that $\gamma_{\mathrm{pr}}(G-S)=6>4=4 k=\gamma_{\mathrm{pr}}(G)$, and so st ${ }_{\gamma_{\mathrm{pr}}}^{+}(G) \leq|S|=3$. Hence, we may assume now that $k \geq 2$.

If $v_{n} \in D$, then we can replace v_{n} in D with the vertex u_{n-1}. If $v_{6} \in D$, then we can replace v_{6} in D with the vertex u_{7}. Hence, we may further choose D to contain neither v_{6} nor v_{n}. Let $D_{1}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ and let $G^{\prime}=G-\left(S \cup N_{G}\left[D_{1}\right]\right)$. We note that G^{\prime} is isomorphic to $L_{6 k-7} \in \mathcal{L}$, and so G^{\prime} has order $n^{\prime}=12(k-1)$. By Lemma 20, $\gamma_{\mathrm{pr}}\left(G^{\prime}\right)=2\left\lceil\frac{n^{\prime}}{6}\right\rceil+2=2\left\lceil\frac{12(k-1)}{6}\right\rceil+2=4 k-2$. By our choice of the set D, the set $D^{\prime}=D \backslash D_{1}$ is a PD-set of G^{\prime}, and so $\gamma_{\mathrm{pr}}\left(G^{\prime}\right) \leq\left|D^{\prime}\right|=$ $|D|-4=\gamma_{\mathrm{pr}}(G-S)-4$. Thus, $\gamma_{\mathrm{pr}}(G-S) \geq \gamma_{\mathrm{pr}}\left(G^{\prime}\right)+4=4 k+2>4 k=\gamma_{\mathrm{pr}}(G)$. This implies that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}(G) \leq|S|=3$.

Suppose that $n \equiv 2(\bmod 6)$. In this case, $n=6 k+2$ for some $k \geq 1$, and $\gamma_{\mathrm{pr}}(G)=4 k+2$. We consider the non-isolating set $S=\left\{u_{1}, u_{3}, u_{5}, u_{7}\right\}$. Let D be a γ_{pr}-set of $G-S$. Since D contains all support vertices of $G-S$, we have $\left\{v_{2}, v_{4}, v_{6}\right\} \subset D$. We can choose D so that the partner of v_{2} in D as the vertex v_{1}, the partner of v_{6} in D as the vertex v_{7}, and the partner of v_{4} in D as either the vertex v_{3} or v_{5}, say v_{3}. If $k=1$, then $v_{8} \in D$ in order to dominate the vertex u_{8}, implying that $\gamma_{\mathrm{pr}}(G-S)=8>6=4 k+2=\gamma_{\mathrm{pr}}(G)$, and so st $\gamma_{\gamma_{\mathrm{pr}}}^{+}(G) \leq|S|=4$. Hence, we may assume now that $k \geq 2$.

If $v_{n} \in D$, then we can replace v_{n} in D with the vertex u_{n-1}. If $v_{8} \in D$, then we can replace v_{8} in D with the vertex u_{9}. Hence, we may further choose
D to contain neither v_{8} nor v_{n}. Let $D_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{7}\right\}$ and let $G^{\prime}=$ $G-\left(S \cup N_{G}\left[D_{1}\right]\right)$. We note that G^{\prime} is isomorphic to $L_{6 k-7} \in \mathcal{L}$, and so G^{\prime} has order $n^{\prime}=12(k-1)$. By Lemma 20, $\gamma_{\mathrm{pr}}\left(G^{\prime}\right)=4 k-2$. By our choice of the set D, the set $D^{\prime}=D \backslash D_{1}$ is a PD-set of G^{\prime}, and so $\gamma_{\mathrm{pr}}\left(G^{\prime}\right) \leq\left|D^{\prime}\right|=|D|-6=$ $\gamma_{\mathrm{pr}}(G-S)-6$. Thus, $\gamma_{\mathrm{pr}}(G-S) \geq \gamma_{\mathrm{pr}}\left(G^{\prime}\right)+6=4 k+4>4 k+2=\gamma_{\mathrm{pr}}(G)$. This implies that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}(G) \leq|S|=4$.

Suppose that $n \equiv 3(\bmod 6)$. The reasoning is analogous as in the case when $n \equiv 2(\bmod 6)$.

Suppose that $n \equiv 4(\bmod 6)$. In this case, $n=6 k+4$ for some $k \geq 1$, and $\gamma_{\mathrm{pr}}(G)=4 k+4$. We consider the non-isolating set $S=\left\{u_{1}, u_{3}, u_{5}, u_{7}, u_{9}\right\}$. Let D be a $\gamma_{p r}$-set of $G-S$. Since D contains all support vertices of $G-S$, we have $\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\} \subset D$. Let $D_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{8}, v_{9}\right\}$. We can choose D so that $D_{1} \subset D$, where v_{1} and v_{2} are paired, v_{3} and v_{4} are paired, v_{5} and v_{6} are paired, and v_{8} and v_{9} are paired. If $k=1$, then $v_{10} \in D$ in order to dominate the vertex u_{10}, implying that $\gamma_{\mathrm{pr}}(G-S)=10>8=4 k+4=\gamma_{\mathrm{pr}}(G)$, and so $\operatorname{st}_{\gamma_{\mathrm{pr}}}^{+}(G) \leq|S|=5$. Hence, we may assume now that $k \geq 2$. We can now further choose D to contain neither v_{10} nor v_{n}. Let $G^{\prime}=G-\left(S \cup N_{G}\left[D_{1}\right]\right)$. We note that G^{\prime} is isomorphic to $L_{6 k-7} \in \mathcal{L}$, and so G^{\prime} has order $n^{\prime}=12(k-1)$. By Lemma 20, $\gamma_{\mathrm{pr}}\left(G^{\prime}\right)=4 k-2$. By our choice of the set D, the set $D^{\prime}=D \backslash D_{1}$ is a PD-set of G^{\prime}, and so $\gamma_{\mathrm{pr}}\left(G^{\prime}\right) \leq\left|D^{\prime}\right|=|D|-8=\gamma_{\mathrm{pr}}(G-S)-8$. Thus, $\gamma_{\mathrm{pr}}(G-S) \geq \gamma_{\mathrm{pr}}\left(G^{\prime}\right)+8=4 k+6>4 k+4=\gamma_{\mathrm{pr}}(G)$. This implies that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}(G) \leq|S|=5$.

Suppose that $n \equiv 5(\bmod 6)$. The case is analogous to the case when $n \equiv$ $4(\bmod 6)$.

Suppose that $n \equiv 1(\bmod 6)$. In this case, $n=6 k+1$ for some $k \geq 2$, and $\gamma_{\mathrm{pr}}(G)=4 k+2$. We consider the non-isolating set $S=\left\{u_{1}, u_{3}, u_{5}, u_{7}, u_{9}, u_{11}\right\}$. Let D be a $\gamma_{p r}$-set of $G-S$. Let $D_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{10}, v_{11}\right\}$. We can choose D so that $D_{1} \subseteq D$, where v_{1} and v_{2} are paired, v_{3} and v_{4} are paired, v_{5} and v_{6} are paired, v_{7} and v_{8} are paired, and v_{10} and v_{11} are paired. If $k=2$, then two additional vertices are needed in D, implying that $\gamma_{\mathrm{pr}}(G-S) \geq 12>$ $10=4 k+2=\gamma_{\mathrm{pr}}(G)$, and so $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}(G) \leq|S|=6$. Hence, we may assume now that $k \geq 3$. We can now further choose D to contain neither v_{12} nor v_{n}. We let $G^{\prime}=G-\left(S \cup N_{G}\left[D_{1}\right]\right)$, and note that G^{\prime} is isomorphic to $L_{6(k-2)} \in \mathcal{L}$, and so G^{\prime} has order $n^{\prime}=12 k-22$. By Lemma $20, \gamma_{\mathrm{pr}}\left(G^{\prime}\right)=2\left\lceil\frac{n^{\prime}}{6}\right\rceil=2\left\lceil\frac{12 k-22}{6}\right\rceil=4 k-6$. By our choice of the set D, the set $D^{\prime}=D \backslash D_{1}$ is a PD-set of G^{\prime}, and so $\gamma_{\mathrm{pr}}\left(G^{\prime}\right) \leq\left|D^{\prime}\right|=|D|-10=\gamma_{\mathrm{pr}}(G-S)-10$. Thus, $\gamma_{\mathrm{pr}}(G-S) \geq \gamma_{\mathrm{pr}}\left(G^{\prime}\right)+10=$ $4 k+4>4 k+2=\gamma_{\mathrm{pr}}(G)$. This implies that $\mathrm{st}_{\gamma_{\mathrm{pr}}}^{+}(G) \leq 6$.

As an immediate consequence of Theorems 19 and 21, we have the following result on the paired domination stability of a cycle prism.

1168 A. Gorzkowska, M.A. Henning, M. PilŚniak and E. Tumidajewicz

Corollary 22. For $n \geq 4$, $\mathrm{st}_{\gamma_{\mathrm{pr}}}\left(C_{n} \square K_{2}\right) \leq 4$, with strict inequality if $n(\bmod 6) \in$ $\{0,1,4\}$.

It remains an open problem to determine the exact value of the γ_{pr}^{+}-stability of a cycle prism $C_{n} \square K_{2}$ for $n \geq 6$ and $n \neq 7$.

References

[1] M. Amraee, N. Jafari Rad and M. Maghasedi, Roman domination stability in graphs, Math. Rep. (Bucur.) 21(71) (2019) 193-204.
[2] S. Arumugam and R. Kala, Domination parameters of hypercubes, J. Indian Math. Soc. (N.S.) 65 (1998) 31-38.
[3] J. Azarija, M.A. Henning and S. Klavžar, (Total) domination in prisms, Electron. J. Combin. 24(1) (2017) \#P1.19. https://doi.org/10.37236/6288
[4] A. Aytaç and B. Atay Atakul, Exponential domination critical and stability in some graphs, Internat. J. Found. Comput. Sci. 30 (2019) 781-791. https://doi.org/10.1142/S0129054119500217
[5] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alternation sets in graphs, Discrete Math. 47 (1983) 153-161.
https://doi.org/10.1016/0012-365X(83)90085-7
[6] W. Goddard and M.A. Henning, A note on domination and total domination in prisms, J. Comb. Optim. 35 (2018) 14-20.
https://doi.org/10.1007/s10878-017-0150-0
[7] A. Gorzkowska, M.A. Henning, M. Pilśniak and E. Tumidajewicz, Paired domination stability in graphs, (2020), manuscript.
[8] F. Harary and M. Livingston, Independent domination in hypercubes, Appl. Math. Lett. 6 (1993) 27-28. https://doi.org/10.1016/0893-9659(93)90027-K
[9] T.W. Haynes, M.A. Henning and L.C. van der Merwe, Domination and total domination in complementary prisms, J. Comb. Optim. 18 (2009) 23-37. https://doi.org/10.1007/s10878-007-9135-8
[10] T.W. Haynes and P.J. Slater, Paired domination in graphs, Networks 32 (1998) 199-206. https://doi.org/10.1002/(SICI)1097-0037(199810)32:3;199::AID-NET4_3.0.CO;2-F
[11] M.A. Henning and M. Krzywkowski, Total domination stability in graphs, Discrete Appl. Math. 236 (2018) 246-255. https://doi.org/10.1016/j.dam.2017.07.022
[12] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs Combin. 21 (2005) 63-69. https://doi.org/10.1007/s00373-004-0586-8
[13] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013).
https://doi.org/10.1007/978-1-4614-6525-6
[14] Z. Li, Z. Shao and S.J. Xu, 2-rainbow domination stability of graphs, J. Comb. Optim. 38 (2019) 836-845. https://doi.org/10.1007/s10878-019-00414-0
[15] M. Mollard, On perfect codes in Cartesian product of graphs, European J. Combin. 32 (2011) 398-403. https://doi.org/10.1016/j.ejc.2010.11.007
[16] C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011) 5-23.
https://doi.org/10.7151/dmgt. 1526
[17] P.R.J. Östergård and U. Blass, On the size of optimal binary codes of length 9 and covering radius 1, IEEE Trans. Inform. Theory 47 (2001) 2556-2557.
https://doi.org/10.1109/18.945268
[18] N. Jafari Rad, E. Sharifi and M. Krzywkowski, Domination stability in graphs, Discrete Math. 339 (2016) 1909-1914. https://doi.org/10.1016/j.disc.2015.12.026
[19] G.J.M. van Wee, Improved sphere bounds on the covering radius of codes, IEEE Trans. Inform. Theory 34 (1988) 237-245. https://doi.org/10.1109/18.2632

Revised 1 July 2021
Accepted 1 July 2021
Available online 16 July 2021

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

