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A B S T R A C T

Let 𝐶𝑛1
∪𝐶𝑛2

∪… ∪𝐶𝑛𝑘
be a 2-factor i.e. a vertex-disjoint union of cycles. In this note we completely characterize those 2-factors that are uniquely 

embeddable in their complement.

1. Introduction

We consider only finite, undirected graphs of order 𝑛 = |𝑉 (𝐺)| and size 𝑒(𝐺) = |𝐸(𝐺)|. All graphs will be assumed to have neither 
loops nor multiple edges.

We shall need some additional definitions in order to formulate the results. If a graph 𝐺 has order 𝑛 and size 𝑚, we say that 𝐺 is 
an (𝑛, 𝑚) graph.

Assume now that 𝐺1 and 𝐺2 are two graphs with disjoint vertex sets. The union 𝐺 = 𝐺1 ∪ 𝐺2 has 𝑉 (𝐺) = 𝑉 (𝐺1) ∪ 𝑉 (𝐺2) and 
𝐸(𝐺) =𝐸(𝐺1) ∪𝐸(𝐺2). If a graph is the union of 𝑛 (≥ 2) disjoint copies of a graph 𝐻 , then we write 𝐺 = 𝑛𝐻 .

For our next operation, the conditions are quite different. Let now 𝐺1 and 𝐺2 be graphs with 𝑉 (𝐺1) = 𝑉 (𝐺2) and 𝐸(𝐺1) ∩𝐸(𝐺2) =
∅. The edge sum 𝐺1 ⊕𝐺2 has 𝑉 (𝐺2 ⊕𝐺2) and 𝐸(𝐺1 ⊕𝐺2).

An embedding of 𝐺 (in its complement 𝐺) is a permutation 𝜎 on 𝑉 (𝐺) such that if an edge 𝑥𝑦 belongs to 𝐸(𝐺), then 𝜎(𝑥)𝜎(𝑦)
does not belong to 𝐸(𝐺).

In other words, an embedding is an (edge-disjoint) placement (or packing) of two copies of 𝐺 into a complete graph 𝐾𝑛.

The following theorem was proved, independently, in [1], [2] and [5].

Theorem 1. Let 𝐺 = (𝑉 , 𝐸) be a graph of order 𝑛. If |𝐸(𝐺)| ≤ 𝑛 − 2 then 𝐺 can be embedded in its complement 𝐺. ■

The example of the star 𝐾1,𝑛−1 shows that Theorem 1 cannot be improved by raising the size of 𝐺. The following theorem, proved 
in [3], gives the full characterization of graphs with order 𝑛 and size 𝑛 − 1 that are embeddable.

Theorem 2. Let 𝐺 = (𝑉 , 𝐸) be a graph of order 𝑛. If |𝐸(𝐺)| ≤ 𝑛 − 1 then either 𝐺 is embeddable or 𝐺 is isomorphic to one of the following 
graphs: 𝐾1,𝑛−1, 𝐾1,𝑛−4 ∪𝐾3 with 𝑛 ≥ 8, 𝐾1 ∪𝐾3, 𝐾2 ∪𝐾3, 𝐾1 ∪ 2𝐾3, 𝐾1 ∪𝐶4. ■

Let us consider now the problem of the uniqueness. First, we have to precise what we mean by distinct embeddings.

Let 𝜎 be an embedding of the graph 𝐺 = (𝑉 , 𝐸). We denote by 𝜎(𝐺) the graph with the vertex set 𝑉 and the edge set 𝜎∗(𝐸)
where the map 𝜎∗ is induced by 𝜎. Since, by definition of an embedding, the sets 𝐸 and 𝜎∗(𝐸) are disjoint we may form the graph 
𝐺⊕𝜎(𝐺).
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Two embeddings 𝜎1, 𝜎2 of a graph 𝐺 are said to be distinct if the graphs 𝐺⊕ 𝜎1(𝐺) and 𝐺⊕ 𝜎2(𝐺) are not isomorphic. A graph 
𝐺 is called uniquely embeddable if for all embeddings 𝜎 of 𝐺, all graphs 𝐺⊕𝜎(𝐺) are isomorphic.

The problem of uniqueness has so far been the subject of two papers. The next theorem, proved in [6], characterizes all (𝑛, 𝑛 − 2)
graphs that are uniquely embeddable.

Theorem 3. Let 𝐺 be a graph of order 𝑛 and size 𝑒(𝐺) = 𝑛 − 2. Then either 𝐺 is not uniquely embeddable or 𝐺 is isomorphic to one of the 
six following graphs: 𝐾2 ∪𝐾1, 2𝐾2, 𝐾3 ∪ 2𝐾1, 𝐾3 ∪𝐾2 ∪𝐾1, 𝐾3 ∪ 2𝐾2, 2𝐾3 ∪ 2𝐾1. ■

By double star 𝑆(𝑝, 𝑞) we mean a tree obtained from two stars 𝑆𝑝+1 and 𝑆𝑞+1 by joining their centers by an edge. By 𝑆′
𝑛

for 
𝑛 = 𝑞 + 3 we denote a double star 𝑆(1, 𝑞). In [4] the following characterization of uniquely embeddable forests was proved.

Theorem 4. Let 𝐹 be a forest of order 𝑛 having at least one edge. Then either 𝐹 is not uniquely embeddable or 𝐹 is isomorphic to one of the 
following graphs: 𝐾2 ∪𝐾1, 2𝐾2, 3𝐾2, 𝑆(𝑝, 𝑞) or 𝑆′

𝑛
. ■

Remark. The main references of the paper and of other packing problems are the following survey papers [9], [7] or [8].

The aim of this note is to consider the problem of uniqueness of embedding for 2-factors.

Theorem 5. Let 𝐺 be a union of vertex-disjoint cycles. Then 𝐺 is uniquely embeddable if and only if 𝐺 is one of 𝐶5, 𝐶6, 𝐶3 ∪𝐶4, 𝐶3 ∪𝐶5, 
3𝐶3 and 4𝐶3.

The proof of Theorem 5 is given in the next sections. Section 2 contains the case of cycles (𝑘 = 1), while Section 3 and Section 4

deal with union of two or three cycles and union of 𝑘 cycles where 𝑘 ≥ 4 respectively.

Remark. We will often present packing of a graph 𝐺 in figures. Therefore we need to introduce additional notation. We say that the 
first (initial) copy of a graph 𝐺 is black and the second copy of 𝐺 is red in the packing of 𝐺. In figures we draw with a continuous 
black line the first copy of 𝐺 and we draw with a dashed red line the second copy of 𝐺.

We denote by 𝐵(𝑋, 𝑌 ) graph which contains all edges between two disjoint sets 𝑋 and 𝑌 . We will often use this notation for 
cycles 𝐶4 in packings which contain these cycles. The following lemma will be useful through the proof.

Lemma 6. If a graph 𝐺 = 𝐶𝑛1
∪ 𝐶𝑛2

∪… ∪ 𝐶𝑛𝑘
has a packing 𝜎 such that the graph 𝐺⊕ 𝜎(𝐺) is not connected (a disconnected packing), 

then 𝐺 has another packing 𝜎̂ such that the graph 𝐺⊕ 𝜎̂(𝐺) is connected (a connected packing). In particular, the graph 𝐺 is not uniquely 
packable.

Proof. Let’s choose the packing 𝜎 with the least number of connected components. If 𝐻 = 𝐺 ⊕ 𝜎(𝐺) is connected, we’re done. If 
not, let 𝐻1, 𝐻2 be two components of 𝐻 .

Suppose 𝑦1 is a vertex of 𝐻1 such that removing the two red edges 𝑦−1 𝑦1 and 𝑦+1 𝑦1 leaves 𝐻1 connected where 𝑦−1 and 𝑦+1 are 
neighbors of 𝑦1 on the red cycle in 𝐻1. In the same way, we select 𝑦2, a vertex belonging to the component 𝐻2.

If now instead of the edges 𝑦−1 𝑦1 and 𝑦+1 𝑦1 we draw two red edges 𝑦−2 𝑦1 and 𝑦+2 𝑦1, and instead of the edges 𝑦−2 𝑦2 and 𝑦+2 𝑦2 we 
draw two red edges 𝑦−1 𝑦2 and 𝑦+1 𝑦2, we get a new packing 𝜎̂ where two components 𝐻1 and 𝐻2 become one connected component, 
contradiction with the choice of packing 𝜎.

To complete the proof, it suffices to show that for each connected component of the graph 𝐻 one can choose a vertex as we did 
above.

Just take a vertex that is not cut vertex. Such a vertex exists in every connected component. For example, the last vertex on the 
longest component path. ■

2. Case 𝒌 = 𝟏

Let 𝐺 = 𝐶𝑛 be a cycle of order 𝑛. It is easy to see that neither 𝐶3 nor 𝐶4 is embeddable.

The cycle 𝐶5 is embeddable but for each embedding 𝜎 we have 𝐶5 ⊕𝜎(𝐶5) =𝐾5. So, 𝐶5 is uniquely embeddable.

The cycle 𝐶6 is also embeddable. For each embedding 𝜎 the graph 𝐶6 ⊕𝜎(𝐶6) is a 4-regular subgraph of 𝐾6. The complement of 
such a graph is a 1-factor in 𝐾6. Thus, all these graphs are isomorphic. So, 𝐶6 is uniquely embeddable.

Two distinct embeddings of 𝐶7 are given in Fig. 1. In the first one, the complement of the graph 𝐶𝑛 ⊕ 𝜎(𝐶𝑛) is isomorphic to 𝐶7
while in the second one, to 𝐶3 ∪𝐶4.

For 𝑛 ≥ 8 we shall show that there are at least two distinct embeddings of 𝐶𝑛 :

A) One such that the graph 𝐶𝑛 ⊕ 𝜎(𝐶𝑛) contains a clique 𝐾4 and
2

B) another such that the graph 𝐶𝑛 ⊕ 𝜎(𝐶𝑛) is 𝐾4-free.
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Fig. 1. Two distinct embeddings of 𝐶7 .

Fig. 2. If 𝐺′ is embeddable, then 𝐺⊕𝜎(𝐺) contains 𝐾4 .

Case A.

Denote by 𝑥, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑦 six consecutive vertices of 𝐺 = 𝐶𝑛 and by 𝑃 the path joining 𝑥 and 𝑦 obtained from 𝐶𝑛 by removing 
vertices {𝑎1, 𝑎2, 𝑎3, 𝑎4} i.e. 𝑃 =𝐺′ =𝐺 ⧵ {𝑎1, 𝑎2, 𝑎3, 𝑎4}. Since 𝑛 ≥ 8 𝑃 , has at least four vertices. By Theorem 2 there is a permutation, 
say 𝜎′ being an embedding of 𝑃 . Let 𝑥′ = 𝜎′(𝑥) and 𝑦′ = 𝜎′(𝑦). Fig. 2 shows how to extend 𝜎′ to get an embedding of 𝐶𝑛. Let us 
observe that the vertices {𝑎1, 𝑎2, 𝑎3, 𝑎4} induce a clique 𝐾4.

We will use the above reasoning often, so it will be convenient to formulate it in the form of a lemma.

Lemma 7. Denote by 𝑎1, 𝑎2, 𝑎3, 𝑎4 four vertices of 𝐺 inducing a path in 𝐺. If the graph obtained from 𝐺 by removing vertices {𝑎1, 𝑎2, 𝑎3, 𝑎4}
is packable, then the graph 𝐺 is also packable and there is a packing 𝜎 of 𝐺 such that 𝐺⊕𝜎(𝐺) contains a clique 𝐾4.

Case B. Denote by 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛 consecutive vertices of 𝐶𝑛. We shall consider two cases.

Subcase B1. 𝑛 is odd.

Then, the edges 𝑣𝑖𝑣𝑖+2 (mod 𝑛) define a cycle of length 𝑛. This cycle can be considered as an image of 𝐶𝑛 by a permutation, say 
𝜎. We shall show that the graph 𝐻 = 𝐶𝑛 ⊕ 𝜎(𝐶𝑛) is 𝐾4-free. Suppose that 𝐻 contains a clique on four vertices. It has six edges and 
it is easy to see that three of them should belong to the first copy of 𝐶𝑛 and the remaining three to the second copy of 𝐶𝑛, each of 
these triples forming a path of length three in the corresponding copy. But a path of length three in 𝐶𝑛 should be induced by four 
consecutive vertices 𝑣𝑖, 𝑣𝑖+1, 𝑣𝑖+2, 𝑣𝑖+3 (mod 𝑛). The fact that 𝑣𝑖, 𝑣𝑖+3 is not an edge of the second (dashed) copy of 𝐶𝑛 finishes the 
proof of this case.

Subcase B2. 𝑛 is even.

It is easy to see that the edges of the form 𝑣𝑖𝑣𝑖+𝑟 (mod 𝑛) define a cycle of length 𝑛 if 𝑟 and 𝑛 are coprime. In order to prove the 
existence of such an integer 𝑟 we can use, for instance, the well-known Chebyshev’s theorem saying that for each integer 𝑘 ≥ 4 there 
is a prime number between 𝑘 and 2𝑘 −2. Denote by 𝑝 such a number where 𝑘 = 𝑛

2 . Since a prime number 𝑝 and 𝑛 are surely coprime, 
𝑟 and 𝑛 where 𝑟 = 𝑛 − 𝑝 are also coprime. Moreover, we have 3 ≤ 𝑟 ≤ 𝑛

2 − 1. Similarly as above, it is easy to see that the graph formed 
by 𝐶𝑛 and the edges of the form 𝑣𝑖𝑣𝑖+𝑟 (mod 𝑛) is 𝐾4-free.

3. Case 𝒌 = 𝟐 or 𝒌 = 𝟑

3.1. Case k=2

Let 𝐺 = 𝐶𝑛1
∪ 𝐶𝑛2

, where 𝑛1 ≤ 𝑛2. If 𝑛1 ≥ 5 we have unconnected packing of 𝐺 which consists of two components. Each of these 
components we obtain as a packing of two copies of a cycle in appropriate complete graph from the Case 𝑘 = 1. Thus from Lemma 6

the graph 𝐺 is not uniquely packable. Therefore we have to consider two subcases 𝐺 = 𝐶3 ∪𝐶𝑝 where 𝑝 ≥ 3 and 𝐺 = 𝐶4 ∪𝐶𝑝 where 
𝑝 ≥ 4.

3.1.1. Subcase 𝐺 = 𝐶3 ∪𝐶𝑝 where 𝑝 ≥ 3
It is easy to see that 𝐶3 ∪𝐶3 is not embeddable. We show that 𝐶3 ∪𝐶4 and 𝐶3 ∪𝐶5 are uniquely embeddable. We start packing of 
3

𝐂𝟑 ∪𝐂𝟒 from the black copy in which we denote by 𝑢1, 𝑢2, 𝑢3 consecutive vertices of 𝐶3 and by 𝑦1, 𝑦2, 𝑥2, 𝑥1 consecutive vertices 
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Fig. 3. Two distinct packings of 𝐶3 ∪𝐶6 . For the clarity of the drawing, the outer triangular face (connecting vertices marked with a circle) is not drawn.

Fig. 4. Two distinct packings of 𝐶3 ∪𝐶7 . For the clarity of the drawing, the outer triangular face (connecting vertices marked with a circle) is not drawn.

of 𝐶4. To draw a red triangle, we need to use one of the vertices of the black triangle and two opposite vertices from the black cycle 
𝐶4. Without loss of generality we can use vertices 𝑢1, 𝑥1, 𝑦2, since all possibilities give isomorphic graphs. Now, we have only one 
possibility to draw the remaining red cycle 𝐶4.

We start packing of 𝐂𝟑 ∪𝐂𝟓 from the black copy in which we denote by 𝑢1, 𝑢2, 𝑢3 consecutive vertices of 𝐶3 and by 𝑦1, 𝑦2, 𝑧, 
𝑥2, 𝑥1 consecutive vertices of 𝐶5. To draw a red triangle, we need to use one of the vertices of the black triangle and two opposite 
vertices from the black cycle 𝐶5. Without loss of generality we can use vertices 𝑢3, 𝑥2, 𝑦2. We start drawing remaining red 𝐶5 from 
the vertex 𝑧. We can easily see that we cannot have edges 𝑧𝑢1 and 𝑧𝑢2 or 𝑧𝑥1 and 𝑧𝑥2 in this red 𝐶5. Therefore we have to draw first 
red edge from 𝑧 to the vertex on black 𝐶5 and the second red edge to the vertex on black 𝐶3. Thus we have only one possibility to 
draw the remaining red cycle 𝐶5. Therefore the packing of 𝐶3 ∪𝐶5 is unique.

Now we present plane and not planar packing of 𝐂𝟑 ∪𝐂𝟔 which could be extended to packings of 𝐶3 ∪ 𝐶𝑝, where 𝑝 is from the 
set {8, 10, 12, …}. Two distinct packings of 𝐶3 ∪ 𝐶6 are presented in Fig. 3. We can easily see that the first (left) packing of 𝐶3 ∪ 𝐶6
is plane. We extend this packing by replacing the edge 𝑦2𝑦3 by the path 𝑦2𝑎1𝑎2… 𝑎𝑙𝑦3 and the edge 𝑥3𝑦3 by the path 𝑥3𝑏1𝑏2… 𝑏𝑙𝑦3, 
where 𝑙 = 𝑝−6

2 . Then we add a path 𝑦2𝑏1𝑎1𝑏2𝑎2… 𝑏𝑙𝑎𝑙 and replace the edge 𝑢1𝑦2 by the edge 𝑢1𝑎𝑙 . Note that the packing which we 
obtain is plane. Now we prove that the second (right) packing of 𝐶3 ∪ 𝐶6 is not planar. Vertices 𝑢1, 𝑢2 and 𝑢3 induce a triangle. 
If we add to this triangle the vertex 𝑥1 together with paths 𝑥1𝑢2, 𝑥1𝑦1𝑢1 and 𝑥1𝑥2𝑢3 we obtain a subgraph homeomorphic to 𝐾4. 
Thus if we add to this subgraph the vertex 𝑦3 together with subsequent paths 𝑦3𝑢1, 𝑦3𝑢2, 𝑦3𝑦2𝑢3 and 𝑦3𝑥3𝑥1 we obtain a subgraph 
which is a subdivision of 𝐾5. It follows from Kuratowski’s theorem that the graph is not planar. We can extend this packing by 
replacing the edge 𝑦1𝑦2 by the path 𝑦1𝑎1𝑎2… 𝑎𝑙𝑦2 and the edge 𝑥3𝑦3 by the path 𝑥3𝑏1𝑏2… 𝑏𝑙𝑦3, where 𝑙 = 𝑝−6

2 . Then we add a path 
𝑦1𝑏1𝑎1𝑏2𝑎2… 𝑏𝑙𝑎𝑙 and replace the edge 𝑢1𝑦1 by the edge 𝑢1𝑎𝑙 . Note also that the packing which we obtain is not planar.

We show plane and not planar packing of 𝐂𝟑 ∪𝐂𝟕 which could be extended to packings of 𝐶3 ∪ 𝐶𝑝, where 𝑝 is from the set 
{9, 11, 13, …}. Two distinct packings of 𝐶3 ∪ 𝐶7 are presented in Fig. 4. We can easily see that the first (left) packing of 𝐶3 ∪ 𝐶7 is 
plane. We extend this packing by replacing the edge 𝑥1𝑥2 by the path 𝑥1𝑎1𝑎2… 𝑎𝑙𝑥2 and the edge 𝑧𝑥3 by the path 𝑧𝑏1𝑏2… 𝑏𝑙𝑥3, 
where 𝑙 = 𝑝−7

2 . Then we replace the edge 𝑧𝑥2 by the edge 𝑧𝑎1 and we add a path 𝑎1𝑏1𝑎2𝑏2… 𝑎𝑙𝑏𝑙𝑥2. Note that the packing which we 
obtain is plane. Now we prove that the second (right) packing of 𝐶3 ∪𝐶7 is not planar. Vertices 𝑢1, 𝑢2 and 𝑢3 induce a triangle. If we 
add to this triangle the vertex 𝑥1 together with paths 𝑥1𝑢2, 𝑥1𝑦1𝑢1 and 𝑥1𝑥2𝑥3𝑢3 we obtain a subgraph homeomorphic to 𝐾4. Thus 
if we add to this subgraph the vertex 𝑦3 together with subsequent paths 𝑦3𝑢1, 𝑦3𝑢2, 𝑦3𝑦2𝑢3 and 𝑦3𝑧𝑥1 we obtain a subgraph which is 
a subdivision of 𝐾5. It follows from Kuratowski’s theorem that the graph is not planar. We can extend this packing by replacing the 
edge 𝑦3𝑧 by the path 𝑦3𝑎1𝑎2… 𝑎𝑙𝑧 and the edge 𝑥2𝑥3 by the path 𝑥2𝑏1𝑏2… 𝑏𝑙𝑥3, where 𝑙 = 𝑝−7

2 . Then we replace the edge 𝑥1𝑧 by 
the edge 𝑥1𝑎1 and we add a path 𝑎1𝑏1𝑎2𝑏2… 𝑎𝑙𝑏𝑙𝑧. Note also that the packing which we obtain is not planar.

3.1.2. Subcase 𝐺 = 𝐶4 ∪𝐶𝑝 where 𝑝 ≥ 4
For a graph 𝐺 = 𝐂𝟒 ∪𝐂𝟒 we show bipartite and not bipartite packing. In the graph 𝐺 we denote by 𝑥1, … , 𝑥4 and 𝑦1, … , 𝑦4

vertices from two sets 𝑋 and 𝑌 . In both packings we draw black cycles 𝐵({𝑥1, 𝑥2}, {𝑦1, 𝑦2}) and 𝐵({𝑥3, 𝑥4}, {𝑦3, 𝑦4}). In the first 
packing of 𝐺 we draw red cycles 𝐵({𝑥1, 𝑥2}, {𝑦3, 𝑦4}) and 𝐵({𝑥3, 𝑥4}, {𝑦1, 𝑦2}). Note that 𝑋 and 𝑌 are independent. In the second 
packing we draw red cycles 𝐵({𝑥2, 𝑦2}, {𝑥3, 𝑦3}) and 𝐵({𝑥1, 𝑦1}, {𝑥4, 𝑦4}). Note that each red cycle with two independent black edges 
induces a subgraph 𝐾4. Therefore this packing of 𝐺 is not bipartite.

We present plane and not planar packing of 𝐂𝟒 ∪𝐂𝟓. These two packings could be extended to packings of 𝐶4 ∪ 𝐶𝑝, where 𝑝 is 
from the set {9, 11, 13 …}. Two distinct packings of 𝐶4 ∪ 𝐶5 are presented below in Fig. 5. It is obvious that the first (left) packing 
of 𝐶4 ∪ 𝐶5 is plane. We extend this packing by replacing the edge 𝑧𝑦2 by the path 𝑧𝑎1𝑎2… 𝑎𝑙𝑦2 and the edge 𝑧𝑥2 by the path 
4

𝑧𝑏1𝑏2… 𝑏𝑙𝑥2, where 𝑙 = 𝑝−5
2 and 𝑙 > 1. Then we replace the edge 𝑢1𝑧 by the edge 𝑢1𝑎1 and we add a path 𝑎1𝑏1𝑎2𝑏2… 𝑎𝑙𝑏𝑙𝑧. Note 



Applied Mathematics and Computation 468 (2024) 128505I. Grzelec, M. Pilśniak and M. Woźniak

Fig. 5. Two distinct packings of 𝐶4 ∪𝐶5 .

Fig. 6. Two distinct packings of 𝐶4 ∪𝐶6 .

Fig. 7. The packing of 𝐶4 ∪𝐶7 without 𝐾4 .

that the packing which we obtain is plane. Note also that the presented extension of plane packing does not work for 𝐶4 ∪ 𝐶7. This 
case will be considered later.

Now we prove that the second (right) packing of 𝐶4 ∪ 𝐶5 is not planar and contains a subgraph 𝐾4. Vertices 𝑥1, 𝑦1, 𝑢2 and 𝑢3
induce 𝐾4. If we add to this subgraph the vertex 𝑥2 together with paths 𝑥2𝑥1, 𝑥2𝑦2𝑦1, 𝑥2𝑢4𝑢3 and 𝑥2𝑧𝑢1𝑢2 we obtain a subgraph 
which is a subdivision of 𝐾5. It follows from Kuratowski’s theorem that the graph is not planar. We can extend this packing by 
replacing the edge 𝑦1𝑦2 by the path 𝑦1𝑎1𝑎2… 𝑎𝑙𝑦2 and the edge 𝑥2𝑧 by the path 𝑥2𝑏1𝑏2… 𝑏𝑙𝑧, where 𝑙 = 𝑝−5

2 . Then we replace the 
edge 𝑥2𝑦2 by the edge 𝑥2𝑎1 and we add a path 𝑎1𝑏1𝑎2𝑏2… 𝑎𝑙𝑏𝑙𝑦2. Note also that the packing which we obtain is not planar.

We show plane and not planar packing of 𝐂𝟒 ∪𝐂𝟔 which could be extended to packings of 𝐶4 ∪ 𝐶𝑝, where 𝑝 is from the set 
{8, 10, 12, …}. Two distinct packings of 𝐶4 ∪𝐶6 are presented in Fig. 6. It is obvious that the first (left) packing of 𝐶4 ∪𝐶6 is plane. 
We extend this packing by replacing the edge 𝑦1𝑥1 by the path 𝑦1𝑎1𝑎2… 𝑎𝑙𝑥1 and the edge 𝑦2𝑦3 by the path 𝑦2𝑏1𝑏2… 𝑏𝑙𝑦3, where 
𝑙 = 𝑝−6

2 . Then we replace the edge 𝑦2𝑥3 by the edge 𝑏𝑙𝑥3 and we add a path 𝑦2𝑎1𝑏1𝑎2𝑏2… 𝑎𝑙𝑏𝑙𝑥3. Note that the packing which we 
obtain is plane.

Now we prove that the second (right) packing of 𝐶4 ∪ 𝐶6 is not planar. Vertices 𝑥1, 𝑦1, 𝑢2 and 𝑢3 induce 𝐾4. If we add to this 
subgraph the vertex 𝑦3 together with paths 𝑦3𝑥2𝑥1, 𝑦3𝑦2𝑦1, 𝑦3𝑢1𝑢2 and 𝑦3𝑥3𝑢4𝑢3 we obtain a subgraph which is a subdivision of 𝐾5. 
It follows from Kuratowski’s theorem that the graph is not planar. We can extend this packing by replacing the edge 𝑦1𝑦2 by the path 
𝑦1𝑎1𝑎2… 𝑎𝑙𝑦2 and the edge 𝑥1𝑥2 by the path 𝑥1𝑏1𝑏2… 𝑏𝑙𝑥2, where 𝑙 = 𝑝−6

2 . Then we replace the edge 𝑢1𝑦2 by the edge 𝑢1𝑎1 and we 
add a path 𝑎1𝑏1𝑎2𝑏2… 𝑎𝑙𝑏𝑙𝑦2. Note also that the packing which we obtain is not planar.

Now, we show the remaining two distinct packings of 𝐺 =𝐂𝟒 ∪𝐂𝟕, the first with a subgraph 𝐾4 and the second without 𝐾4. The 
packing of 𝐺 with a subgraph 𝐾4 we obtain from Lemma 7. The packing of 𝐺 without 𝐾4 is presented in Fig. 7. Note that a subgraph 
𝐾4 in a packing of 𝐺 could be obtained as a cycle 𝐶4 from one copy of 𝐺 and two independent edges from the other copy or as three 
consecutive edges of a cycle 𝐶7 from the first copy of 𝐺 and three consecutive edges of a cycle 𝐶7 from the second copy. Therefore 
it suffices that we check vertices on cycles in black copy of 𝐺 whether they induce 𝐾4. We left this easy check to the reader.

3.2. Case k=3

Let 𝐺 = 𝐶𝑛1
∪𝐶𝑛2

∪𝐶𝑛3
, where 𝑛1 ≤ 𝑛2 ≤ 𝑛3. We can divide 𝐺 into two subgraphs 𝐺1 = 𝐶𝑛1

∪𝐶𝑛2
, 𝐺2 = 𝐶𝑛3

and from the previous 
cases (𝑘 = 2 and 𝑘 = 1) we get a packing of 𝐺1 and 𝐺2 except for 𝐺 = 𝐶3 ∪ 𝐶4 ∪ 𝐶4, 𝐺 = 𝐶4 ∪ 𝐶4 ∪ 𝐶4 and 𝐺 = 𝐶3 ∪ 𝐶3 ∪ 𝐶𝑝 where 
𝑝 ≥ 3. Thus from Lemma 6 the graph 𝐺 is not uniquely packable. Below we consider each of these exceptional graphs separately.
5

Two distinct packings of 𝐂𝟑 ∪𝐂𝟒 ∪𝐂𝟒 are presented in Fig. 8. We can easily see that the first (left) packing of 𝐶3 ∪ 𝐶4 ∪ 𝐶4
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Fig. 8. Two distinct packings of 𝐶3 ∪𝐶4 ∪𝐶4 . For the clarity of the drawing, the cycles 𝐶3 (connecting vertices marked with a circle) are not drawn.

Fig. 9. Two distinct packings of 𝐶3 ∪𝐶3 ∪𝐶4 .

Fig. 10. Two distinct packings of 𝐶3 ∪𝐶3 ∪𝐶5 .

contains a subgraph 𝐾4. The second (right) packing of 𝐺 = 𝐶3 ∪ 𝐶4 ∪ 𝐶4 is without a subgraph 𝐾4. Note that the subgraph 𝐾4 in 
a packing of 𝐺 could be obtained as a cycle 𝐶4 from one copy of 𝐺 and two independent edges from the other copy. Therefore it 
suffices that we check cycles 𝐶4 form both copies of 𝐺.

For a graph 𝐺 = 𝐂𝟒 ∪𝐂𝟒 ∪𝐂𝟒 we show bipartite and not bipartite packing. In the graph 𝐺 we denote by 𝑥1, … , 𝑥6 and 
𝑦1, … , 𝑦6 vertices from two sets 𝑋 and 𝑌 . In both packings of 𝐺 we draw black cycles 𝐵({𝑥1, 𝑥2}, {𝑦1, 𝑦2}), 𝐵({𝑥3, 𝑥4}, {𝑦3, 𝑦4}) and 
𝐵({𝑥5, 𝑥6}, {𝑦5, 𝑦6}). In the first packing of 𝐺 we draw red cycles 𝐵({𝑥1, 𝑥2}, {𝑦3, 𝑦4}), 𝐵({𝑥3, 𝑥4}, {𝑦5, 𝑦6}) and 𝐵({𝑥5, 𝑥6}, {𝑦1, 𝑦2}). 
Note that 𝑋 and 𝑌 are independent. In the second packing we draw red cycles 𝐵({𝑥2, 𝑦2}, {𝑥3, 𝑦3}), 𝐵({𝑥4, 𝑦4}, {𝑥5, 𝑦5}) and 
𝐵({𝑥1, 𝑦1}, {𝑥6, 𝑦6}). Note that each red cycle with two independent black edges induces a subgraph 𝐾4. Therefore this packing 
of 𝐺 is not bipartite.

Now we consider 𝐺 = 𝐂𝟑 ∪𝐂𝟑 ∪𝐂𝐩 where 𝑝 ≥ 3. If 𝑝 = 3 we start packing of 𝐺 from the black copy in which we denote by 
𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3 and 𝑣1, 𝑣2, 𝑣3 vertices of three cycles 𝐶3. Then we draw red triangles 𝑥1𝑦1𝑣1, 𝑥2𝑦2𝑣2 and 𝑥3𝑦3𝑣3. We can easily 
see that this packing is unique.

Two distinct packings of 𝐺 = 𝐶3 ∪ 𝐶3 ∪ 𝐶4 are presented in Fig. 9. We can easily see that the first (left) packing of 𝐺 contains 
two subgraphs 𝐾4. The second (right) packing of 𝐺 is without a subgraph 𝐾4. Note that a subgraph 𝐾4 in a packing of 𝐺 could be 
obtained as a cycle 𝐶4 from one copy of 𝐺 and two independent edges from the other copy. Therefore it suffices that we check cycles 
𝐶4 form both copies of 𝐺.

Two distinct packings of 𝐺 = 𝐶3 ∪𝐶3 ∪𝐶5 are presented in Fig. 10. In the first (left) packing of 𝐺 there is a vertex 𝑣5 such that its 
neighborhood induces a path of length three, while (as is relatively easy to check) the second (right) packing of 𝐺 does not contain 
such a vertex.

Let 𝐺 = 𝐶3 ∪𝐶3 ∪𝐶6. It is easy to see that we can pack two black triangles with a red cycle 𝐶6 and two red triangles with a black 
cycle 𝐶6. Thus we have disconnected packing of 𝐺. Then from Lemma 6 we get connected packing of 𝐺.

We present two distinct packings of 𝐶3 ∪𝐶3 ∪𝐶𝑝 where 𝑝 ≥ 7, the first with a subgraph 𝐾4 and the second without 𝐾4. We start 
from the first packing of 𝐺. We denote by 𝑎1, 𝑎2, 𝑎3, 𝑎4 four consecutive vertices of a cycle 𝐶𝑝 from 𝐺. Let 𝐺′ = 𝐺 ⧵ {𝑎1, 𝑎2, 𝑎3, 𝑎4}. 
We can easily see that 𝑒(𝐺′) ≤ |𝑉 (𝐺′)| − 1. By Theorem 2 there is a packing of 𝐺′. Thus from Lemma 7 we get a packing of 𝐺 with a 
subgraph 𝐾4.

The second packing of 𝐶3 ∪𝐶3 ∪𝐶7 and 𝐶3 ∪𝐶3 ∪𝐶8 without 𝐾4 is presented in Fig. 11. Note that a subgraph 𝐾4 in a packing of 
𝐺 = 𝐶3 ∪ 𝐶3 ∪ 𝐶𝑝, where 𝑝 ∈ {7, 8}, could be obtained as three consecutive edges of a cycle 𝐶𝑝 from the black copy of 𝐺 and three 
consecutive edges of a cycle 𝐶𝑝 from the red copy. Note that then red edges are of length two and three with respect to the distance 
on black cycle. Therefore it suffices that we check vertices on a cycle 𝐶𝑝 in one copy of 𝐺 whether they induce 𝐾4. We left this easy 
check to the reader.

We can extend the packing of 𝐶3 ∪ 𝐶3 ∪ 𝐶7 to packings of 𝐶3 ∪ 𝐶3 ∪ 𝐶𝑝, where 𝑝 is from the set {9, 11, 13, …}. We replace 
6

the edge 𝑣3𝑣2 by the path 𝑣3𝑎1𝑎2… 𝑎𝑙𝑣2 and the edge 𝑣5𝑣6 by the path 𝑣5𝑏1𝑏2… 𝑏𝑙𝑣6, where 𝑙 = 𝑝−7
2 . Then we replace the edge 
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Fig. 11. The packing of 𝐶3 ∪𝐶3 ∪𝐶7 and 𝐶3 ∪𝐶3 ∪𝐶8 without 𝐾4 .

Fig. 12. Two distinct packings of 𝐶3 ∪𝐶3 ∪𝐶3 ∪𝐶4 . For the clarity of the drawing, the cycle 𝐶4 (connecting vertices marked with a circle) is not drawn.

𝑣4𝑣2 by the edge 𝑣4𝑎1 and we add a path 𝑎1𝑏1𝑎2𝑏2… 𝑎𝑙𝑏𝑙𝑣2. Similarly we can extend the packing of 𝐶3 ∪ 𝐶3 ∪ 𝐶8 to packings of 
𝐶3 ∪ 𝐶3 ∪ 𝐶𝑝, where 𝑝 is from the set {10, 12, 14, …}. We replace the edge 𝑣3𝑣2 by the path 𝑣3𝑎1𝑎2… 𝑎𝑙𝑣2 and the edge 𝑣6𝑣7 by 
the path 𝑣6𝑏1𝑏2… 𝑏𝑙𝑣7, where 𝑙 = 𝑝−8

2 . Then we replace the edge 𝑣4𝑣2 by the edge 𝑣4𝑎1 and we add a path 𝑎1𝑏1𝑎2𝑏2… 𝑎𝑙𝑏𝑙𝑣2. Both 
presented extensions of 𝐶3 ∪𝐶3 ∪𝐶7 and 𝐶3 ∪𝐶3 ∪𝐶8 do not contain a clique 𝐾4, because we added red edges between vertices with 
distance more than three with respect to black cycle.

4. Case 𝒌 ≥ 𝟒

4.1. Case k=4

Let 𝐺 = 𝐶𝑛1
∪ 𝐶𝑛2

∪ 𝐶𝑛3
∪ 𝐶𝑛4

, where 𝑛1 ≤ 𝑛2 ≤ 𝑛3 ≤ 𝑛4. If at least two 𝑛𝑖 where 𝑖 ∈ {1, 2, 3, 4} are different from three then we 
can divide 𝐺 into two parts 𝐺 = 𝐺1 ∪ 𝐺2 so that 𝐺1 and 𝐺2 have packing. Therefore from Lemma 6 the graph 𝐺 is not uniquely 
packable. Similarly when 𝑛4 ≥ 5. Thus we have to consider two subcases 𝐺 = 𝐶3 ∪𝐶3 ∪𝐶3 ∪𝐶3 and 𝐺 = 𝐶3 ∪𝐶3 ∪𝐶3 ∪𝐶4.

We start packing of 𝐺 = 𝐂𝟑 ∪𝐂𝟑 ∪𝐂𝟑 ∪𝐂𝟑 from the black copy in which we denote vertices creating triangle 𝑇𝑖 by {𝑎𝑖, 𝑏𝑖, 𝑐𝑖}
for 𝑖 ∈ {1, 2, 3, 4}. Then we draw four red triangles with sets of vertices: {𝑎1, 𝑎2, 𝑎3}, {𝑏2, 𝑏3, 𝑏4}, {𝑐1, 𝑐3, 𝑐4} and {𝑏1, 𝑐2, 𝑎4}. Now we 
show that this packing of 𝐺 is unique (up to isomorphism). Note that all triangles in a packing of 𝐺 are “real” i.e. have all edges 
form black or red copy of 𝐺. We claim that each three black triangles include exactly one red triangle. We take three arbitrary black 
triangles 𝑇1, 𝑇2 and 𝑇3. First, suppose that these black triangles do not include any red triangle. Thus each red triangle has at least 
one vertex outside 𝑇1 ∪ 𝑇2 ∪ 𝑇3, namely in 𝑇4. We get a contradiction. Second, suppose that these black triangles include exactly two 
triangles. Then the remaining two red triangles can use at most two vertices from 𝑇4. We also get a contradiction. Therefore from the 
fact that three black triangles do not include three red triangles we get a confirmation of our claim. Thus without loss of generality 
we can assume that the second red triangle includes vertices from black triangles 𝑇2, 𝑇3 and 𝑇4. This implies that the packing of 
remaining two red triangles is determined. Therefore the packing of 𝐺 is unique up to isomorphism.

Two distinct packings of 𝐺 = 𝐂𝟑 ∪𝐂𝟑 ∪𝐂𝟑 ∪𝐂𝟒 are presented in Fig. 12. We can easily see that the first (left) packing of 𝐺 is 
connected but the vertex 𝑏3 is a cut vertex. Therefore it is not 2-connected. In the second (right) packing of 𝐺 each vertex from black 
triangle has two red edges to different black cycles. Moreover each two vertices from black triangle have edges to three remaining 
cycles. Therefore removing one vertex does not disconnect the graph.

4.2. Case k=5

Let 𝐺 = 𝐶𝑛1
∪ 𝐶𝑛2

∪ 𝐶𝑛3
∪ 𝐶𝑛4

∪ 𝐶𝑛5
, where 𝑛1 ≤ 𝑛2 ≤ 𝑛3 ≤ 𝑛4 ≤ 𝑛5. If 𝑛5 ≥ 4 we can divide 𝐺 into two parts 𝐺 = 𝐺1 ∪𝐺2 so that 

𝐺1 = 𝐶𝑛1
∪𝐶𝑛2

∪𝐶𝑛3
and 𝐺2 = 𝐶𝑛4

∪𝐶𝑛5
have packing. Therefore from Lemma 6 we know that the graph 𝐺 is not uniquely packable. 

Thus we have to consider 𝐺 = 5𝐶3.

We present two distinct packings of 𝐺 = 5𝐶3. We start both packings of 𝐺 from black copy in which we denote vertices creating 
triangle 𝑇𝑖 by {𝑎𝑖, 𝑏𝑖, 𝑐𝑖} for 𝑖 ∈ {1, … , 5}. Then in the first packing of 𝐺 we draw five red triangles with sets of vertices: {𝑎1, 𝑎2, 𝑎3}, 
{𝑏1, 𝑎4, 𝑎5}, {𝑐1, 𝑐2, 𝑏5}, {𝑏2, 𝑏3, 𝑏4} and {𝑐3, 𝑐4, 𝑐5}. In the second packing of 𝐺 we draw five red triangles with sets of vertices: 
{𝑎1, 𝑎2, 𝑎3}, {𝑏1, 𝑏2, 𝑏3}, {𝑐1, 𝑏4, 𝑏5}, {𝑐2, 𝑎4, 𝑎5} and {𝑐3, 𝑐4, 𝑐5}. Note that all triangles in both packings of 𝐺 are “real”. We can easily 
7

see that in the first packing of 𝐺 each nine vertices induce at most four triangles. In the second packing of 𝐺 nine vertices from 
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black triangles 𝑇1, 𝑇2 and 𝑇3 induce also two red triangles. Thus there exists nine vertices which induce five triangles in the second 
packing of 𝐺.

4.3. Case 𝑘 ≥ 6

Let 𝐺 = 𝐶𝑛1
∪𝐶𝑛2

∪… ∪𝐶𝑛𝑘
, where 𝑛1 ≤ 𝑛2 ≤… ≤ 𝑛𝑘. We can divide 𝐺 into two parts 𝐺 =𝐺1 ∪𝐺2 so that 𝐺1 = 𝐶𝑛1

∪𝐶𝑛2
∪𝐶𝑛3

and 𝐺2 = 𝐶𝑛4
∪ 𝐶𝑛5

∪ … ∪ 𝐶𝑛𝑘
. From the previous cases and the fact that 𝑘 ≥ 6 we have packings of 𝐺1 and 𝐺2. Thus 𝐺 has a 

disconnected packing. Therefore from Lemma 6 we get connected packing and we know that the graph 𝐺 is not uniquely packable.

Data availability

No data was used for the research described in the article.

References

[1] B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Comb. Theory, Ser. B 25 (1978) 105–124.

[2] D. Burns, S. Schuster, Every (𝑝, 𝑝 − 2) graph is contained in its complement, J. Graph Theory 1 (1977) 277–279.

[3] D. Burns, S. Schuster, Embedding (𝑛, 𝑛 − 1) graphs in their complements, Isr. J. Math. 30 (1978) 313–320.
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