A note on uniquely embeddable 2-factors

Igor Grzelec *, Monika Pilśniak, Mariusz Woźniak
Department of Discrete Mathematics, AGH University of Krakow, Poland

A B S T R A C T

Let $C_{n_{1}} \cup C_{n_{2}} \cup \ldots \cup C_{n_{k}}$ be a 2 -factor i.e. a vertex-disjoint union of cycles. In this note we completely characterize those 2 -factors that are uniquely embeddable in their complement.

1. Introduction

We consider only finite, undirected graphs of order $n=|V(G)|$ and size $e(G)=|E(G)|$. All graphs will be assumed to have neither loops nor multiple edges.

We shall need some additional definitions in order to formulate the results. If a graph G has order n and size m, we say that G is an (n, m) graph.

Assume now that G_{1} and G_{2} are two graphs with disjoint vertex sets. The union $G=G_{1} \cup G_{2}$ has $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. If a graph is the union of $n(\geq 2)$ disjoint copies of a graph H, then we write $G=n H$.

For our next operation, the conditions are quite different. Let now G_{1} and G_{2} be graphs with $V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E\left(G_{1}\right) \cap E\left(G_{2}\right)=$ \emptyset. The edge sum $G_{1} \oplus G_{2}$ has $V\left(G_{2} \oplus G_{2}\right)$ and $E\left(G_{1} \oplus G_{2}\right)$.

An embedding of G (in its complement \bar{G}) is a permutation σ on $V(G)$ such that if an edge $x y$ belongs to $E(G)$, then $\sigma(x) \sigma(y)$ does not belong to $E(G)$.

In other words, an embedding is an (edge-disjoint) placement (or packing) of two copies of G into a complete graph K_{n}.
The following theorem was proved, independently, in [1], [2] and [5].
Theorem 1. Let $G=(V, E)$ be a graph of order n. If $|E(G)| \leq n-2$ then G can be embedded in its complement \bar{G}.

The example of the star $K_{1, n-1}$ shows that Theorem 1 cannot be improved by raising the size of G. The following theorem, proved in [3], gives the full characterization of graphs with order n and size $n-1$ that are embeddable.

Theorem 2. Let $G=(V, E)$ be a graph of order n. If $|E(G)| \leq n-1$ then either G is embeddable or G is isomorphic to one of the following graphs: $K_{1, n-1}, K_{1, n-4} \cup K_{3}$ with $n \geq 8, K_{1} \cup K_{3}, K_{2} \cup K_{3}, K_{1} \cup 2 K_{3}, K_{1} \cup C_{4}$.

Let us consider now the problem of the uniqueness. First, we have to precise what we mean by distinct embeddings.
Let σ be an embedding of the graph $G=(V, E)$. We denote by $\sigma(G)$ the graph with the vertex set V and the edge set $\sigma^{*}(E)$ where the map σ^{*} is induced by σ. Since, by definition of an embedding, the sets E and $\sigma^{*}(E)$ are disjoint we may form the graph $G \oplus \sigma(G)$.

[^0]
https://doi.org/10.1016/j.amc.2023.128505

Received 7 August 2023; Received in revised form 13 December 2023; Accepted 16 December 2023
Available online 22 December 2023
0096-3003/© 2023 Elsevier Inc. All rights reserved.

Two embeddings σ_{1}, σ_{2} of a graph G are said to be distinct if the graphs $G \oplus \sigma_{1}(G)$ and $G \oplus \sigma_{2}(G)$ are not isomorphic. A graph G is called uniquely embeddable if for all embeddings σ of G, all graphs $G \oplus \sigma(G)$ are isomorphic.

The problem of uniqueness has so far been the subject of two papers. The next theorem, proved in [6], characterizes all ($n, n-2$) graphs that are uniquely embeddable.

Theorem 3. Let G be a graph of order n and size $e(G)=n-2$. Then either G is not uniquely embeddable or G is isomorphic to one of the six following graphs: $K_{2} \cup K_{1}, 2 K_{2}, K_{3} \cup 2 K_{1}, K_{3} \cup K_{2} \cup K_{1}, K_{3} \cup 2 K_{2}, 2 K_{3} \cup 2 K_{1}$.

By double star $S(p, q)$ we mean a tree obtained from two stars S_{p+1} and S_{q+1} by joining their centers by an edge. By S_{n}^{\prime} for $n=q+3$ we denote a double star $S(1, q)$. In [4] the following characterization of uniquely embeddable forests was proved.

Theorem 4. Let F be a forest of order n having at least one edge. Then either F is not uniquely embeddable or F is isomorphic to one of the following graphs: $K_{2} \cup K_{1}, 2 K_{2}, 3 K_{2}, S(p, q)$ or S_{n}^{\prime}.

Remark. The main references of the paper and of other packing problems are the following survey papers [9], [7] or [8].

The aim of this note is to consider the problem of uniqueness of embedding for 2-factors.

Theorem 5. Let G be a union of vertex-disjoint cycles. Then G is uniquely embeddable if and only if G is one of $C_{5}, C_{6}, C_{3} \cup C_{4}, C_{3} \cup C_{5}$, $3 C_{3}$ and $4 C_{3}$.

The proof of Theorem 5 is given in the next sections. Section 2 contains the case of cycles ($k=1$), while Section 3 and Section 4 deal with union of two or three cycles and union of k cycles where $k \geq 4$ respectively.

Remark. We will often present packing of a graph G in figures. Therefore we need to introduce additional notation. We say that the first (initial) copy of a graph G is black and the second copy of G is red in the packing of G. In figures we draw with a continuous black line the first copy of G and we draw with a dashed red line the second copy of G.

We denote by $B(X, Y)$ graph which contains all edges between two disjoint sets X and Y. We will often use this notation for cycles C_{4} in packings which contain these cycles. The following lemma will be useful through the proof.

Lemma 6. If a graph $G=C_{n_{1}} \cup C_{n_{2}} \cup \ldots \cup C_{n_{k}}$ has a packing σ such that the graph $G \oplus \sigma(G)$ is not connected (a disconnected packing), then G has another packing $\hat{\sigma}$ such that the graph $G \oplus \hat{\sigma}(G)$ is connected (a connected packing). In particular, the graph G is not uniquely packable.

Proof. Let's choose the packing σ with the least number of connected components. If $H=G \oplus \sigma(G)$ is connected, we're done. If not, let H_{1}, H_{2} be two components of H.

Suppose y_{1} is a vertex of H_{1} such that removing the two red edges $y_{1}^{-} y_{1}$ and $y_{1}^{+} y_{1}$ leaves H_{1} connected where y_{1}^{-}and y_{1}^{+}are neighbors of y_{1} on the red cycle in H_{1}. In the same way, we select y_{2}, a vertex belonging to the component H_{2}.

If now instead of the edges $y_{1}^{-} y_{1}$ and $y_{1}^{+} y_{1}$ we draw two red edges $y_{2}^{-} y_{1}$ and $y_{2}^{+} y_{1}$, and instead of the edges $y_{2}^{-} y_{2}$ and $y_{2}^{+} y_{2}$ we draw two red edges $y_{1}^{-} y_{2}$ and $y_{1}^{+} y_{2}$, we get a new packing $\hat{\sigma}$ where two components H_{1} and H_{2} become one connected component, contradiction with the choice of packing σ.

To complete the proof, it suffices to show that for each connected component of the graph H one can choose a vertex as we did above.

Just take a vertex that is not cut vertex. Such a vertex exists in every connected component. For example, the last vertex on the longest component path.

2. Case $k=1$

Let $G=C_{n}$ be a cycle of order n. It is easy to see that neither C_{3} nor C_{4} is embeddable.
The cycle C_{5} is embeddable but for each embedding σ we have $C_{5} \oplus \sigma\left(C_{5}\right)=K_{5}$. So, C_{5} is uniquely embeddable.
The cycle C_{6} is also embeddable. For each embedding σ the graph $C_{6} \oplus \sigma\left(C_{6}\right)$ is a 4-regular subgraph of K_{6}. The complement of such a graph is a 1 -factor in K_{6}. Thus, all these graphs are isomorphic. So, C_{6} is uniquely embeddable.

Two distinct embeddings of C_{7} are given in Fig. 1. In the first one, the complement of the graph $C_{n} \oplus \sigma\left(C_{n}\right)$ is isomorphic to C_{7} while in the second one, to $C_{3} \cup C_{4}$.

For $n \geq 8$ we shall show that there are at least two distinct embeddings of C_{n} :
A) One such that the graph $C_{n} \oplus \sigma\left(C_{n}\right)$ contains a clique K_{4} and
B) another such that the graph $C_{n} \oplus \sigma\left(C_{n}\right)$ is K_{4}-free.

Fig. 1. Two distinct embeddings of C_{7}.

Fig. 2. If G^{\prime} is embeddable, then $G \oplus \sigma(G)$ contains K_{4}.

Case A.
Denote by $x, a_{1}, a_{2}, a_{3}, a_{4}, y$ six consecutive vertices of $G=C_{n}$ and by P the path joining x and y obtained from C_{n} by removing vertices $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ i.e. $P=G^{\prime}=G \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $n \geq 8 P$, has at least four vertices. By Theorem 2 there is a permutation, say σ^{\prime} being an embedding of P. Let $x^{\prime}=\sigma^{\prime}(x)$ and $y^{\prime}=\sigma^{\prime}(y)$. Fig. 2 shows how to extend σ^{\prime} to get an embedding of C_{n}. Let us observe that the vertices $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ induce a clique K_{4}.

We will use the above reasoning often, so it will be convenient to formulate it in the form of a lemma.

Lemma 7. Denote by $a_{1}, a_{2}, a_{3}, a_{4}$ four vertices of G inducing a path in G. If the graph obtained from G by removing vertices $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is packable, then the graph G is also packable and there is a packing σ of G such that $G \oplus \sigma(G)$ contains a clique K_{4}.

Case B. Denote by $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ consecutive vertices of C_{n}. We shall consider two cases.
Subcase B1. n is odd.
Then, the edges $v_{i} v_{i+2}(\bmod n)$ define a cycle of length n. This cycle can be considered as an image of C_{n} by a permutation, say σ. We shall show that the graph $H=C_{n} \oplus \sigma\left(C_{n}\right)$ is K_{4}-free. Suppose that H contains a clique on four vertices. It has six edges and it is easy to see that three of them should belong to the first copy of C_{n} and the remaining three to the second copy of C_{n}, each of these triples forming a path of length three in the corresponding copy. But a path of length three in C_{n} should be induced by four consecutive vertices $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}(\bmod n)$. The fact that v_{i}, v_{i+3} is not an edge of the second (dashed) copy of C_{n} finishes the proof of this case.

Subcase B2. n is even.
It is easy to see that the edges of the form $v_{i} v_{i+r}(\bmod n)$ define a cycle of length n if r and n are coprime. In order to prove the existence of such an integer r we can use, for instance, the well-known Chebyshev's theorem saying that for each integer $k \geq 4$ there is a prime number between k and $2 k-2$. Denote by p such a number where $k=\frac{n}{2}$. Since a prime number p and n are surely coprime, r and n where $r=n-p$ are also coprime. Moreover, we have $3 \leq r \leq \frac{n}{2}-1$. Similarly as above, it is easy to see that the graph formed by C_{n} and the edges of the form $v_{i} v_{i+r}(\bmod n)$ is K_{4}-free.

3. Case $k=2$ or $k=3$

3.1. Case $k=2$

Let $G=C_{n_{1}} \cup C_{n_{2}}$, where $n_{1} \leq n_{2}$. If $n_{1} \geq 5$ we have unconnected packing of G which consists of two components. Each of these components we obtain as a packing of two copies of a cycle in appropriate complete graph from the Case $k=1$. Thus from Lemma 6 the graph G is not uniquely packable. Therefore we have to consider two subcases $G=C_{3} \cup C_{p}$ where $p \geq 3$ and $G=C_{4} \cup C_{p}$ where $p \geq 4$.

3.1.1. Subcase $G=C_{3} \cup C_{p}$ where $p \geq 3$

It is easy to see that $C_{3} \cup C_{3}$ is not embeddable. We show that $C_{3} \cup C_{4}$ and $C_{3} \cup C_{5}$ are uniquely embeddable. We start packing of $\mathbf{C}_{3} \cup \mathbf{C}_{4}$ from the black copy in which we denote by u_{1}, u_{2}, u_{3} consecutive vertices of C_{3} and by $y_{1}, y_{2}, x_{2}, x_{1}$ consecutive vertices

Fig. 3. Two distinct packings of $C_{3} \cup C_{6}$. For the clarity of the drawing, the outer triangular face (connecting vertices marked with a circle) is not drawn.

Fig. 4. Two distinct packings of $C_{3} \cup C_{7}$. For the clarity of the drawing, the outer triangular face (connecting vertices marked with a circle) is not drawn.
of C_{4}. To draw a red triangle, we need to use one of the vertices of the black triangle and two opposite vertices from the black cycle C_{4}. Without loss of generality we can use vertices u_{1}, x_{1}, y_{2}, since all possibilities give isomorphic graphs. Now, we have only one possibility to draw the remaining red cycle C_{4}.

We start packing of $\mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{5}}$ from the black copy in which we denote by u_{1}, u_{2}, u_{3} consecutive vertices of C_{3} and by y_{1}, y_{2}, z, x_{2}, x_{1} consecutive vertices of C_{5}. To draw a red triangle, we need to use one of the vertices of the black triangle and two opposite vertices from the black cycle C_{5}. Without loss of generality we can use vertices u_{3}, x_{2}, y_{2}. We start drawing remaining red C_{5} from the vertex z. We can easily see that we cannot have edges $z u_{1}$ and $z u_{2}$ or $z x_{1}$ and $z x_{2}$ in this red C_{5}. Therefore we have to draw first red edge from z to the vertex on black C_{5} and the second red edge to the vertex on black C_{3}. Thus we have only one possibility to draw the remaining red cycle C_{5}. Therefore the packing of $C_{3} \cup C_{5}$ is unique.

Now we present plane and not planar packing of $\mathbf{C}_{3} \cup \mathbf{C}_{6}$ which could be extended to packings of $C_{3} \cup C_{p}$, where p is from the set $\{8,10,12, \ldots\}$. Two distinct packings of $C_{3} \cup C_{6}$ are presented in Fig. 3. We can easily see that the first (left) packing of $C_{3} \cup C_{6}$ is plane. We extend this packing by replacing the edge $y_{2} y_{3}$ by the path $y_{2} a_{1} a_{2} \ldots a_{l} y_{3}$ and the edge $x_{3} y_{3}$ by the path $x_{3} b_{1} b_{2} \ldots b_{l} y_{3}$, where $l=\frac{p-6}{2}$. Then we add a path $y_{2} b_{1} a_{1} b_{2} a_{2} \ldots b_{l} a_{l}$ and replace the edge $u_{1} y_{2}$ by the edge $u_{1} a_{l}$. Note that the packing which we obtain is plane. Now we prove that the second (right) packing of $C_{3} \cup C_{6}$ is not planar. Vertices u_{1}, u_{2} and u_{3} induce a triangle. If we add to this triangle the vertex x_{1} together with paths $x_{1} u_{2}, x_{1} y_{1} u_{1}$ and $x_{1} x_{2} u_{3}$ we obtain a subgraph homeomorphic to K_{4}. Thus if we add to this subgraph the vertex y_{3} together with subsequent paths $y_{3} u_{1}, y_{3} u_{2}, y_{3} y_{2} u_{3}$ and $y_{3} x_{3} x_{1}$ we obtain a subgraph which is a subdivision of K_{5}. It follows from Kuratowski's theorem that the graph is not planar. We can extend this packing by replacing the edge $y_{1} y_{2}$ by the path $y_{1} a_{1} a_{2} \ldots a_{l} y_{2}$ and the edge $x_{3} y_{3}$ by the path $x_{3} b_{1} b_{2} \ldots b_{l} y_{3}$, where $l=\frac{p-6}{2}$. Then we add a path $y_{1} b_{1} a_{1} b_{2} a_{2} \ldots b_{l} a_{l}$ and replace the edge $u_{1} y_{1}$ by the edge $u_{1} a_{l}$. Note also that the packing which we obtain is not planar.

We show plane and not planar packing of $\mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{7}$ which could be extended to packings of $C_{3} \cup C_{p}$, where p is from the set $\{9,11,13, \ldots\}$. Two distinct packings of $C_{3} \cup C_{7}$ are presented in Fig. 4. We can easily see that the first (left) packing of $C_{3} \cup C_{7}$ is plane. We extend this packing by replacing the edge $x_{1} x_{2}$ by the path $x_{1} a_{1} a_{2} \ldots a_{l} x_{2}$ and the edge $z x_{3}$ by the path $z b_{1} b_{2} \ldots b_{l} x_{3}$, where $l=\frac{p-7}{2}$. Then we replace the edge $z x_{2}$ by the edge $z a_{1}$ and we add a path $a_{1} b_{1} a_{2} b_{2} \ldots a_{l} b_{l} x_{2}$. Note that the packing which we obtain is plane. Now we prove that the second (right) packing of $C_{3} \cup C_{7}$ is not planar. Vertices u_{1}, u_{2} and u_{3} induce a triangle. If we add to this triangle the vertex x_{1} together with paths $x_{1} u_{2}, x_{1} y_{1} u_{1}$ and $x_{1} x_{2} x_{3} u_{3}$ we obtain a subgraph homeomorphic to K_{4}. Thus if we add to this subgraph the vertex y_{3} together with subsequent paths $y_{3} u_{1}, y_{3} u_{2}, y_{3} y_{2} u_{3}$ and $y_{3} z x_{1}$ we obtain a subgraph which is a subdivision of K_{5}. It follows from Kuratowski's theorem that the graph is not planar. We can extend this packing by replacing the edge $y_{3} z$ by the path $y_{3} a_{1} a_{2} \ldots a_{l} z$ and the edge $x_{2} x_{3}$ by the path $x_{2} b_{1} b_{2} \ldots b_{l} x_{3}$, where $l=\frac{p-7}{2}$. Then we replace the edge $x_{1} z$ by the edge $x_{1} a_{1}$ and we add a path $a_{1} b_{1} a_{2} b_{2} \ldots a_{l} b_{l} z$. Note also that the packing which we obtain is not planar.

3.1.2. Subcase $G=C_{4} \cup C_{p}$ where $p \geq 4$

For a graph $G=\mathbf{C}_{4} \cup \mathbf{C}_{4}$ we show bipartite and not bipartite packing. In the graph G we denote by x_{1}, \ldots, x_{4} and y_{1}, \ldots, y_{4} vertices from two sets X and Y. In both packings we draw black cycles $B\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)$ and $B\left(\left\{x_{3}, x_{4}\right\},\left\{y_{3}, y_{4}\right\}\right)$. In the first packing of G we draw red cycles $B\left(\left\{x_{1}, x_{2}\right\},\left\{y_{3}, y_{4}\right\}\right)$ and $B\left(\left\{x_{3}, x_{4}\right\},\left\{y_{1}, y_{2}\right\}\right)$. Note that X and Y are independent. In the second packing we draw red cycles $B\left(\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{3}\right\}\right)$ and $B\left(\left\{x_{1}, y_{1}\right\},\left\{x_{4}, y_{4}\right\}\right)$. Note that each red cycle with two independent black edges induces a subgraph K_{4}. Therefore this packing of G is not bipartite.

We present plane and not planar packing of $\mathbf{C}_{4} \cup \mathbf{C}_{5}$. These two packings could be extended to packings of $C_{4} \cup C_{p}$, where p is from the set $\{9,11,13 \ldots\}$. Two distinct packings of $C_{4} \cup C_{5}$ are presented below in Fig. 5. It is obvious that the first (left) packing of $C_{4} \cup C_{5}$ is plane. We extend this packing by replacing the edge $z y_{2}$ by the path $z a_{1} a_{2} \ldots a_{l} y_{2}$ and the edge $z x_{2}$ by the path $z b_{1} b_{2} \ldots b_{l} x_{2}$, where $l=\frac{p-5}{2}$ and $l>1$. Then we replace the edge $u_{1} z$ by the edge $u_{1} a_{1}$ and we add a path $a_{1} b_{1} a_{2} b_{2} \ldots a_{l} b_{l} z$. Note

Fig. 5. Two distinct packings of $C_{4} \cup C_{5}$.

Fig. 6. Two distinct packings of $C_{4} \cup C_{6}$.

Fig. 7. The packing of $C_{4} \cup C_{7}$ without K_{4}.
that the packing which we obtain is plane. Note also that the presented extension of plane packing does not work for $C_{4} \cup C_{7}$. This case will be considered later.

Now we prove that the second (right) packing of $C_{4} \cup C_{5}$ is not planar and contains a subgraph K_{4}. Vertices x_{1}, y_{1}, u_{2} and u_{3} induce K_{4}. If we add to this subgraph the vertex x_{2} together with paths $x_{2} x_{1}, x_{2} y_{2} y_{1}, x_{2} u_{4} u_{3}$ and $x_{2} z u_{1} u_{2}$ we obtain a subgraph which is a subdivision of K_{5}. It follows from Kuratowski's theorem that the graph is not planar. We can extend this packing by replacing the edge $y_{1} y_{2}$ by the path $y_{1} a_{1} a_{2} \ldots a_{l} y_{2}$ and the edge $x_{2} z$ by the path $x_{2} b_{1} b_{2} \ldots b_{l} z$, where $l=\frac{p-5}{2}$. Then we replace the edge $x_{2} y_{2}$ by the edge $x_{2} a_{1}$ and we add a path $a_{1} b_{1} a_{2} b_{2} \ldots a_{l} b_{l} y_{2}$. Note also that the packing which we obtain is not planar.

We show plane and not planar packing of $\mathbf{C}_{4} \cup \mathbf{C}_{6}$ which could be extended to packings of $C_{4} \cup C_{p}$, where p is from the set $\{8,10,12, \ldots\}$. Two distinct packings of $C_{4} \cup C_{6}$ are presented in Fig. 6. It is obvious that the first (left) packing of $C_{4} \cup C_{6}$ is plane. We extend this packing by replacing the edge $y_{1} x_{1}$ by the path $y_{1} a_{1} a_{2} \ldots a_{l} x_{1}$ and the edge $y_{2} y_{3}$ by the path $y_{2} b_{1} b_{2} \ldots b_{l} y_{3}$, where $l=\frac{p-6}{2}$. Then we replace the edge $y_{2} x_{3}$ by the edge $b_{l} x_{3}$ and we add a path $y_{2} a_{1} b_{1} a_{2} b_{2} \ldots a_{l} b_{l} x_{3}$. Note that the packing which we obtain is plane.

Now we prove that the second (right) packing of $C_{4} \cup C_{6}$ is not planar. Vertices x_{1}, y_{1}, u_{2} and u_{3} induce K_{4}. If we add to this subgraph the vertex y_{3} together with paths $y_{3} x_{2} x_{1}, y_{3} y_{2} y_{1}, y_{3} u_{1} u_{2}$ and $y_{3} x_{3} u_{4} u_{3}$ we obtain a subgraph which is a subdivision of K_{5}. It follows from Kuratowski's theorem that the graph is not planar. We can extend this packing by replacing the edge $y_{1} y_{2}$ by the path $y_{1} a_{1} a_{2} \ldots a_{l} y_{2}$ and the edge $x_{1} x_{2}$ by the path $x_{1} b_{1} b_{2} \ldots b_{l} x_{2}$, where $l=\frac{p-6}{2}$. Then we replace the edge $u_{1} y_{2}$ by the edge $u_{1} a_{1}$ and we add a path $a_{1} b_{1} a_{2} b_{2} \ldots a_{l} b_{l} y_{2}$. Note also that the packing which we obtain is not planar.

Now, we show the remaining two distinct packings of $G=\mathbf{C}_{4} \cup \mathbf{C}_{7}$, the first with a subgraph K_{4} and the second without K_{4}. The packing of G with a subgraph K_{4} we obtain from Lemma 7. The packing of G without K_{4} is presented in Fig. 7. Note that a subgraph K_{4} in a packing of G could be obtained as a cycle C_{4} from one copy of G and two independent edges from the other copy or as three consecutive edges of a cycle C_{7} from the first copy of G and three consecutive edges of a cycle C_{7} from the second copy. Therefore it suffices that we check vertices on cycles in black copy of G whether they induce K_{4}. We left this easy check to the reader.

3.2. Case $k=3$

Let $G=C_{n_{1}} \cup C_{n_{2}} \cup C_{n_{3}}$, where $n_{1} \leq n_{2} \leq n_{3}$. We can divide G into two subgraphs $G_{1}=C_{n_{1}} \cup C_{n_{2}}, G_{2}=C_{n_{3}}$ and from the previous cases ($k=2$ and $k=1$) we get a packing of G_{1} and G_{2} except for $G=C_{3} \cup C_{4} \cup C_{4}, G=C_{4} \cup C_{4} \cup C_{4}$ and $G=C_{3} \cup C_{3} \cup C_{p}$ where $p \geq 3$. Thus from Lemma 6 the graph G is not uniquely packable. Below we consider each of these exceptional graphs separately.

Two distinct packings of $\mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{4}} \cup \mathbf{C}_{\mathbf{4}}$ are presented in Fig. 8. We can easily see that the first (left) packing of $C_{3} \cup C_{4} \cup C_{4}$

Fig. 8. Two distinct packings of $C_{3} \cup C_{4} \cup C_{4}$. For the clarity of the drawing, the cycles C_{3} (connecting vertices marked with a circle) are not drawn.

Fig. 9. Two distinct packings of $C_{3} \cup C_{3} \cup C_{4}$.

Fig. 10. Two distinct packings of $C_{3} \cup C_{3} \cup C_{5}$.
contains a subgraph K_{4}. The second (right) packing of $G=C_{3} \cup C_{4} \cup C_{4}$ is without a subgraph K_{4}. Note that the subgraph K_{4} in a packing of G could be obtained as a cycle C_{4} from one copy of G and two independent edges from the other copy. Therefore it suffices that we check cycles C_{4} form both copies of G.

For a graph $G=\mathbf{C}_{4} \cup \mathbf{C}_{4} \cup \mathbf{C}_{4}$ we show bipartite and not bipartite packing. In the graph G we denote by x_{1}, \ldots, x_{6} and y_{1}, \ldots, y_{6} vertices from two sets X and Y. In both packings of G we draw black cycles $B\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right), B\left(\left\{x_{3}, x_{4}\right\},\left\{y_{3}, y_{4}\right\}\right)$ and $B\left(\left\{x_{5}, x_{6}\right\},\left\{y_{5}, y_{6}\right\}\right)$. In the first packing of G we draw red cycles $B\left(\left\{x_{1}, x_{2}\right\},\left\{y_{3}, y_{4}\right\}\right), B\left(\left\{x_{3}, x_{4}\right\},\left\{y_{5}, y_{6}\right\}\right)$ and $B\left(\left\{x_{5}, x_{6}\right\},\left\{y_{1}, y_{2}\right\}\right)$. Note that X and Y are independent. In the second packing we draw red cycles $B\left(\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{3}\right\}\right), B\left(\left\{x_{4}, y_{4}\right\},\left\{x_{5}, y_{5}\right\}\right)$ and $B\left(\left\{x_{1}, y_{1}\right\},\left\{x_{6}, y_{6}\right\}\right)$. Note that each red cycle with two independent black edges induces a subgraph K_{4}. Therefore this packing of G is not bipartite.

Now we consider $G=\mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{p}}$ where $p \geq 3$. If $p=3$ we start packing of G from the black copy in which we denote by $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ and v_{1}, v_{2}, v_{3} vertices of three cycles C_{3}. Then we draw red triangles $x_{1} y_{1} v_{1}, x_{2} y_{2} v_{2}$ and $x_{3} y_{3} v_{3}$. We can easily see that this packing is unique.

Two distinct packings of $G=C_{3} \cup C_{3} \cup C_{4}$ are presented in Fig. 9. We can easily see that the first (left) packing of G contains two subgraphs K_{4}. The second (right) packing of G is without a subgraph K_{4}. Note that a subgraph K_{4} in a packing of G could be obtained as a cycle C_{4} from one copy of G and two independent edges from the other copy. Therefore it suffices that we check cycles C_{4} form both copies of G.

Two distinct packings of $G=C_{3} \cup C_{3} \cup C_{5}$ are presented in Fig. 10. In the first (left) packing of G there is a vertex v_{5} such that its neighborhood induces a path of length three, while (as is relatively easy to check) the second (right) packing of G does not contain such a vertex.

Let $G=C_{3} \cup C_{3} \cup C_{6}$. It is easy to see that we can pack two black triangles with a red cycle C_{6} and two red triangles with a black cycle C_{6}. Thus we have disconnected packing of G. Then from Lemma 6 we get connected packing of G.

We present two distinct packings of $C_{3} \cup C_{3} \cup C_{p}$ where $p \geq 7$, the first with a subgraph K_{4} and the second without K_{4}. We start from the first packing of G. We denote by $a_{1}, a_{2}, a_{3}, a_{4}$ four consecutive vertices of a cycle C_{p} from G. Let $G^{\prime}=G \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. We can easily see that $e\left(G^{\prime}\right) \leq\left|V\left(G^{\prime}\right)\right|-1$. By Theorem 2 there is a packing of G^{\prime}. Thus from Lemma 7 we get a packing of G with a subgraph K_{4}.

The second packing of $C_{3} \cup C_{3} \cup C_{7}$ and $C_{3} \cup C_{3} \cup C_{8}$ without K_{4} is presented in Fig. 11. Note that a subgraph K_{4} in a packing of $G=C_{3} \cup C_{3} \cup C_{p}$, where $p \in\{7,8\}$, could be obtained as three consecutive edges of a cycle C_{p} from the black copy of G and three consecutive edges of a cycle C_{p} from the red copy. Note that then red edges are of length two and three with respect to the distance on black cycle. Therefore it suffices that we check vertices on a cycle C_{p} in one copy of G whether they induce K_{4}. We left this easy check to the reader.

We can extend the packing of $C_{3} \cup C_{3} \cup C_{7}$ to packings of $C_{3} \cup C_{3} \cup C_{p}$, where p is from the set $\{9,11,13, \ldots\}$. We replace the edge $v_{3} v_{2}$ by the path $v_{3} a_{1} a_{2} \ldots a_{l} v_{2}$ and the edge $v_{5} v_{6}$ by the path $v_{5} b_{1} b_{2} \ldots b_{l} v_{6}$, where $l=\frac{p-7}{2}$. Then we replace the edge

Fig. 11. The packing of $C_{3} \cup C_{3} \cup C_{7}$ and $C_{3} \cup C_{3} \cup C_{8}$ without K_{4}.

Fig. 12. Two distinct packings of $C_{3} \cup C_{3} \cup C_{3} \cup C_{4}$. For the clarity of the drawing, the cycle C_{4} (connecting vertices marked with a circle) is not drawn.
$v_{4} v_{2}$ by the edge $v_{4} a_{1}$ and we add a path $a_{1} b_{1} a_{2} b_{2} \ldots a_{l} b_{l} v_{2}$. Similarly we can extend the packing of $C_{3} \cup C_{3} \cup C_{8}$ to packings of $C_{3} \cup C_{3} \cup C_{p}$, where p is from the set $\{10,12,14, \ldots\}$. We replace the edge $v_{3} v_{2}$ by the path $v_{3} a_{1} a_{2} \ldots a_{l} v_{2}$ and the edge $v_{6} v_{7}$ by the path $v_{6} b_{1} b_{2} \ldots b_{l} v_{7}$, where $l=\frac{p-8}{2}$. Then we replace the edge $v_{4} v_{2}$ by the edge $v_{4} a_{1}$ and we add a path $a_{1} b_{1} a_{2} b_{2} \ldots a_{l} b_{l} v_{2}$. Both presented extensions of $C_{3} \cup C_{3} \cup C_{7}$ and $C_{3} \cup C_{3} \cup C_{8}$ do not contain a clique K_{4}, because we added red edges between vertices with distance more than three with respect to black cycle.

4. Case $k \geq 4$

4.1. Case $k=4$

Let $G=C_{n_{1}} \cup C_{n_{2}} \cup C_{n_{3}} \cup C_{n_{4}}$, where $n_{1} \leq n_{2} \leq n_{3} \leq n_{4}$. If at least two n_{i} where $i \in\{1,2,3,4\}$ are different from three then we can divide G into two parts $G=G_{1} \cup G_{2}$ so that G_{1} and G_{2} have packing. Therefore from Lemma 6 the graph G is not uniquely packable. Similarly when $n_{4} \geq 5$. Thus we have to consider two subcases $G=C_{3} \cup C_{3} \cup C_{3} \cup C_{3}$ and $G=C_{3} \cup C_{3} \cup C_{3} \cup C_{4}$.

We start packing of $G=\mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{3}}$ from the black copy in which we denote vertices creating triangle T_{i} by $\left\{a_{i}, b_{i}, c_{i}\right\}$ for $i \in\{1,2,3,4\}$. Then we draw four red triangles with sets of vertices: $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{2}, b_{3}, b_{4}\right\},\left\{c_{1}, c_{3}, c_{4}\right\}$ and $\left\{b_{1}, c_{2}, a_{4}\right\}$. Now we show that this packing of G is unique (up to isomorphism). Note that all triangles in a packing of G are "real" i.e. have all edges form black or red copy of G. We claim that each three black triangles include exactly one red triangle. We take three arbitrary black triangles T_{1}, T_{2} and T_{3}. First, suppose that these black triangles do not include any red triangle. Thus each red triangle has at least one vertex outside $T_{1} \cup T_{2} \cup T_{3}$, namely in T_{4}. We get a contradiction. Second, suppose that these black triangles include exactly two triangles. Then the remaining two red triangles can use at most two vertices from T_{4}. We also get a contradiction. Therefore from the fact that three black triangles do not include three red triangles we get a confirmation of our claim. Thus without loss of generality we can assume that the second red triangle includes vertices from black triangles T_{2}, T_{3} and T_{4}. This implies that the packing of remaining two red triangles is determined. Therefore the packing of G is unique up to isomorphism.

Two distinct packings of $G=\mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{3}} \cup \mathbf{C}_{\mathbf{4}}$ are presented in Fig. 12. We can easily see that the first (left) packing of G is connected but the vertex b_{3} is a cut vertex. Therefore it is not 2 -connected. In the second (right) packing of G each vertex from black triangle has two red edges to different black cycles. Moreover each two vertices from black triangle have edges to three remaining cycles. Therefore removing one vertex does not disconnect the graph.

4.2. Case $k=5$

Let $G=C_{n_{1}} \cup C_{n_{2}} \cup C_{n_{3}} \cup C_{n_{4}} \cup C_{n_{5}}$, where $n_{1} \leq n_{2} \leq n_{3} \leq n_{4} \leq n_{5}$. If $n_{5} \geq 4$ we can divide G into two parts $G=G_{1} \cup G_{2}$ so that $G_{1}=C_{n_{1}} \cup C_{n_{2}} \cup C_{n_{3}}$ and $G_{2}=C_{n_{4}} \cup C_{n_{5}}$ have packing. Therefore from Lemma 6 we know that the graph G is not uniquely packable. Thus we have to consider $G=5 C_{3}$.

We present two distinct packings of $G=5 C_{3}$. We start both packings of G from black copy in which we denote vertices creating triangle T_{i} by $\left\{a_{i}, b_{i}, c_{i}\right\}$ for $i \in\{1, \ldots, 5\}$. Then in the first packing of G we draw five red triangles with sets of vertices: $\left\{a_{1}, a_{2}, a_{3}\right\}$, $\left\{b_{1}, a_{4}, a_{5}\right\},\left\{c_{1}, c_{2}, b_{5}\right\},\left\{b_{2}, b_{3}, b_{4}\right\}$ and $\left\{c_{3}, c_{4}, c_{5}\right\}$. In the second packing of G we draw five red triangles with sets of vertices: $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{3}\right\},\left\{c_{1}, b_{4}, b_{5}\right\},\left\{c_{2}, a_{4}, a_{5}\right\}$ and $\left\{c_{3}, c_{4}, c_{5}\right\}$. Note that all triangles in both packings of G are "real". We can easily see that in the first packing of G each nine vertices induce at most four triangles. In the second packing of G nine vertices from
black triangles T_{1}, T_{2} and T_{3} induce also two red triangles. Thus there exists nine vertices which induce five triangles in the second packing of G.

4.3. Case $k \geq 6$

Let $G=C_{n_{1}} \cup C_{n_{2}} \cup \ldots \cup C_{n_{k}}$, where $n_{1} \leq n_{2} \leq \ldots \leq n_{k}$. We can divide G into two parts $G=G_{1} \cup G_{2}$ so that $G_{1}=C_{n_{1}} \cup C_{n_{2}} \cup C_{n_{3}}$ and $G_{2}=C_{n_{4}} \cup C_{n_{5}} \cup \ldots \cup C_{n_{k}}$. From the previous cases and the fact that $k \geq 6$ we have packings of G_{1} and G_{2}. Thus G has a disconnected packing. Therefore from Lemma 6 we get connected packing and we know that the graph G is not uniquely packable.

Data availability

No data was used for the research described in the article.

References

[1] B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Comb. Theory, Ser. B 25 (1978) 105-124.
[2] D. Burns, S. Schuster, Every ($p, p-2$) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279.
[3] D. Burns, S. Schuster, Embedding $(n, n-1)$ graphs in their complements, Isr. J. Math. 30 (1978) 313-320.
[4] J. Otfinowska, M. Woźniak, A note on uniquely embeddable forests, Discuss. Math., Graph Theory 33 (1) (2013) 193-201.
[5] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Comb. Theory, Ser. B 25 (1978) 295-302.
[6] M. Woźniak, A note on uniquely embeddable graphs, Discuss. Math., Graph Theory 18 (1998) 15-21.
[7] M. Woźniak, Packing of graphs, Diss. Math. 362 (1997) 78.
[8] M. Woźniak, Packing of graphs and permutation - a survey, Discrete Math. 276 (2004) 379-391.
[9] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404.

[^0]: * Corresponding author.

 E-mail address: grzelec@agh.edu.pl (I. Grzelec).

