Packing of two digraphs into a transitive tournament

Monika Pilśniak
Faculty of Applied Mathematics AGH, Department of Discrete Mathematics, al.Mickiewicza 30, 30-059 Kraków, Poland
Received 22 September 2003; received in revised form 16 June 2004; accepted 22 November 2005
Available online 22 September 2006

Abstract

Let \vec{G} and \vec{H} be two oriented graphs of order n without directed cycles. Görlich, Pilśniak and Woźniak proved [A note on a packing problem in transitive tournaments, preprint Faculty of Applied Mathematics, AGH University of Science and Technology, No. 37/2002] that if the number of arcs in \vec{G} is sufficiently small (not greater than $3(n-1) / 4$) then two copies of \vec{G} are packable into the transitive tournament $T T_{n}$. This bound is best possible.

In this paper we give a generalization of this result. We show that if the sum of sizes of \vec{G} and \vec{H} is not greater than $\frac{3}{2}(n-1)$ then the digraphs \vec{G} and \vec{H} are packable into $T T_{n}$. © 2006 Elsevier B.V. All rights reserved.

MSC: 05C70; 05C35
Keywords: Packing of digraphs; Transitive tournaments

1. Introduction

Let \vec{G} be a digraph of order n with the vertex set $V(\vec{G})$ and the arc set $E(\vec{G})$. A digraph without directed cycles of the length of two is called an oriented graph. The replacement of every arc $u v$ in an oriented graph \vec{G} by an edge $u v$ yields its underlying graph.

Let \vec{G} be an oriented graph. For any vertex $v \in V(\vec{G})$ let us denote by $d^{+}(v)$ the outdegree of v, i.e. the number of vertices of \vec{G} that are adjacent from v. By $d^{-}(v)$ we denote the indegree of v, i.e. the number of vertices adjacent to v. The degree of a vertex v, denoted by $d(v)$, is the sum $d(v)=d^{-}(v)+d^{+}(v)$. A vertex x such that $d(x)=d^{+}(x)$ is called a source and a vertex y such that $d(y)=d^{-}(y)$ is called a sink.

A digraph \vec{G} is called transitive when it satisfies the condition of transitivity: if $u v$ and $v w$ are two arcs of \vec{G} then $u w$ is an arc, too.

A tournament is an oriented graph such that its underlying graph is complete. A transitive tournament of order n will be denoted by $T T_{n}$. As it is unique up to isomorphism, throughout the paper, we will view $T T_{n}$ as shown in Fig. 1. We can denote the vertices in $T T_{n}$ by consecutive integers in such way that if $i<j$ then $i j$ is an arc of $T T_{n}$. The vertices 1 , 2 and n will be called the first, the second and the last vertex of $T T_{n}$, respectively.
A semipath between two distinct vertices v_{1} and v_{k} in an oriented graph \vec{G} is a path between v_{1} and v_{k} in the underlying graph G. The semipath is denoted by $v_{1} \ldots v_{k}$, where v_{1}, \ldots, v_{k} are vertices and $v_{i-1} v_{i} \in E(\vec{G})$ or $v_{i} v_{i-1} \in E(\vec{G})$ for $i \in\{2, \ldots, k\}$.

[^0]

Fig. 1. Transitive tournament $T T_{n}$.
Let \vec{G} be an oriented graph of order n. An embedding of \vec{G} into $T T_{n}$ is a couple (σ, σ^{\prime}) in which σ is a bijection $V(\vec{G}) \rightarrow\{1, \ldots, n\}=V\left(T T_{n}\right)$ and σ^{\prime} is the injection $E(\vec{G}) \rightarrow E\left(T T_{n}\right)$ induced by σ (i.e. for any arc $i j \in E(\vec{G})$, $\left.\sigma^{\prime}(i j)=\sigma(i) \sigma(j)\right)$. We will speak more simply of the embedding σ of \vec{G}. In the case $V(\vec{G})=k<n$ we add $(n-k)$ isolated vertices to \vec{G} and define an embedding of \vec{G} into $T T_{n}$ analogously. We say that \vec{G} is embeddable into $T T_{n}$ if $\overrightarrow{G^{\prime}}:=\vec{G} \cup\{$ isolated points $\}$ is embeddable.

A packing of two oriented graphs \vec{G}, \vec{H} of order n into $T T_{n}$ is a couple (σ, δ) in which σ and δ are embeddings of \vec{G} and \vec{H}, respectively, such that the sets $\sigma^{\prime}(E(\vec{G}))$ and $\delta^{\prime}(E(\vec{H}))$ are disjoint. We say that \vec{G} and \vec{H} are packable into $T T_{n}$.

There are many results concerning packing of simple graphs. The basic result was proved, independently, in [2,3,7].
Theorem 1. Let G, H be graphs of order n. If $|E(G)| \leqslant n-2$ and $|E(H)| \leqslant n-2$ then G and H are packable into K_{n}.

Sauer and Spencer and independently Bollobás and Eldridge consider conditions on the sum of sizes of two graphs G and H that ensure the possibility of packing of G and H into the complete graph. They proved the following theorem [2,7].

Theorem 2. Let G and H be graphs of order n. If $|E(G)|+|E(H)| \leqslant \frac{3}{2}(n-1)$, then there is a packing G and H into K_{n}.

They also give an example that the theorem is best possible.
The main references of this paper and of other packing problems are the last chapter of Bollobás's book [1], the 4th Chapter of Yap's book [9] as well the survey papers [8,10].
Görlich, Pilśniak, Woźniak [6] investigated the existence of a packing of two copies of a given oriented graph \vec{G} into $T T_{n}$. More precisely, the following result was proved therein.

Theorem 3. Let \vec{G} be an oriented graph without any directed cycle and such that $|E(\vec{G})| \leqslant 3(n-1) / 4$. Then two copies of \vec{G} are packable into $T T_{n}$.

This bound is best possible.
In our paper we give a generalization of this result. At first we wanted to obtain that two oriented graphs \vec{G} and \vec{H} of order n without any directed cycle and such that the size of each of \vec{G} and \vec{H} is not greater than $3(n-1) / 4$ are packable into $T T_{n}$.

In reality we are able to prove the following much stronger theorem.
Theorem 4. Let \vec{G} and \vec{H} be two oriented graphs of ordern without any directed cycle. If $|E(\vec{G})|+|E(\vec{H})| \leqslant \frac{3}{2}(n-1)$, then \vec{G} and \vec{H} are packable into $T T_{n}$.

2. Proof of Theorem 4

At the beginning we notice that an oriented graph \vec{G} of order n is embeddable into $T T_{n}$ iff \vec{G} does not include any directed cycle.

Let \vec{G} be a subgraph of $T T_{n}$ of order n and size m_{1} and \vec{H} be a subgraph of $T T_{n}$ of order n and size m_{2} and such that $m_{1}+m_{2} \leqslant \frac{3}{2}(n-1)$.
We use induction on the order n of the transitive tournament. We remark that for $n \leqslant 2$ at most one of the oriented graphs satisfying the assumption of Theorem 4 has one arc and, obviously, our theorem is true. For $n=3$ the sizes of
\vec{G} and \vec{H} satisfying the assumption of Theorem 4 are at most 3 and 0 or 2 and 1 . In both cases, it is easy to see, that \vec{G} and \vec{H} are packable into $T T_{3}$.

Now, let $n \geqslant 4$ and assume that our result is true for all $n^{\prime}<n$. The main idea of this part of the proof is to distinguish two cases:

Case A: Neither \vec{G} nor \vec{H} has any isolated vertex.
We can assume, without loss of generality, that $m_{1} \leqslant m_{2}$, so $m_{1} \leqslant \frac{3}{4}(n-1)$. It is easy to see that $m_{1} \geqslant\lceil n / 2\rceil$ and $m_{2} \geqslant\lceil n / 2\rceil$, because \vec{G} and \vec{H} do not have any isolated vertex. Moreover $m_{2} \leqslant n-\frac{3}{2}$, because $m_{1} \leqslant m_{2}$, so \vec{H} has at least two non-trivial components. Hence at least two sources x_{H} and y_{H} are in \vec{H}, because every subgraph of $T T_{n}$ has a source.

Now, let $\overrightarrow{G_{1}}$ be an isolated arc $x_{G} y_{G}$ and $\overrightarrow{G_{2}}$ be a semipath $x_{G} y_{G} z_{G}$. Because the size of \vec{G} is sufficiently small, \vec{G} has to contain a component isomorphic to $\overrightarrow{G_{1}}$ or $\overrightarrow{G_{2}}$. So we consider two subcases:
Subcase A1: If $\overrightarrow{G_{1}}$ is a component of \vec{G} then we can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{x_{G}, y_{G}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{x_{H}, y_{H}\right\}$ into $T T_{n-2}$, by induction. So let $T T_{n-2}$ be a transitive tournament with the vertices numbered from 3 to n. Let σ^{\prime} and δ^{\prime} be embeddings of $\overrightarrow{G^{\prime}}$ and $\overrightarrow{H^{\prime}}$ in $T T_{n-2}$, respectively. Now, we define embeddings σ of \vec{G} and δ of \vec{H} into $T T_{n}$ as follows: $\sigma\left(x_{G}\right)=\delta\left(x_{H}\right)=1, \sigma\left(y_{G}\right)=\delta\left(y_{H}\right)=2$ and $\sigma(v)=\sigma^{\prime}(v), \delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into $T T_{n}$.

Subcase A2: If $\overrightarrow{G_{1}}$ is no component of \vec{G}, then $\overrightarrow{G_{2}}$ is its component. Moreover $m_{1} \geqslant \frac{2}{3} n, m_{2} \leqslant n-(n+9) / 6$ and so \vec{H} has at least three non-trivial components. Let z_{H} be the third source in \vec{H}, then we can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{x_{G}, y_{G}, z_{G}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{x_{H}, y_{H}, z_{H}\right\}$ into $T T_{n-3}$ with the vertices numbered from 4 to n, by induction. We define an embedding δ of \vec{H} into $T T_{n}$ as follows: $\delta\left(x_{H}\right)=1, \delta\left(y_{H}\right)=2, \delta\left(z_{H}\right)=3$. The embedding σ of the semipath $x_{G} y_{G} z_{G}$ into $T T_{3}$ is easy.

Case B: \vec{G} has an isolated vertex y_{G}.
Let x_{G} be a source of \vec{G} and x_{H} be a source of \vec{H}. Let x_{H}^{\prime} be a vertex adjacent from x_{H} and x_{G}^{\prime} be a vertex adjacent from x_{G}.

Subcase B1: If $d\left(x_{H}\right) \geqslant 2$, then we can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{y_{G}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{x_{H}\right\}$ into $T T_{n-1}$, by induction. So let $T T_{n-1}$ be a transitive tournament with the vertices numbered from 2 to n. Let σ^{\prime} and δ^{\prime} be embeddings of $\overrightarrow{G^{\prime}}$ and $\overrightarrow{H^{\prime}}$ in $T T_{n-1}$, respectively.
Now, we define the embeddings σ of \vec{G} and δ of \vec{H} into $T T_{n}$ as follows: $\sigma\left(y_{G}\right)=\delta\left(x_{H}\right)=1$ and $\sigma(v)=\sigma^{\prime}(v)$, $\delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into $T T_{n}$.

Now, we can assume, that every source of \vec{H} is of the degree one.
Subcase B2: If $d^{-}\left(x_{H}^{\prime}\right)=1$, then we consider three situations:
(a) If $d\left(x_{G}\right) \geqslant 2$ or $d\left(x_{H}^{\prime}\right) \geqslant 2$, then we can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{x_{G}, y_{G}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{x_{H}, x_{H}^{\prime}\right\}$ into $T T_{n-2}$, by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma\left(x_{G}\right)=\delta\left(x_{H}\right)=1, \sigma\left(y_{G}\right)=\delta\left(x_{H}^{\prime}\right)=2$ and $\sigma(v)=\sigma^{\prime}(v), \delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into $T T_{n}$.

Now, we can assume, that \vec{H} has only isolated points or isolated arcs as its connected components.
(b) If z_{G} is a second source in \vec{G}, then we can pack \vec{G} and \vec{H} into $T T_{n}$ similar to Subcase A1.

Now, we can assume, that only one source x_{G} is in \vec{G}.
(c) Let z_{H} be a second source in \vec{H}.

If $d\left(x_{G}^{\prime}\right) \geqslant 3$, then we can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{x_{G}, y_{G}, x_{G}^{\prime}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{z_{H}, x_{H}, x_{H}^{\prime}\right\}$ into $T T_{n-3}$, by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma\left(x_{G}\right)=\delta\left(z_{H}\right)=1, \sigma\left(y_{G}\right)=\delta\left(x_{H}\right)=2, \sigma\left(x_{G}^{\prime}\right)=\delta\left(x_{H}^{\prime}\right)=3$ and $\sigma(v)=\sigma^{\prime}(v), \delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into $T T_{n}$.

If $d\left(x_{G}^{\prime}\right)=2$ and $x_{G}^{\prime \prime}$ is adjacent from x_{G}^{\prime}, then we can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{x_{G}, x_{G}^{\prime}, x_{G}^{\prime \prime}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{x_{H}, z_{H}, x_{H}^{\prime}\right\}$ into $T T_{n-3}$, by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma\left(x_{G}\right)=\delta\left(x_{H}\right)=1, \sigma\left(x_{G}^{\prime}\right)=\delta\left(z_{H}\right)=2$, $\sigma\left(x_{G}^{\prime \prime}\right)=\delta\left(x_{H}^{\prime}\right)=3$ and $\sigma(v)=\sigma^{\prime}(v), \delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into $T T_{n}$.

Subcase B3: Now $d^{-}\left(x_{H}^{\prime}\right)=k>1$ and let $x_{H}^{1}, \ldots, x_{H}^{k}$ be the sources of \vec{H} adjacent to x_{H}^{\prime}. We consider two situations:
(a) $\overrightarrow{G_{1}}$ is a non-trivial connected component of \vec{G} of order $l \leqslant k$. Then we can pack $\overrightarrow{G^{\prime}}=\vec{G}-\overrightarrow{G_{1}}$ and $\overrightarrow{H^{\prime}}=\vec{H}-$ $\left\{x_{H}^{1}, \ldots, x_{H}^{l}\right\}$ into $T T_{n-l}$, by induction (we remove at least $2 l-1 \operatorname{arcs}$, so that is at least $\frac{3}{2} l$ for $l \geqslant 2$). We define the
embedding δ of \vec{H} as follows: $\delta\left(x_{H}^{i}\right)=i$, for $i=1, \ldots, l$ and $\delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. The embedding σ of $\overrightarrow{G_{1}}$ into $T T_{l}$ is easy to see, because $\overrightarrow{G_{1}}$ is a subgraph of the transitive tournament. So \vec{G} and \vec{H} are packable into $T T_{n}$.
(b) $\overrightarrow{G_{1}}$ is a connected component of \vec{G} of order $l>k$. It is a subgraph of $T T_{l}$ (by assumption), so we can put its vertices in order $x_{G}^{1}, \ldots, x_{G}^{l}$ such that if $x_{G}^{i} x_{G}^{j}$ is an arc of $\overrightarrow{G_{1}}$ then $i<j$.
(b1) We can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{x_{G}^{1}, \ldots, x_{G}^{k}, y_{G}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{x_{H}^{1}, \ldots, x_{H}^{k}, x_{H}^{\prime}\right\}$ into $T T_{n-(k+1)}$ for $k \geqslant 3$, by induction (we remove at least $2 k$ arcs, so that is at least $\frac{3}{2}(k+1$) for $k \geqslant 3$). We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma\left(x_{G}^{i}\right)=\delta\left(x_{H}^{i}\right)=i$, for $i=1, \ldots, k, \sigma\left(y_{G}\right)=\delta\left(x_{H}^{\prime}\right)=k+1$ and $\sigma(v)=\sigma^{\prime}(v), \delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into $T T_{n}$.

Now, we can assume $k=2$ what implies $l \geqslant 3$. If $d^{+}\left(x_{G}^{1}\right)+d^{+}\left(x_{G}^{2}\right) \geqslant 3$ or $d\left(x_{H}^{\prime}\right) \geqslant 3$ we can repeat the reasoning like above, so we assume that $d\left(x_{H}^{\prime}\right)=2$ and every source in \vec{G} is of degree one.
(b2) If three sources x_{G}, w_{G}, z_{G} are in \vec{G}, then we can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{x_{G}, w_{G}, z_{G}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{x_{H}^{1}, x_{H}^{2}, x_{H}^{\prime}\right\}$ into $T T_{n-3}$, by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma\left(x_{G}\right)=\delta\left(x_{H}^{1}\right)=1, \sigma\left(w_{G}\right)=\delta\left(x_{H}^{2}\right)=2$, $\sigma\left(z_{G}\right)=\delta\left(x_{H}^{\prime}\right)=3$ and $\sigma(v)=\sigma^{\prime}(v), \delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into $T T_{n}$.
(b3) If only two sources x_{G}, z_{G} are in \vec{G} and x_{G}^{\prime} is adjacent from x_{G}, then let z_{H} be a source of \vec{H} different from x_{H}^{1} and x_{H}^{2} (if such z_{H} does not exist then \vec{H} is the semipath $x_{H}^{1} x_{H^{\prime}} x_{H}^{2}$ and a packing of \vec{G} and \vec{H} is easy). We can pack $\overrightarrow{G^{\prime}}=\vec{G}-\left\{x_{G}, z_{G}, x_{G}^{\prime}, y_{G}\right\}$ and $\overrightarrow{H^{\prime}}=\vec{H}-\left\{z_{H}, x_{H}^{1}, x_{H}^{2}, x_{H}^{\prime}\right\}$ into $T T_{n-4}$, by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma\left(x_{G}\right)=\delta\left(z_{H}\right)=1, \sigma\left(z_{G}\right)=\delta\left(x_{H}^{1}\right)=2, \sigma\left(x_{G}^{\prime}\right)=\delta\left(x_{H}^{2}\right)=3, \sigma\left(y_{G}\right)=\delta\left(x_{H}^{\prime}\right)=4$ and $\sigma(v)=\sigma^{\prime}(v), \delta(v)=\delta^{\prime}(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into $T T_{n}$.
(b4) If only one source x_{G} is in \vec{G}, x_{G}^{\prime} is adjacent from x_{G} and z_{G}^{\prime} is adjacent from z_{G}. Let z_{H} be a source of \vec{H} different from x_{H}^{1} and x_{H}^{2} (if such z_{H} does not exist then \vec{H} is the semipath $x_{H}^{1} x_{H^{\prime}} x_{H}^{2}$ and a packing of \vec{G} and \vec{H} is easy). It is easy to see that in this situation packing of \vec{G} and \vec{H} into $T T_{n}$ is similar to Subcase b3.

Thus, by induction, the proof is complete.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[2] B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978) $105-124$.
[3] D. Burns, S. Schuster, Every $(n, n-2)$ graph is contained in its complement, J. Graph Theory 1 (1977) 277-279.
[6] A. Görlich, M. Pilśniak, M. Woźniak, A note on a packing problem in transitive tournaments, preprint Faculty of Applied Mathematics, AGH University of Science and Technology, No. 37/2002.
[7] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978) 295-302.
[8] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997) 1-78.
[9] H.P. Yap, Some Topics in Graph Theory, London Mathematical Society, Lecture Notes Series, vol. 108, Cambridge University Press, Cambridge, 1986.
[10] H.P. Yap, Packing of graphs—a survey, Discrete Math. 72 (1988) 395-404.

[^0]: E-mail address: pilsniak@agh.edu.pl.

