Packing of two digraphs into a transitive tournament

Monika Pilśniak

Faculty of Applied Mathematics AGH, Department of Discrete Mathematics, al.Mickiewicza 30, 30-059 Kraków, Poland

Received 22 September 2003; received in revised form 16 June 2004; accepted 22 November 2005
Available online 22 September 2006

Abstract

Let \overrightarrow{G} and \overrightarrow{H} be two oriented graphs of order n without directed cycles. Görlich, Pilśniak and Woźniak proved [A note on a packing problem in transitive tournaments, preprint Faculty of Applied Mathematics, AGH University of Science and Technology, No. 37/2002] that if the number of arcs in \overrightarrow{G} is sufficiently small (not greater than $3(n-1)/4$) then two copies of \overrightarrow{G} are packable into the transitive tournament TT_n. This bound is best possible.

In this paper we give a generalization of this result. We show that if the sum of sizes of \overrightarrow{G} and \overrightarrow{H} is not greater than $3/2(n-1)$ then the digraphs \overrightarrow{G} and \overrightarrow{H} are packable into TT_n.

© 2006 Elsevier B.V. All rights reserved.

MSC: 05C70; 05C35

Keywords: Packing of digraphs; Transitive tournaments

1. Introduction

Let \overrightarrow{G} be a digraph of order n with the vertex set $V(\overrightarrow{G})$ and the arc set $E(\overrightarrow{G})$. A digraph without directed cycles of the length of two is called an oriented graph. The replacement of every arc uv in an oriented graph \overrightarrow{G} by an edge uv yields its underlying graph.

Let \overrightarrow{G} be an oriented graph. For any vertex $v \in V(\overrightarrow{G})$ let us denote by $d^+(v)$ the outdegree of v, i.e. the number of vertices of \overrightarrow{G} that are adjacent from v. By $d^-(v)$ we denote the indegree of v, i.e. the number of vertices adjacent to v. The degree of a vertex v, denoted by $d(v)$, is the sum $d(v) = d^-(v) + d^+(v)$. A vertex x such that $d(x) = d^+(x)$ is called a source and a vertex y such that $d(y) = d^-(y)$ is called a sink.

A digraph \overrightarrow{G} is called transitive when it satisfies the condition of transitivity: if uv and vw are two arcs of \overrightarrow{G} then uw is an arc, too.

A tournament is an oriented graph such that its underlying graph is complete. A transitive tournament of order n will be denoted by TT_n. As it is unique up to isomorphism, throughout the paper, we will view TT_n as shown in Fig. 1. We can denote the vertices in TT_n by consecutive integers in such way that if $i < j$ then ij is an arc of TT_n. The vertices 1, 2 and n will be called the first, the second and the last vertex of TT_n, respectively.

A semipath between two distinct vertices v_1 and v_k in an oriented graph \overrightarrow{G} is a path between v_1 and v_k in the underlying graph G. The semipath is denoted by $v_1 \ldots v_k$, where v_1, \ldots, v_k are vertices and $v_{i-1}v_i \in E(\overrightarrow{G})$ or $v_iv_{i-1} \in E(\overrightarrow{G})$ for $i \in \{2, \ldots, k\}$.

E-mail address: pilsniak@agh.edu.pl.

0012-365X/S - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.11.038
Theorem 1. Let G and H be graphs of order n. If $|E(G)| \leq n-2$ and $|E(H)| \leq n-2$ then G and H are packable into K_n. Sauer and Spencer and independently Bollobás and Eldridge consider conditions on the sum of sizes of two graphs G and H that ensure the possibility of packing of G and H into the complete graph. They proved the following theorem [2,7].

Theorem 2. Let G and H be graphs of order n. If $|E(G)| + |E(H)| \leq \frac{3}{2}(n-1)$, then there is a packing G and H into K_n.

They also give an example that the theorem is best possible.

The main references of this paper and of other packing problems are the last chapter of Bollobás’s book [1], the 4th Chapter of Yap’s book [9] as well the survey papers [8,10]. Görlich, Pilśniak, Woźniak [6] investigated the existence of a packing of two copies of a given oriented graph \overrightarrow{G} into TT_n. More precisely, the following result was proved therein.

Theorem 3. Let \overrightarrow{G} be an oriented graph without any directed cycle and such that $|E(\overrightarrow{G})| \leq 3(n-1)/4$. Then two copies of \overrightarrow{G} are packable into TT_n.

This bound is best possible.

In our paper we give a generalization of this result. At first we wanted to obtain that two oriented graphs \overrightarrow{G} and \overrightarrow{H} of order n without any directed cycle and such that the size of each of \overrightarrow{G} and \overrightarrow{H} is not greater than $3(n-1)/4$ are packable into TT_n.

In reality we are able to prove the following much stronger theorem.

Theorem 4. Let \overrightarrow{G} and \overrightarrow{H} be two oriented graphs of order n without any directed cycle. If $|E(\overrightarrow{G})| + |E(\overrightarrow{H})| \leq \frac{3}{2}(n-1)$, then \overrightarrow{G} and \overrightarrow{H} are packable into TT_n.

2. Proof of Theorem 4

At the beginning we notice that an oriented graph \overrightarrow{G} of order n is embeddable into TT_n iff \overrightarrow{G} does not include any directed cycle.

Let \overrightarrow{G} be a subgraph of TT_n of order n and size m_1 and \overrightarrow{H} be a subgraph of TT_n of order n and size m_2 and such that $m_1 + m_2 \leq \frac{3}{2}(n-1)$.

We use induction on the order n of the transitive tournament. We remark that for $n \leq 2$ at most one of the oriented graphs satisfying the assumption of Theorem 4 has one arc and, obviously, our theorem is true. For $n = 3$ the sizes of...
\(\overrightarrow{G} \) and \(\overrightarrow{H} \) satisfying the assumption of Theorem 4 are at most 3 and 0 or 2 and 1. In both cases, it is easy to see, that \(\overrightarrow{G} \) and \(\overrightarrow{H} \) are packable into \(TT_3 \).

Now, let \(n \geq 4 \) and assume that our result is true for all \(n' < n \). The main idea of this part of the proof is to distinguish two cases:

Case A: Neither \(\overrightarrow{G} \) nor \(\overrightarrow{H} \) has any isolated vertex.

We can assume, without loss of generality, that \(m_1 \leq m_2 \), so \(m_1 \leq \frac{3}{4}(n - 1) \). It is easy to see that \(m_1 \geq \lceil n/2 \rceil \) and \(m_2 \geq \lceil n/2 \rceil \), because \(\overrightarrow{G} \) and \(\overrightarrow{H} \) do not have any isolated vertex. Moreover \(m_2 \leq n - \frac{3}{2} \), because \(m_1 \leq m_2 \), so \(\overrightarrow{H} \) has at least two non-trivial components. Hence at least two sources \(x_H \) and \(y_H \) are in \(\overrightarrow{H} \), because every subgraph of \(TT_n \) has a source.

Now, let \(\overrightarrow{G}_1 \) be an isolated arc \(x_Gy_G \) and \(\overrightarrow{G}_2 \) be a semipath \(x_Gy_Gz_G \). Because the size of \(\overrightarrow{G} \) is sufficiently small, \(\overrightarrow{G} \) has to contain a component isomorphic to \(\overrightarrow{G}_1 \) or \(\overrightarrow{G}_2 \). So we consider two subcases:

Subcase A1: If \(\overrightarrow{G}_1 \) is a component of \(\overrightarrow{G} \) then we can pack \(\overrightarrow{G} = \overrightarrow{G} - \{x_G, y_G\} \) and \(\overrightarrow{H} = \overrightarrow{H} - \{x_H, y_H\} \) into \(TT_{n-2} \), by induction. So let \(TT_{n-2} \) be a transitive tournament with the vertices numbered from 3 to \(n \). Let \(\sigma' \) and \(\delta' \) be embeddings of \(\overrightarrow{G} \) and \(\overrightarrow{H} \) in \(TT_{n-2} \), respectively. Now, we define embeddings \(\sigma \) of \(\overrightarrow{G} \) and \(\delta \) of \(\overrightarrow{H} \) into \(TT_n \) as follows: \(\sigma(x_G) = \delta(x_H) = 1, \sigma(y_G) = \delta(y_H) = 2 \) and \(\sigma(v) = \sigma'(v), \delta(v) = \delta'(v) \) for all of the remaining vertices. So \(\overrightarrow{G} \) and \(\overrightarrow{H} \) are packable into \(TT_n \).

Subcase A2: If \(\overrightarrow{G}_1 \) is no component of \(\overrightarrow{G} \), then \(\overrightarrow{G}_2 \) is its component. Moreover \(m_1 \geq \frac{3}{2} n, m_2 \leq n - (n + 9)/6 \) and \(\overrightarrow{H} \) has at least three non-trivial components. Let \(z_H \) be the third source in \(\overrightarrow{H} \), then we can pack \(\overrightarrow{G} = \overrightarrow{G} - \{x_G, y_G, z_G\} \) and \(\overrightarrow{H} = \overrightarrow{H} - \{x_H, y_H, z_H\} \) into \(TT_{n-3} \) with the vertices numbered from 4 to \(n \), by induction. We define an embedding \(\delta \) of \(\overrightarrow{H} \) into \(TT_n \) as follows: \(\delta(x_H) = 1, \delta(y_H) = 2, \delta(z_H) = 3 \). The embedding \(\sigma \) of the semipath \(x_Gy_Gz_G \) into \(TT_3 \) is easy.

Case B: \(\overrightarrow{G} \) has an isolated vertex \(y_G \).

Let \(x_G \) be a source of \(\overrightarrow{G} \) and \(x_H \) be a source of \(\overrightarrow{H} \). Let \(x'_G \) be a vertex adjacent from \(x_H \) and \(x'_H \) be a vertex adjacent from \(x_G \).

Subcase B1: If \(d(x_H) \geq 2 \), then we can pack \(\overrightarrow{G} = \overrightarrow{G} - \{y_G\} \) and \(\overrightarrow{H} = \overrightarrow{H} - \{x_H\} \) into \(TT_{n-1} \), by induction. So let \(TT_{n-1} \) be a transitive tournament with the vertices numbered from 2 to \(n \). Let \(\sigma \) and \(\delta \) be embeddings of \(\overrightarrow{G} \) and \(\overrightarrow{H} \) in \(TT_{n-1} \), respectively.

Now, we define the embeddings \(\sigma \) of \(\overrightarrow{G} \) and \(\delta \) of \(\overrightarrow{H} \) into \(TT_n \) as follows: \(\sigma(y_G) = \delta(x_H) = 1 \) and \(\sigma(v) = \sigma'(v), \delta(v) = \delta'(v) \) for all of the remaining vertices. So \(\overrightarrow{G} \) and \(\overrightarrow{H} \) are packable into \(TT_n \).

Now, we can assume, that every source of \(\overrightarrow{H} \) is of the degree one.

Subcase B2: If \(d(x'_H) = 1 \), then we consider three situations:

(a) If \(d(x_G) \geq 2 \) or \(d(x'_G) \geq 2 \), then we can pack \(\overrightarrow{G} = \overrightarrow{G} - \{x_G, y_G\} \) and \(\overrightarrow{H} = \overrightarrow{H} - \{x_H, x'_H\} \) into \(TT_{n-2} \), by induction. We define the embeddings \(\sigma \) of \(\overrightarrow{G} \) and \(\delta \) of \(\overrightarrow{H} \) as follows: \(\sigma(x_G) = \delta(x_H) = 1, \sigma(y_G) = \delta(x_H) = 2 \) and \(\sigma(v) = \sigma'(v), \delta(v) = \delta'(v) \) for all of the remaining vertices. So \(\overrightarrow{G} \) and \(\overrightarrow{H} \) are packable into \(TT_n \).

Now, we can assume, that \(\overrightarrow{H} \) has only isolated points or isolated arcs as its connected components.

(b) If \(y_G \) is a second source in \(\overrightarrow{G} \), then we can pack \(\overrightarrow{G} \) and \(\overrightarrow{H} \) into \(TT_n \) similar to Subcase A1.

Now, we can assume, that only one source \(x_G \) is in \(\overrightarrow{G} \).

(c) Let \(z_H \) be a second source in \(\overrightarrow{H} \).

If \(d(x'_G) \geq 3 \), then we can pack \(\overrightarrow{G} = \overrightarrow{G} - \{x_G, y_G, x'_G\} \) and \(\overrightarrow{H} = \overrightarrow{H} - \{z_H, x_H, x'_H\} \) into \(TT_{n-3} \), by induction. We define the embeddings \(\sigma \) of \(\overrightarrow{G} \) and \(\delta \) of \(\overrightarrow{H} \) as follows: \(\sigma(x_G) = \delta(z_H) = 1, \sigma(y_G) = \delta(x_H) = 2, \sigma(x'_G) = \delta(x'_H) = 3 \) and \(\sigma(v) = \sigma'(v), \delta(v) = \delta'(v) \) for all of the remaining vertices. So \(\overrightarrow{G} \) and \(\overrightarrow{H} \) are packable into \(TT_n \).

If \(d(x'_G) = 2 \) and \(x'_G \) is adjacent from \(x_G \), then we can pack \(\overrightarrow{G} = \overrightarrow{G} - \{x_G, y_G, x'_G\} \) and \(\overrightarrow{H} = \overrightarrow{H} - \{x_H, z_H, x'_H\} \) into \(TT_{n-3} \), by induction. We define the embeddings \(\sigma \) of \(\overrightarrow{G} \) and \(\delta \) of \(\overrightarrow{H} \) as follows: \(\sigma(x_G) = \delta(x_H) = 1, \sigma(x'_G) = \delta(z_H) = 2, \sigma(x'_G) = \delta(x'_H) = 3 \) and \(\sigma(v) = \sigma'(v), \delta(v) = \delta'(v) \) for all of the remaining vertices. So \(\overrightarrow{G} \) and \(\overrightarrow{H} \) are packable into \(TT_n \).

Subcase B3: Now \(d(x'_H) = k \) and let \(x_H^1, \ldots, x_H^k \) be the sources of \(\overrightarrow{H} \) adjacent to \(x'_H \). We consider two situations:

(a) \(\overrightarrow{G}_1 \) is a non-trivial connected component of \(\overrightarrow{G} \) of order \(l \leq k \). Then we can pack \(\overrightarrow{G} = \overrightarrow{G} - \overrightarrow{G}_1 \) and \(\overrightarrow{H} = \overrightarrow{H} - \{x_H^1, \ldots, x_H^l\} \) into \(TT_{n-1} \), by induction (we remove at least \(2l - 1 \) arcs, so that is at least \(k \)). We define the
embedding \(\delta \) of \(\overrightarrow{H} \) as follows: \(\delta(x_H^i) = i \), for \(i = 1, \ldots, l \) and \(\delta(v) = \delta'(v) \) for all of the remaining vertices. The embedding \(\sigma \) of \(G_1 \) into \(TT_l \) is easy to see, because \(G_1 \) is a subgraph of the transitive tournament. So \(G \) and \(H \) are packable into \(TT_n \).

(b) \(G_1 \) is a connected component of \(G \) of order \(l > k \). It is a subgraph of \(TT_l \) (by assumption), so we can put its vertices in order \(x_G^1, \ldots, x_G^l \) such that if \(x_G^i \) is an arc of \(G_1 \) then \(i < j \).

(b1) We can pack \(G = G_1 - \{x_G^1, \ldots, x_G^k, y_G\} \) and \(H = H - \{x_H^1, \ldots, x_H^k, x'_H\} \) into \(TT_{n-(k+1)} \) for \(k \geq 3 \), by induction (we remove at least \(2k \) arcs, so that is at least \(\frac{3}{2}(k+1) \) for \(k \geq 3 \)). We define the embeddings \(\sigma \) of \(G \) and \(\delta \) of \(H \) as follows: \(\sigma(x_G^i) = \delta(x_H^i) = i \), for \(i = 1, \ldots, k \), \(\sigma(y_G) = \delta(x_H^k) = k + 1 \) and \(\sigma(v) = \sigma'(v) \), \(\delta(v) = \delta'(v) \) for all of the remaining vertices. So \(G \) and \(H \) are packable into \(TT_n \).

Now, we can assume \(k = 2 \) what implies \(l \geq 3 \). If \(d^+(x_G^1) + d^+(x_G^2) \geq 3 \) or \(d(x'_H) \geq 3 \) we can repeat the reasoning like above, so we assume that \(d(x'_H) = 2 \) and every source in \(G \) is of degree one.

(b2) If three sources \(x_G, w_G, z_G \) are in \(G \), then we can pack \(G = G - \{x_G, w_G, z_G\} \) and \(H = H - \{x_H^1, x'_H, x_H^2\} \) into \(TT_{n-3} \), by induction. We define the embeddings \(\sigma \) of \(G \) and \(\delta \) of \(H \) as follows: \(\sigma(x_G) = \delta(x_H^1) = 1 \), \(\sigma(w_G) = \delta(x_H^2) = 2 \), \(\sigma(z_G) = \delta(x_H^3) = 3 \) and \(\sigma(v) = \sigma'(v) \), \(\delta(v) = \delta'(v) \) for all of the remaining vertices. So \(G \) and \(H \) are packable into \(TT_n \).

(b3) If only two sources \(x_G, z_G \) are in \(G \) and \(x'_H \) is adjacent from \(x_G \), then let \(z_H \) be a source of \(H \) different from \(x_H^1 \) and \(x_H^2 \) (if such \(z_H \) does not exist then \(H \) is the semipath \(x_H^1x_H^2x'_H \) and a packing of \(G \) and \(H \) is easy). We can pack \(G = G - \{x_G, z_G, x'_H, y_G\} \) and \(H = H - \{x_H^1, x_H^2, x'_H\} \) into \(TT_{n-4} \), by induction. We define the embeddings \(\sigma \) of \(G \) and \(\delta \) of \(H \) as follows: \(\sigma(x_G) = \delta(z_H) = 1 \), \(\sigma(z_G) = \delta(x_H^1) = 2 \), \(\sigma(x'_H) = \delta(x_H^2) = 3 \), \(\sigma(y_G) = \delta(x_H^3) = 4 \) and \(\sigma(v) = \sigma'(v) \), \(\delta(v) = \delta'(v) \) for all of the remaining vertices. So \(G \) and \(H \) are packable into \(TT_n \).

(b4) If only one source \(x_G \) is in \(G \), \(x'_H \) is adjacent from \(x_G \) and \(z'_G \) is adjacent from \(z_G \). Let \(z_H \) be a source of \(H \) different from \(x_H^1 \) and \(x_H^2 \) (if such \(z_H \) does not exist then \(H \) is the semipath \(x_H^1x_H^2x'_H \) and a packing of \(G \) and \(H \) is easy). It is easy to see that in this situation packing of \(G \) and \(H \) into \(TT_n \) is similar to Subcase b3.

Thus, by induction, the proof is complete.

References