

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 307 (2007) 971-974

www.elsevier.com/locate/disc

Packing of two digraphs into a transitive tournament

Monika Pilśniak

Faculty of Applied Mathematics AGH, Department of Discrete Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland

Received 22 September 2003; received in revised form 16 June 2004; accepted 22 November 2005 Available online 22 September 2006

Abstract

Let \vec{G} and \vec{H} be two oriented graphs of order *n* without directed cycles. Görlich, Pilśniak and Woźniak proved [A note on a packing problem in transitive tournaments, preprint Faculty of Applied Mathematics, AGH University of Science and Technology, No. 37/2002] that if the number of arcs in \vec{G} is sufficiently small (not greater than 3(n-1)/4) then two copies of \vec{G} are packable into the transitive tournament TT_n . This bound is best possible.

In this paper we give a generalization of this result. We show that if the sum of sizes of \vec{G} and \vec{H} is not greater than $\frac{3}{2}(n-1)$ then the digraphs \vec{G} and \vec{H} are packable into TT_n . © 2006 Elsevier B.V. All rights reserved.

MSC: 05C70; 05C35

Keywords: Packing of digraphs; Transitive tournaments

1. Introduction

Let \vec{G} be a digraph of order *n* with the vertex set $V(\vec{G})$ and the arc set $E(\vec{G})$. A digraph without directed cycles of the length of two is called an *oriented graph*. The replacement of every arc uv in an oriented graph \vec{G} by an edge uv yields its *underlying graph*.

Let \vec{G} be an oriented graph. For any vertex $v \in V(\vec{G})$ let us denote by $d^+(v)$ the *outdegree* of v, i.e. the number of vertices of \vec{G} that are adjacent from v. By $d^-(v)$ we denote the *indegree* of v, i.e. the number of vertices adjacent to v. The *degree* of a vertex v, denoted by d(v), is the sum $d(v) = d^-(v) + d^+(v)$. A vertex x such that $d(x) = d^+(x)$ is called *a source* and a vertex y such that $d(y) = d^-(y)$ is called *a sink*.

A digraph \vec{G} is called *transitive* when it satisfies the condition of transitivity: if uv and vw are two arcs of \vec{G} then uw is an arc, too.

A *tournament* is an oriented graph such that its underlying graph is complete. A transitive tournament of order n will be denoted by TT_n . As it is unique up to isomorphism, throughout the paper, we will view TT_n as shown in Fig. 1. We can denote the vertices in TT_n by consecutive integers in such way that if i < j then ij is an arc of TT_n . The vertices 1, 2 and n will be called the *first*, the *second* and the *last vertex* of TT_n , respectively.

A *semipath* between two distinct vertices v_1 and v_k in an oriented graph \vec{G} is a path between v_1 and v_k in the underlying graph G. The semipath is denoted by $v_1 \dots v_k$, where v_1, \dots, v_k are vertices and $v_{i-1}v_i \in E(\vec{G})$ or $v_i v_{i-1} \in E(\vec{G})$ for $i \in \{2, \dots, k\}$.

E-mail address: pilsniak@agh.edu.pl.

⁰⁰¹²⁻³⁶⁵X/ $\$ - see front matter $\$ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2005.11.038

Fig. 1. Transitive tournament TT_n .

Let \vec{G} be an oriented graph of order *n*. An *embedding of* \vec{G} *into* TT_n is a couple (σ, σ') in which σ is a bijection $V(\vec{G}) \rightarrow \{1, ..., n\} = V(TT_n)$ and σ' is the injection $E(\vec{G}) \rightarrow E(TT_n)$ induced by σ (i.e. for any arc $ij \in E(\vec{G})$, $\sigma'(ij) = \sigma(i)\sigma(j)$). We will speak more simply of *the embedding* σ of \vec{G} . In the case $V(\vec{G}) = k < n$ we add (n - k) isolated vertices to \vec{G} and define an embedding of \vec{G} into TT_n analogously. We say that \vec{G} is embeddable into TT_n if $\vec{G'} := \vec{G} \cup \{\text{isolated points}\}$ is embeddable.

A packing of two oriented graphs \vec{G} , \vec{H} of order *n* into TT_n is a couple (σ, δ) in which σ and δ are embeddings of \vec{G} and \vec{H} , respectively, such that the sets $\sigma'(E(\vec{G}))$ and $\delta'(E(\vec{H}))$ are disjoint. We say that \vec{G} and \vec{H} are packable into TT_n .

There are many results concerning packing of simple graphs. The basic result was proved, independently, in [2,3,7].

Theorem 1. Let G, H be graphs of order n. If $|E(G)| \leq n-2$ and $|E(H)| \leq n-2$ then G and H are packable into K_n .

Sauer and Spencer and independently Bollobás and Eldridge consider conditions on the sum of sizes of two graphs G and H that ensure the possibility of packing of G and H into the complete graph. They proved the following theorem [2,7].

Theorem 2. Let G and H be graphs of order n. If $|E(G)| + |E(H)| \leq \frac{3}{2}(n-1)$, then there is a packing G and H into K_n .

They also give an example that the theorem is best possible.

The main references of this paper and of other packing problems are the last chapter of Bollobás's book [1], the 4th Chapter of Yap's book [9] as well the survey papers [8,10].

Görlich, Pilśniak, Woźniak [6] investigated the existence of a packing of two copies of a given oriented graph \vec{G} into TT_n . More precisely, the following result was proved therein.

Theorem 3. Let \vec{G} be an oriented graph without any directed cycle and such that $|E(\vec{G})| \leq 3(n-1)/4$. Then two copies of \vec{G} are packable into TT_n .

This bound is best possible.

In our paper we give a generalization of this result. At first we wanted to obtain that two oriented graphs \vec{G} and \vec{H} of order *n* without any directed cycle and such that the size of each of \vec{G} and \vec{H} is not greater than 3(n-1)/4 are packable into TT_n .

In reality we are able to prove the following much stronger theorem.

Theorem 4. Let \vec{G} and \vec{H} be two oriented graphs of order *n* without any directed cycle. If $|E(\vec{G})| + |E(\vec{H})| \leq \frac{3}{2}(n-1)$, then \vec{G} and \vec{H} are packable into TT_n .

2. Proof of Theorem 4

At the beginning we notice that an oriented graph \vec{G} of order *n* is embeddable into TT_n iff \vec{G} does not include any directed cycle.

Let \vec{G} be a subgraph of TT_n of order *n* and size m_1 and \vec{H} be a subgraph of TT_n of order *n* and size m_2 and such that $m_1 + m_2 \leq \frac{3}{2}(n-1)$.

We use induction on the order *n* of the transitive tournament. We remark that for $n \le 2$ at most one of the oriented graphs satisfying the assumption of Theorem 4 has one arc and, obviously, our theorem is true. For n = 3 the sizes of

 \vec{G} and \vec{H} satisfying the assumption of Theorem 4 are at most 3 and 0 or 2 and 1. In both cases, it is easy to see, that \vec{G} and \vec{H} are packable into TT_3 .

Now, let $n \ge 4$ and assume that our result is true for all n' < n. The main idea of this part of the proof is to distinguish two cases:

Case A: Neither \overline{G} nor \overline{H} has any isolated vertex.

We can assume, without loss of generality, that $m_1 \leq m_2$, so $m_1 \leq \frac{3}{4}(n-1)$. It is easy to see that $m_1 \geq \lceil n/2 \rceil$ and $m_2 \geq \lceil n/2 \rceil$, because \vec{G} and \vec{H} do not have any isolated vertex. Moreover $m_2 \leq n - \frac{3}{2}$, because $m_1 \leq m_2$, so \vec{H} has at least two non-trivial components. Hence at least two sources x_H and y_H are in \vec{H} , because every subgraph of TT_n has a source.

Now, let $\overrightarrow{G_1}$ be an isolated arc $x_G y_G$ and $\overrightarrow{G_2}$ be a semipath $x_G y_G z_G$. Because the size of \overrightarrow{G} is sufficiently small, \overrightarrow{G} has to contain a component isomorphic to $\overrightarrow{G_1}$ or $\overrightarrow{G_2}$. So we consider two subcases:

Subcase A1: If $\overrightarrow{G_1}$ is a component of \overrightarrow{G} then we can pack $\overrightarrow{G'} = \overrightarrow{G} - \{x_G, y_G\}$ and $\overrightarrow{H'} = \overrightarrow{H} - \{x_H, y_H\}$ into TT_{n-2} , by induction. So let TT_{n-2} be a transitive tournament with the vertices numbered from 3 to *n*. Let σ' and δ' be embeddings of $\overrightarrow{G'}$ and $\overrightarrow{H'}$ in TT_{n-2} , respectively. Now, we define embeddings σ of \overrightarrow{G} and δ of \overrightarrow{H} into TT_n as follows: $\sigma(x_G) = \delta(x_H) = 1, \sigma(y_G) = \delta(y_H) = 2$ and $\sigma(v) = \sigma'(v), \delta(v) = \delta'(v)$ for all of the remaining vertices. So \overrightarrow{G} and \overrightarrow{H} are packable into TT_n .

Subcase A2: If $\overrightarrow{G_1}$ is no component of \overrightarrow{G} , then $\overrightarrow{G_2}$ is its component. Moreover $m_1 \ge \frac{2}{3}n$, $m_2 \le n - (n+9)/6$ and so \overrightarrow{H} has at least three non-trivial components. Let z_H be the third source in \overrightarrow{H} , then we can pack $\overrightarrow{G'} = \overrightarrow{G} - \{x_G, y_G, z_G\}$ and $\overrightarrow{H'} = \overrightarrow{H} - \{x_H, y_H, z_H\}$ into TT_{n-3} with the vertices numbered from 4 to *n*, by induction. We define an embedding δ of \overrightarrow{H} into TT_n as follows: $\delta(x_H) = 1$, $\delta(y_H) = 2$, $\delta(z_H) = 3$. The embedding σ of the semipath $x_G y_G z_G$ into TT_3 is easy.

Case B: \overline{G} has an isolated vertex y_G .

Let x_G be a source of \vec{G} and x_H be a source of \vec{H} . Let x'_H be a vertex adjacent from x_H and x'_G be a vertex adjacent from x_G .

Subcase B1: If $d(x_H) \ge 2$, then we can pack $\vec{G}' = \vec{G} - \{y_G\}$ and $\vec{H}' = \vec{H} - \{x_H\}$ into TT_{n-1} , by induction. So let TT_{n-1} be a transitive tournament with the vertices numbered from 2 to *n*. Let σ' and δ' be embeddings of \vec{G}' and \vec{H}' in TT_{n-1} , respectively.

Now, we define the embeddings σ of \vec{G} and δ of \vec{H} into TT_n as follows: $\sigma(y_G) = \delta(x_H) = 1$ and $\sigma(v) = \sigma'(v)$, $\delta(v) = \delta'(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into TT_n .

Now, we can assume, that every source of \overline{H} is of the degree one.

Subcase B2: If $d^{-}(x'_{H}) = 1$, then we consider three situations:

(a) If $d(x_G) \ge 2$ or $d(x'_H) \ge 2$, then we can pack $\vec{G'} = \vec{G} - \{x_G, y_G\}$ and $\vec{H'} = \vec{H} - \{x_H, x'_H\}$ into TT_{n-2} , by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma(x_G) = \delta(x_H) = 1$, $\sigma(y_G) = \delta(x'_H) = 2$ and $\sigma(v) = \sigma'(v)$, $\delta(v) = \delta'(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into TT_n .

Now, we can assume, that \overline{H} has only isolated points or isolated arcs as its connected components.

(b) If z_G is a second source in \vec{G} , then we can pack \vec{G} and \vec{H} into TT_n similar to Subcase A1.

Now, we can assume, that only one source x_G is in \overrightarrow{G} .

(c) Let z_H be a second source in \vec{H} .

If $d(x'_G) \ge 3$, then we can pack $\vec{G}' = \vec{G} - \{x_G, y_G, x'_G\}$ and $\vec{H}' = \vec{H} - \{z_H, x_H, x'_H\}$ into TT_{n-3} , by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma(x_G) = \delta(z_H) = 1$, $\sigma(y_G) = \delta(x_H) = 2$, $\sigma(x'_G) = \delta(x'_H) = 3$ and $\sigma(v) = \sigma'(v)$, $\delta(v) = \delta'(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into TT_n .

If $d(x'_G) = 2$ and x''_G is adjacent from x'_G , then we can pack $\vec{G'} = \vec{G} - \{x_G, x'_G, x''_G\}$ and $\vec{H'} = \vec{H} - \{x_H, z_H, x'_H\}$ into TT_{n-3} , by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma(x_G) = \delta(x_H) = 1$, $\sigma(x'_G) = \delta(z_H) = 2$, $\sigma(x''_G) = \delta(x'_H) = 3$ and $\sigma(v) = \sigma'(v)$, $\delta(v) = \delta'(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into TT_n .

Subcase B3: Now $d^{-}(x'_{H}) = k > 1$ and let $x_{H}^{1}, \ldots, x_{H}^{k}$ be the sources of \overrightarrow{H} adjacent to x'_{H} . We consider two situations: (a) $\overrightarrow{G_{1}}$ is a non-trivial connected component of \overrightarrow{G} of order $l \leq k$. Then we can pack $\overrightarrow{G'} = \overrightarrow{G} - \overrightarrow{G_{1}}$ and $\overrightarrow{H'} = \overrightarrow{H} - \overrightarrow{G}$

 $\{x_{H}^{1}, \dots, x_{H}^{l}\}$ into TT_{n-l} , by induction (we remove at least 2l - 1 arcs, so that is at least $\frac{3}{2}l$ for $l \ge 2$). We define the

embedding δ of \vec{H} as follows: $\delta(x_H^i) = i$, for i = 1, ..., l and $\delta(v) = \delta'(v)$ for all of the remaining vertices. The embedding σ of $\vec{G_1}$ into TT_l is easy to see, because $\vec{G_1}$ is a subgraph of the transitive tournament. So \vec{G} and \vec{H} are packable into TT_n .

(b) $\overrightarrow{G_1}$ is a connected component of \overrightarrow{G} of order l > k. It is a subgraph of TT_l (by assumption), so we can put its vertices in order x_G^1, \ldots, x_G^l such that if $x_G^i x_G^j$ is an arc of $\overrightarrow{G_1}$ then i < j.

(b1) We can pack $\vec{G'} = \vec{G} - \{x_G^1, \dots, x_G^k, y_G\}$ and $\vec{H'} = \vec{H} - \{x_H^1, \dots, x_H^k, x_H'\}$ into $TT_{n-(k+1)}$ for $k \ge 3$, by induction (we remove at least 2k arcs, so that is at least $\frac{3}{2}(k+1)$ for $k \ge 3$). We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma(x_G^i) = \delta(x_H^i) = i$, for $i = 1, \dots, k$, $\sigma(y_G) = \delta(x_H') = k + 1$ and $\sigma(v) = \sigma'(v)$, $\delta(v) = \delta'(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into TT_n .

Now, we can assume k = 2 what implies $l \ge 3$. If $d^+(x_G^1) + d^+(x_G^2) \ge 3$ or $d(x'_H) \ge 3$ we can repeat the reasoning like above, so we assume that $d(x'_H) = 2$ and every source in \vec{G} is of degree one.

(b2) If three sources x_G , w_G , z_G are in \vec{G} , then we can pack $\vec{G'} = \vec{G} - \{x_G, w_G, z_G\}$ and $\vec{H'} = \vec{H} - \{x_H^1, x_H^2, x_H'\}$ into TT_{n-3} , by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma(x_G) = \delta(x_H^1) = 1$, $\sigma(w_G) = \delta(x_H^2) = 2$, $\sigma(z_G) = \delta(x_H') = 3$ and $\sigma(v) = \sigma'(v)$, $\delta(v) = \delta'(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into TT_n .

(b3) If only two sources x_G , z_G are in \vec{G} and x'_G is adjacent from x_G , then let z_H be a source of \vec{H} different from x_H^1 and x_H^2 (if such z_H does not exist then \vec{H} is the semipath $x_H^1 x_{H'} x_H^2$ and a packing of \vec{G} and \vec{H} is easy). We can pack $\vec{G'} = \vec{G} - \{x_G, z_G, x'_G, y_G\}$ and $\vec{H'} = \vec{H} - \{z_H, x_H^1, x_H^2, x'_H\}$ into TT_{n-4} , by induction. We define the embeddings σ of \vec{G} and δ of \vec{H} as follows: $\sigma(x_G) = \delta(z_H) = 1$, $\sigma(z_G) = \delta(x_H^1) = 2$, $\sigma(x'_G) = \delta(x_H^2) = 3$, $\sigma(y_G) = \delta(x'_H) = 4$ and $\sigma(v) = \sigma'(v)$, $\delta(v) = \delta'(v)$ for all of the remaining vertices. So \vec{G} and \vec{H} are packable into TT_n .

(b4) If only one source x_G is in \vec{G} , x'_G is adjacent from x_G and z'_G is adjacent from z_G . Let z_H be a source of \vec{H} different from x_H^1 and x_H^2 (if such z_H does not exist then \vec{H} is the semipath $x_H^1 x_{H'} x_H^2$ and a packing of \vec{G} and \vec{H} is easy). It is easy to see that in this situation packing of \vec{G} and \vec{H} into TT_n is similar to Subcase b3.

Thus, by induction, the proof is complete. \Box

References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
- [2] B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978) 105–124.
- [3] D. Burns, S. Schuster, Every (n, n-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277–279.
- [6] A. Görlich, M. Pilśniak, M. Woźniak, A note on a packing problem in transitive tournaments, preprint Faculty of Applied Mathematics, AGH University of Science and Technology, No. 37/2002.
- [7] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978) 295–302.
- [8] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997) 1-78.
- [9] H.P. Yap, Some Topics in Graph Theory, London Mathematical Society, Lecture Notes Series, vol. 108, Cambridge University Press, Cambridge, 1986.
- [10] H.P. Yap, Packing of graphs-a survey, Discrete Math. 72 (1988) 395-404.