SIMULATION OF STEADY STATE THERMAL PROCESSES

Thermal phenomena occurring in the steady statdesmeribed by the Fourier equation in the
following form:
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where:
ke(t), ky(t), kAt) — anisotropic coefficients of heat conductiorpeledent on temperatute
Q — heat generation rate.
The solution of equation (5.1) is reduced to thsktaf finding the minimum of such

functional for which Equation (5.1) is the Eulemuatjon. According to the variance account
[5, 14, 17], the functional would be:
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The functiont(x, y, 2 must satisfy the boundary conditions on the serfaicthe area. The
heat flux g is determined on the surface accortbrtge law of convection:
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where:
ax’ ay, 8, _ directional cosines of normal vector to the scef
L, — ambient temperature;

wow _ convective heat transfer coefficient;

Expressiona(t, -t) refers to the exchange of heat with the environnieimé coefficienta is
define according to the existing conditions. It is possibd exchange heat with gas, air or
cooling medium on free surfaces. Introducing bouypdanditions into function (5.3) directly
is not possible. In practice, these conditionsiameosed by adding to the function (5.3) the
integral in the form:
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where:
S- surface on which the boundary conditions are set

Combining the boundary conditions (5.8) with thesfier equation (5.3) gives:
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Discretization of the presented problem is basedlividing the area in separated elements
and representing the temperature inside the eleaseatfunction of nodal values according to
the following relation:

t=> Nt ={NF{d)- (5.10)
By introducing dependence (5.10) to the functio®)%ve obtain:
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The minimization of functional (5.11) is based aart@al derivatives of this function with
respect to the node values of temperafthewvhich results in the following set of equations:
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The system of equations (5.12) written in matristridhas the following form:

[H]t}+{P} =0. (5.13)
where:
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In other way, the minimization of the function (5)Ican be done by direct selection of the
node temperature values by one of the existingmigation methods.

1.1 DETERMINATION OF TEMPERATURE FIELD IN ROD — STEADY
STATE

Consider the process of steady heat conductionrodaSuppose that heat transfer will be
effected only by the two ends of the rod (Fig. 5F9r the fixed end of the rod the heat flux g
is added. At the free end of the rod heat exchaakgs place by convection. Convection heat
transfer coefficient is equal , while the ambient temperature is equalkio

Fig. 5.1. Scheme of the problem of determining the tempegdiald in the rod

Rod length is equal to L. Lets consider the diffiéisd Fourier equation for the case of one-
dimensional problem:
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k% -0, (5.16)



with the boundary conditions:
kﬂ +q=0

dx , when x=0; (5.17)

k$+a(t -t,)=0
dx , When x=L. (5.18)

Heat flux q is a positive if heat is taken awaynfrthe rod. So functional (5.9) for the case
under consideration can be written in the followinagy:
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Fig. 5.2. Division of the computational domain into two FEM elements.

Consider the process of minimizing the functioral). Rod split into two finite elements
with the nodes 1, 2, 3 (Fig. 5.2) 2 and L® are the lengths of the elements. The nodal
temperature values tl1, t2, t3 are the unknowns t@imperature inside the elements is defined
as follows:
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Considered integrals in functional (5.19):
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where:

S andS — rod cross section in the nodes 1 and 3.
To determine the functional volume integrals (5.d¢&8lgulated temperature derivatives with
respect to x:
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Given thatdv=S9dx using the algebraic transformation obtained:
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Coefficient of thermal conductivitlk can be different for each finite element. Sumneatize
formulas (5.24, 5.25 and 5.28) and obtain the fonel (5.19) as a function of the nodal
values of temperature:
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In equation (5.29) C ratios were calculated a®ad!:
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Therefore, two options may be considered: the tim@nimization of the function (5.29), by
selecting value of nodal temperature or use extreoraitions of the function. The last
method requires the derivative of formula (5.29)hwiespect to the nodal variables and the
alignment derivatives to zero. As a result of thgeration we obtain as many equations as
there are unknowns. It was assumed thaSthe S? = S considered system of equations:
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The system of equations (5.31) can be written itrisna
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or:



[Hft}+{r}=0 (5.33)
where:
[H] = matrix of coefficients of the system of eqoas (5.31);
{P} - vector of the right part of the system of etjmas (5.31).
It should be noted that the resulting matrix of fioents of the system of equations is
symmetric and band (pasmowa). Considered solutioth¢ same problem is based on the

received general solution (5.13). For the individease, formulas (5.14) and (5.15) can be
written as follows (for any finite element):

[H]= f {a H {N}} dV+j KN} ds, (5.34)
{P}= —ja{N}tmdS+Jq{N}dS. (5.35)

Vectors, entering to the equations (5.34) and (5@ be written as follows:
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Then the matrix [H] can be define as follows:
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and after integration we have:
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Fig. 5.4. Scheme for matrix multiplication

According to the rules of matrix multiplication A/lB matrix C was obtained (for the first
element fig. 5.2).

o1 x X
o L®2 L®2 o - L@ L@ ,
e e e Ty
W2 w2 o Lo

and for finite element number 2 (Fig. 5.2):
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The vector load (heat flux) expressed by the foen{g135) can be converted to the form:

{P}:—£a{mi_ }tmd5+jq{::i_ }ds.

J S J

For the finite element 1 vector {P} is equal to:
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for the finite element 2 vector {P} is equal to:
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In order to obtain the system of equations foratea (domain) local matrix [H] must be
connected to global matrix [H]:



Hl=3[H]°.

The next step is the construction of the stiffmasdrix. In the case of second finite element
connection matrix can be describe as follows:

1 2
1 2,212,3
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The sum of matrix elements taking account of l@taments of the matrix in the global
matrix [H] is equal to:
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Load vector can be defined in the same way:
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As can be seen the same result was obtainedshews in the equations (5.30)-(5.32).

1.1. ZADANIA RACHUNKOWE

Task 5.1. Calculate temperature in the nodes of finite elemeesh for the problem of steady
flow of heat in the rod (fig. 5.2).
Input data:

thermal conductivity - k=50 W/mK,
heat transfer coefficient a=10 W/nvK,

area -S=2n?,
element length -L=5m, LW=25m,L?=25m,
heat flux - 0= -300 W/n,

Ambient temperature - t-=400 K

Solution.
Calculation of the coefficients of the system ofigiipns (5.32):



C(l) :———:40_:(:(2);
LY 25m K
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0S=-150-Y% 2m? = -300W ;
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So we have following system of equations:

40 -40 0 |[t,] [-300
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After its solution was with respect téhe following temperature were obtained: {t}={430,
422.5, 415).

Task 5.2. Calculate the temperature at the nodes of theefel@ment mesh of the task 5.1 by
direct minimization of the functional (5.29).
Solution.

(_-rlll _‘]‘I2|
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oS
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c=[40 450
Alfa_$=[20 © 400 -
qS=|-300 350
tsr=400 300 /
250 7
J1=[800000 200 7
J2=]200000 150
J3=|-30000 100 ——af
J4=10 50
J= 970000
0 . .
t1=[100 1 2 N 3 |
t2=[300 umer wgzla
t3=|400

Fig. 5.4. EXCEL sheet with the given initial temperature wligttion.
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Fig. 5.5. EXCEL sheet after the minimization of functional.
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