
SIMULATION OF STEADY STATE THERMAL PROCESSES 

Thermal phenomena occurring in the steady state are described by the Fourier equation in the 
following form: 
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where:  
kx(t), ky(t), kz(t)  – anisotropic coefficients of heat conduction dependent on temperature t;  
Q – heat generation rate.  
 
The solution of equation (5.1) is reduced to the task of finding the minimum of such 
functional for which Equation (5.1) is the Euler equation. According to the variance account 
[5, 14, 17], the functional would be: 
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The function t(x, y, z) must satisfy the boundary conditions on the surface of the area. The 
heat flux q is determined on the surface according to the law of convection: 

( )( ) x y z konw

t t t
k t a a a t t

x y z ∞
 ∂ ∂ ∂+ + = α − ∂ ∂ ∂ 

, (5.4) 

where:  

xa , ya
, za  – directional cosines of normal vector to the surface;  

         ∞t       – ambient temperature;  

        konwα   – convective heat transfer coefficient;  
 
Expression ( )tt −∞α  refers to the exchange of heat with the environment. The coefficient α is 

define according to the existing conditions. It is possible to exchange heat with gas, air or 
cooling medium on free surfaces. Introducing boundary conditions into function (5.3) directly 
is not possible. In practice, these conditions are imposed by adding to the function (5.3) the 
integral in the form: 
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where:  
S – surface on which the boundary conditions are set.  
 
 

Combining the boundary conditions (5.8) with the Fourier equation (5.3) gives:  
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Discretization of the presented problem is based on dividing the area in separated elements 
and representing the temperature inside the element as a function of nodal values according to 
the following relation: 
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By introducing dependence (5.10) to the function (5.9) we obtain: 
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The minimization of functional (5.11) is based on partial derivatives of this function with 
respect to the node values of temperature {t}, which results in the following set of equations: 
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The system of equations (5.12) written in matrix form has the following form: 
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where: 
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In other way, the minimization of the function (5.11) can be done by direct selection of the 
node temperature values by one of the existing minimization methods. 

 
 

1.1 DETERMINATION OF TEMPERATURE FIELD IN ROD – STEADY 
STATE 

Consider the process of steady heat conduction in a rod. Suppose that heat transfer will be 
effected only by the two ends of the rod (Fig. 5.1). For the fixed end of the rod the heat flux q 
is added. At the free end of the rod heat exchange takes place by convection. Convection heat 
transfer coefficient is equal α , while the ambient temperature is equal to t∞. 

 
Fig. 5.1. Scheme of the problem of determining the temperature field in the rod 

Rod length is equal to L. Lets consider the differential Fourier equation for the case of one-
dimensional problem: 
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with the boundary conditions:  
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,  when   x=0; (5.17) 
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Heat flux q is a positive if heat is taken away from the rod. So functional (5.9) for the case 
under consideration can be written in the following way: 
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Fig. 5.2. Division of the computational domain into two FEM elements. 
 
Consider the process of minimizing the functional (5.19). Rod split into two finite elements 
with the nodes 1, 2, 3 (Fig. 5.2), L (1) and L (2) are the lengths of the elements. The nodal 
temperature values t1, t2, t3 are the unknowns. The temperature inside the elements is defined 
as follows: 
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Considered integrals in functional (5.19): 
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where:  
S1 and S3 – rod cross section in the nodes 1 and 3.  

To determine the functional volume integrals (5.19) calculated temperature derivatives with 
respect to x: 



(1)
1 2

(1)

( )t tdt

dx L

− += , (5.26) 

(2)
2 3

(2)

( )t tdt

dx L

− +
=   (5.27) 

Given that dV=S(e)dx using the algebraic transformation obtained: 
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Coefficient of thermal conductivity k can be different for each finite element. Summarize the 
formulas (5.24, 5.25 and 5.28) and obtain the functional (5.19) as a function of the nodal 
values of temperature: 
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In equation (5.29) C ratios were calculated as follows:  
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Therefore, two options may be considered: the direct minimization of the function (5.29), by 
selecting value of nodal temperature or use extreme conditions of the function. The last 
method requires the derivative of formula (5.29) with respect to the nodal variables and the 
alignment derivatives to zero. As a result of this operation we obtain as many equations as 
there are unknowns. It was assumed that the S(1) = S(2) = S. considered system of equations: 
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The system of equations (5.31) can be written in matrix 

form: 00

0

0

3

2

1

)2()2(

)2()2()1()1(

)1()1(

=
















−
+

































+−
−+−

−

∞St

qS

t

t

t

SCC

CCCC

CC

αα
, (5.32) 

or:  



[ ]{ } { } 0=+ PtH , (5.33) 

where:  
[H]  – matrix of coefficients of the system of equations (5.31);  
{ P}  – vector of the right part of the system of equations (5.31).  

 
It should be noted that the resulting matrix of coefficients of the system of equations is 
symmetric and band (pasmowa). Considered solution to the same problem is based on the 
received general solution (5.13). For the individual case, formulas (5.14) and (5.15) can be 
written as follows (for any finite element): 
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Vectors, entering to the equations (5.34) and (5.35) can be written as follows: 
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Then the matrix  [H] can be define as follows: 
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and after integration we have:  
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Fig. 5.4. Scheme for matrix multiplication 

 
According to the rules of matrix multiplication A by B matrix C was obtained (for the first 
element fig. 5.2). 
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and for finite element number 2 (Fig. 5.2):  

[ ] S
NNNN

NNNN
SL

LL

LLkH
jjji

jiii








+

















−

−
= α)2(

2)2(2)2(

2)2(2)2()2(

11

11

, 

or: 

[ ]


















+−

−
=








+



















−

−
=

S
L

Sk

L

Sk
L

Sk

L

Sk

S
L

Sk

L

Sk
L

Sk

L

Sk

H
αα

)2()2(

)2()2(

)2()2(

)2()2()2(

0

00 . 

The vector load (heat flux) expressed by the formula (5.35) can be converted to the form: 
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For the finite element 1 vector {P} is equal to: 
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for the finite element 2 vector {P} is equal to:  
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In order to obtain the system of equations for the area (domain) local matrix [H] must be 
connected to global matrix [H]: 
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The next step is the construction of the stiffness matrix. In the case of second finite element 
connection matrix can be describe as follows: 

 1 2 
1 2, 2 2, 3 
2 3, 2 3, 3 

The sum of matrix elements taking account of local elements of the matrix in the global 
matrix [H] is equal to: 
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Load vector can be defined in the same way: 
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As can be seen the same result was obtained, as is shown in the equations (5.30)-(5.32).   

1.1.  ZADANIA RACHUNKOWE  

Task 5.1. Calculate temperature in the nodes of finite element mesh for the problem of steady 
flow of heat in the rod (fig. 5.2).  
Input data:  
 
thermal conductivity       - k=50 W/mK,  
heat transfer coefficient  - α=10 W/m2K,   
area                                 - S=2 m2,  
element length                - L=5 m,   L(1)=2.5 m,  L(2)=2,5 m,  
heat flux                          - q= -300 W/m2,   
Ambient temperature      - t∞=400 K 
 
Solution.  
Calculation of the coefficients of the system of equations (5.32):  
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So we have following system of equations: 
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After its solution was with respect to t the following temperature were obtained: {t}={430, 
422.5, 415}. 
 
Task 5.2. Calculate the temperature at the nodes of the finite element mesh of the task 5.1 by 
direct minimization of the functional (5.29).  
Solution. 

 
Fig. 5.4. EXCEL sheet with the given initial temperature distribution. 



 
Fig. 5.5. EXCEL sheet after the minimization of functional. 

 


