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Abstract—The route planning subsystem is an important com-
ponent of the Intelligent System for Global Monitoring Detection
and Identification of Threats (INSIGMA). Its goal is to calculate
an optimal route taking into consideration contextual information
and values of dynamically updated parameters describing the
current traffic. Developing the system we have taken an approach
consisting in providing a set of simpler route planning algorithms
that can be used in various situations instead a single all purpose
procedure. A key issue encountered during the system develop-
ment was the correct choice and configuration of algorithm to
be used. The selection depends on such factors, as: user profile
and preferences, dynamically collected traffic data and historical
records. In the developed system the knowledge about these
factors, their relations and rules is gathered in ontologies. The
paper presents the system architecture and an execution scenario,
in which the decision on selection and configuration of one of
the several implemented route planning algorithms is based on
semantic information and build in rules.

Index Terms—ontology, dynamic route planning, personaliza-
tion

I. INTRODUCTION

The objective of the INSIGMA project is to develop and
implement heterogeneous information system for complex
detection, identification of threats, monitoring and identifica-
tion of mobile objects. The project is to propose innovatory
solutions in 5 areas related to:

• Monitoring and identification of vehicles and people,
• Dynamic monitoring and identification of threats within

the traffic,
• Analysis of traffic and optimizing routes for external

users,
• Identification of suspicious people and threats,
• Discovery of data and multimedia with the watermarking

technology.
The Route Planning Subsystem is one of the key compo-

nents within the INSIGMA system. Its goal is to calculate an
optimal route between two locations taking into consideration
contextual information and values of dynamically updated pa-
rameters describing the current traffic. These parameters orig-
inate from various types of integrated detectors: microwave
and inferred lasers, ultrasonic sensors, inductive loops, camera
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Fig. 1. Main components of the route planning subsystem

equipped video image processors, acoustic arrays, mobile GPS
trackers, and others.

Main components of the INSIGMA system relevant to
the Route Planning Subsystem are presented in Fig. 1. The
subsystem uses the information about a road network stored in
the Static Map, current values of traffic monitoring parameters
from the Traffic Repository and historical data stored in the
Data Warehouse. The figure refers to one of the system
operation mode, where optimal route calculation are done at
the server side.

During the system development there were elicited several
requirements regarding its architecture and various quality
attributes. They became (sometimes conflicting) drivers for
making particular architectural decisions. Below we list the
most important of them:

• An ontology will be used to define all monitoring pa-
rameters stored in the Traffic Repository to enable infor-
mation sharing and integration with sensors and clients
(modifiability);

• The Traffic Repository must meet assumed performance
requirements, what can be an indication to use a relational
database;

• The Route Planning Subsystem will perform dynamic
and personalized planning, what favours using semantic
techniques to describe user profiles, preferences and
contextual information (customizability).



• From project management perspective the dynamic route
planning combined with personalization is attributed with
a high risk, as it is still a novel and challenging technol-
ogy, to mitigate this risk the system will provide a frame-
work for integrating multiple route planning algorithms
and making decisions which of them should be used for
a particular route planning task.

The main idea presented in this paper is the following:
instead of developing a single and monolithic route plan-
ning algorithm whose behaviour should be adapted to fit all
possible conditions, it is proposed to implement a set of
simpler algorithms. Then, for a particular task instance one
of them will be selected and configured taking into account
various attributes characterizing road network, traffic and user
preferences. Such approach is consistent with the growth
scenario for the system: new algorithms can be added during
the development and maintenance phases without degrading
the existing functionality. Moreover, simpler algorithms can
be easier to develop and work on them can be conducted
concurrently by independent teams.

To adopt successfully such approach, two conditions must
be fulfilled:

1) the system must have a highly modular system ar-
chitecture providing appropriate separation of concerns
accompanied by a suitably chosen integration technique;

2) there must be implemented a framework enabling proper
selection and configuration of algorithms.

In was decided that in both cases the the ontologies and
Semantic Web tools will be used as to support the integration
and decision making. It should be stressed, that collecting
data from sensors, accessing them, as well as realization of
the route planning tasks must satisfy real-time performance
requirements. Due to this, the selection of an algorithm should
be made within relatively short time with use of a small and
efficient set of rules. The decision supporting system uses
ontological representation of knowledge about task properties,
task parameters and algorithm capabilities to select most
promising optimization procedure and properly configure it.

The rest of the paper is organized as follows. The next
section II presents works related to the route planning. In
the section III the logical structure of maps used within the
INSIGMA route planning subsystem is presented. Section IV
discusses algorithms used for route planning and their data
model. Section V briefly presents ontologies developed to
support the system services. The route planning subsystem
architecture and basic use case scenario is described in the
section VI. The next section VII discusses the rules for
algorithm selection. Concluding remarks are presented in VIII.

II. RELATED WORK

The route planning problem can be formulated as follows:
having a directed graph with non-negative weights assigned
to edges find a path between a start point and end point
minimizing the cost function usually assumed to be the sum of
weights. The weights usually express such properties as travel

time, distance, fuel consumption, air pollution, driver satisfac-
tion, tolls, etc. The term static route planning denote the case
where, these weights remain constant over time in opposition
to dynamic route planning, where weights are variable due to
changing traffic and weather conditions (e.g. traffic congestion
increases the travel time and pollution or a rain slows down
the velocity). For personalized route planning, a separate set
of weights can be used for each user type (static dimension)
but the weights may also reflect dynamically changing user
state (preferences, fatigue, remaining fuel) .

Probably, the most known algorithm for determining the
shortest path in a road network is Dijkstra’s algorithm [1].
Dijkstra’s algorithm can be improved by taking in to account
an estimation of the cost from a location to the destination.
A*-algorithm [2] uses a heuristic function to determine the
order in which the search visits nodes in the tree. Nowadays
the A*-algorithm is the most commonly used shortest path
algorithm in geographical networks. Both algorithms can be
used in either static or dynamic route planning problems.

In last years there was observed a rapid speed up of static
route planning methods (up to 106 times in comparison to
classical Dijkstra’s algorithm). An excellent survey on this
topic can be found in [3].

The general idea behind all speed up methods in static route
planning relies in precomputing information that can speed up
the queries. Assuming, that the graph of routes has n vertices,
precomputing all n2 routes between nodes and storing them
in a lookup table would be the fastest solution. This, however,
is still infeasible for large graphs (e.g. the graph of road
network for Western Europe, which has 12 mln. nodes). Due
to this, the novel optimization methods are combinations of
precomputation and efforts to reduce the task complexity.

A multilevel technique described in [4] decomposes the
graph into disjoint subgraphs with common border nodes
and calculates additional edges (shortcuts) linking the border
nodes.

Highway hierarchies [5] analyze precalculated shortes paths
and selects highway edges, i.e. segments of optimal routes not
close to the start and end points. They also remove low degree
nodes drawing shortcuts. This method is somehow similar to
the approach taken in commercial software that favours high
class roads and looks for alternatives only when close to the
source or target.

Highway node routing [6] arranges nodes into multilevel hi-
erarchies and introduces shortcuts between them. The method
is suited for the dynamic route planning, as a weight assigned
to a shortcut edge at the level l can be calculated by performing
low complexity optimization task at level l − 1.

As regards dynamic route planning, an algorithm for plan-
ning an optimum route that takes into account daily congestion
patterns is considered in [7]. Routing algorithms for the k-
shortest path problem for graphs with time-dependent edge
costs was described in [8]. Adaptive route planning algorithm
for handling real-time information, which enable only to
determine the next road segment in the route was proposed
in [9]. Dynamic route planning for car navigation using virus
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genetic algorithms was described in [10].
The practical problem of personalized route plannig, and in

particular using ontologies to represent the task context, user
preferences and profile, was studied in [11] and [12].

III. THE MAPS

The INSIGMA system stores maps in databases whose
structure is based on Open Street Map (OSM). OSM model
[13] defines a map as a collection of vectors of three basic
types (Fig. 2):

• Points (Node), whose attributes are geographical coordi-
nates (longitude and latitude)

• Polylines (Way) defined as ordered sequences of nodes
(including closed polylines: ClosedWay),

• Polygons (Area) being subclasses of Ways.
These vectors can be grouped within containers of Relation
type and attributed with roles, typically: route (a route element)
or multipolygon (an area with holes, eg. a lake with marked
islands).

A Node element can be interpreted as any object represented
by a point on the map, whereas a Way can be any linear
element: a road, shoreline, railroad or a fence. OSM does not
define dedicated data structures for different types of objects
that can appear on the map. Instead, it uses a large set of
tags that can be attributed to vectors or groups of vectors.
They have the form of (key, value) pairs. For each key a
set of possible values is defined. The set of pairs assigned
to vectors determines, how they are interpreted. For example,
a tunnel is defined as a Way with the tunnel=yes tag, a street
can be specified as a single element Way with an attribute
highway=residential, but also as a few Way vectors with the
same name tag, a route with an assigned identifier can be
defined as a relation, whose elements are Way segments.

In the INSIGMA system databases storing maps are logi-
cally decomposed into six components (Fig. 3)

• Physical objects containing routes and other persistent
elements, as building outlines, railroads, water reservoirs,
bridges

• Traffic organization information about prescribed direc-
tions, bans and limits affixed to the physical structure

• Dynamic parameters encompassing traffic parameters de-
livered by sensors (flow of vehicles, jams, travel time for
selected roads) and information on events influencing the
traffic flow (e.g. snowfall or road accidents)

Physical objects (roads, railroads, tunnels, bridges, amenities, leisure areas, etc.)

Traffic organization

Static map
Planned 

changes
Areas
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Fig. 3. Logical structure of INSIGMA maps

• Historical data containing the registered traffic param-
eters, that can be used for future route planning. The
database stores also previously calculated routes (infor-
mation on the start and end point location is limited to
road segments).

• Areas auxiliary classifications of parts of the map used
for selecting appropriate algorithm (heuristics) of route
planning

• Base paths a set of predefined routes used by planning
algorithms, in most cases they correspond to main roads

• Planned changes define future (planned) changes in
traffic organization related to road works or various
events.

The physical objects and traffic organization components
are collectively referred as Static Map, dynamic parameters as
Traffic Repository and historical data as Data Warehouse.

IV. OPTIMIZATION ALGORITHMS

The Route Planning Subsystem operates on the model in
form of a weighted graph obtained by a conversion of the
dynamic map according to the problem parameters (start point,
end point, area), temporal characteristics (travel planned at
present or in the future), criterion function and user profile
(constraints, preferences). A desirable effect of the conversion
is a reduction of the graph size, what may speed up optimiza-
tion procedures. Elements of the graph model are shown on
Fig. 4. The basic model components are Crossroads (graph
node) and RoadSegment (corresponding to an edge). Depend-
ing on the particular algorithm, the model can be extended
by crossroads location and points defining geometry of road
segments (RoadPoints), maneuvers at crossroads (Turns) and
assigned parameters as length of the queue or passage time
(RoadWeights and TurnWeights) or base path markers.

The subsystem determines a route based on an open set
of implemented algorithms, which can be supplemented by
new procedures. In the most sophisticated version two-phase
approach was taken, where in the first phase inauguration
methods are applied and in the second improvement algorithms
(including population ones) are executed. The aim of the
inauguration method is to deliver quickly an initial solution
with accepted quality. Assessment of the calculated route is
realized by a goal function reflecting expectations and criteria
related to a user profile.

The goal function can be based on the travel time, summary
distance, safety factors (crossroads with traffic lights, sepa-
ration of lanes), the time spend in traffic jams, the number
of points of interest passed by and any combination of these
parameters.
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In the inauguration phase one or more construction algo-
rithms are used; their selection is influenced by various factors
related to the algorithm type, task type, user attributes and
areas in which the route is to be planned.

The general algorithm scheme consists in building a path
starting from the initial node and selecting subsequent nodes
among the neighbor nodes in line with the selected criterion
(deterministic or with a probability proportional to the goal
function value). The procedure is continued until the target
node is reached.

In order to reduce the execution time of algorithms and
increase the quality of obtained initial solutions, various sup-
plementary information are used, that are usually ignored in
classical algorithms finding the shortest path. They include
geographical coordinates of the nodes, their distances or angles
between the vectors spanned on possible edges and the vector
pointing from the current to the target point. These factors
allow to tune algorithms for coarse route calculation promoting
nodes approaching the path to the specified target or interme-
diate targets. Another factor taken into account are predefined
base paths determining recommended routes between selected
nodes. In most cases they correspond to the high intensity road
infrastructure (1st or 2nd class roads) and frequently selected
travel directions. Where possible, subpaths of the base paths
are used while constructing the planned route. The earlier
established and stored solutions have similar role.

The efficiency of algorithms is also related to properties
of the area covering the currently constructed path. Density of
road connections, their directions, lengths of segments, average
throughput, occurrence of traffic jams and other characteristics
may determine the selection of an algorithm, that may cope
with the area specificity.

Calculated initial solutions (satisfying constraints related
to user preferences) are assessed according to user-defined
criteria based on the current and predicted data (originating
from the dynamic map and the data warehouse). The best
of them can be immediately realized (e.g. by emergency
services).

At the second stage improvement algorithms are applied
taking as input full or partial solutions calculated in the first
stage. This enables applying other approach then realized
earlier. Inauguration algorithms of the first stage use multiple
simple construction algorithm (e.g. use greedy rules) [14],

[15] to yield a set of diverse solutions constituting the initial
data for population methods aimed at solution improvement.
Acting on a set guarantees that in most cases that several
alternative routes can be obtained. At present several types of
improvement algorithms are applied in the second stage e.g.:
Evolution Algorithm (EA) [16], [17], PSO Algorithm (Particle
Swarm Optimization) [18], [19] and Taboo Search Algorithm
[20]. The first one is a population algorithm inspired by genetic
principles. In the second case, a method of new solutions
creation was adapted to the problem type, by directing particles
in the solution space on the basis of specifically calculated
velocity vector . The trace of the algorithm execution (stored
in frequency-based memory) influences the probability of the
road segment occurrence in a calculated solution.

V. ONTOLOGIES

Route Planning Subsystem uses several ontologies formal-
ized in OWL language [21] to store semantic information
about objects appearing on the maps, including road types,
users, traffic monitoring parameters, weather conditions, rec-
ognized user preferences, types of algorithms as well as
procedures implementing them with appropriate parameters.
The ontologies were developed according to the methodology
described in [22]. The set of ontologies is highly modular and
shares a small common upper ontology.

According to [23] ontologies in information systems can be
used during development and run-time phases of the software
lifecycle. In the development phase ontologies were used to
generate schemas of databases: Static Map and Traffic Repos-
itory. In spite of relational representation, the semantic infor-
mation (namely URIs of classes and properties) are maintained
as additional attributes providing semantic interoperability at
the run time.

The rest of the section discusses main ontologies relevant
to the route planning tasks.

OSM ontology: The ontology defines classes of objects
appearing on maps: roads, railways, water ways, amenities,
emergency infrastructure, public transport, shops, tourist at-
tractions, etc. This large ontology contains about 660 classes,
which were identified based on the published set of OSM tags
and their values [24]. This set is continuously extended and
refined to satisfy various needs and local specificities. As the
Open Street Map community is rapidly growing (the number
of registered users reached 500000 in 2011), the list of map
features constitute a common knowledge shared among large
group of committed users. The OSM ontology formalizes this
knowledge and additionally provides information about how
these classes of map objects are represented by combinations
of map primitives (Node, Way, Area), attributed tags and
their values. The taxonomy of objects specified in the OSM
ontology can support various tasks: visualization, searching
for POIs (Points of Interest) and route planning.

Static map ontology: The ontology specifies additional data
structures included into the static map: lanes, crossroads and
turns, as well as the taxonomy of their properties expressing
physical characteristics (width, maximum height, turn radius,



damaged surface), limits or obligations imposed by the traf-
fic organization (speed limit, forbidden turn, etc.) and the
properties originating from environment usually expressed by
warning signs (wild animals, icy surface in winter, intense
pedestrian traffic).

During the system development the OSM and Static map
ontologies were used to define the structure and fill dictionary
tables of the database referred as Static Map in the architec-
tural diagrams (Fig. 5 and Fig. 6).

Monitoring parameters: The ontology formalizes the model
of monitoring parameters stored in the Traffic Repository as
composed of three basic concepts:

• Monitoring parameter type defining various quantitative
properties pertaining to traffic and weather conditions:
average speed, waiting time at the traffic lights, length of
the vehicles queue, temperature, wind speed, rainfall, etc.
Each type is assigned with a unit, a range of values and
constraints specifying map objects to which a type can
be linked.

• Parameter instance that bind a parameter with a location
where a parameter is measured, an object (node,lane, turn
or area) to which the measurement applies, frequency
indicating how often the data are updated and the instance
state (active, suspended, failure).

• Current parameter value assigned to an instance with
accompanying timestamp and validity period.

The ontology is a formal basis for discovery and query services
delivered by the Traffic Repository that allow client software
(in particular route planning algorithms) to find monitored
parameters in the indicated area and then access their current
values.

Events: The ontology defines various events influencing
the traffic: accidents, demonstrations, traffic jams, weather
conditions, seasons. Events have spatiotemporal characteristic,
i.e. they have the occurrence time, duration and they are
attached to a certain location (point, road, area). The ontology
also classify Threats understood as possible events that may
result in damage (accident) or negative influence on traffic
(jam). There are casual relations between events and threats,
e.g. severe weather conditions may cause accidents.

Users (traffic participants): The ontology classifies vehicles
based on such physical attributes as number of axles and
dimensions. It specifies also their roles in the traffic: normal
users, police, fire or medical services and users with special
privileges, as handicapped persons or vehicles allowed to enter
a restricted traffic zone.

Areas: The map is divided into areas (sometimes overlap-
ping), to which the following attributes are assigned:

• the type of the road connections (density, road layout
regular or irregular, numerous one way roads, road width,
presence of multilane roads, intense pedestrian or bicycle
traffic),

• traffic characteristics (presence of monitored parameters,
average speed ranges, their variations in time, high prob-
ability of jams occurrences),

• safety characteristics (probability of car accidents),
• accessibility for users.
These attributes are inherited by all road segments belonging

to a given area. They determine the selection of the algorithm
that would cope with the area specificity.

Task parameters: The ontology formalizes the concepts and
relations used while specifying the route planning tasks: route
type (directly influencing the goal function), user profile (the
type and the role of the vehicle), route points (start, end,
intermediate) and planned time of starting or finishing the
travel.

Algorithms: The ontology of algorithms classifies their
types (exact, approximate, greedy), role (construction and
improvement), enumerates criteria for selecting next nodes in
heuristics. Optimization algorithm use the different criterion
functions: minimization of road length, minimization of time,
maximizing safety, maximizing comfort etc.

Algorithm implementations: The ontology contains ad-
dresses of web services implementing optimization proce-
dures, describes their parameters and classifies them as in-
stances of particular algorithm type.

Rules: The ontology stores rules for algorithm selection
encoded in [25] and a narrow set of classes and properties
supporting algorithm selection and configuration. It imports,
however, the algorithm ontology, as parameters of algorithms
are mentioned in rules.

VI. ARCHITECTURE OF THE ROUTE PLANNING
SUBSYSTEM

The architecture of the Route Planning Subsystem is out-
lined in Fig. 5. Its basic elements are: Client Interface (imple-
mented as a web service), a set of procedures implementing
optimization algorithms and the Decision Module, that acts
as a broker: it directs route planning requests to appropriate
optimization procedures (also published as a web service).

The typical interaction scenario in the system is the follow-
ing:

1) Client sends a request for route planning (indicating
route points and a user profile). The Client Interface
module creates a task and returns it URI to the client.
The task is then passed to the Decision Module.

2) Decision Module checks whether analogous route is
stored in the Data Warehouse; if so, it is added to the
Calculated Routes.

3) Decision Module builds a list of algorithms A (or more
precisely algorithm configurations) that can be applied
for a given optimization problem on base of predefined
rules (see section 6). The set of applicable algorithms A
is decomposed into two disjoint subsets: Ac construc-
tion algorithms and Ai improvement algorithms.

4) Decision Module starts one or a few of construction
algorithms Ac with highest priorities passing to them
the task parameters.

5) Depending on the obtained quality metrics for the calcu-
lated solution, the Decision Module can start population
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improvement Ai algorithms passing to them the set of
solutions obtained in the construction phase.

6) Information about the calculated solutions (including
start and end area, user profile, criterion, timeslot, ap-
plied algorithm and value of the goal function) are stored
in the Data Warehouse.

7) Client periodically polls the service in order to check
if a calculated route is available. It can chose between
getting the best solution or a list of alternative routes (if
available).

8) Mobile client can repeat the request passing an updated
location and previously assigned task URI. In this case
the scenario is continued at the step (4).

Algorithm implementations shown as overlapping blocks in
Fig. 5 consists of four components: Structure Adapter, Weights
Adapter, Optimization Model, and Optimization Procedure
(Fig. 6)

Structure Adapter builds the graph structure and stores it in
Optimization Model from the data originating from the static
map and the user profile. The structure adapter uses the OSM,
static map and user ontologies to determine which roads and
turns (manoeuvres on the crossroads) are accessible for a given
user type. The structure adapter also introduces some graph
weights that are stable over time, e.g. speed limits. The ob-
tained graph can be shared by multiple algorithms. Moreover,
to facilitate reusability it takes the form of the multigraph [26].
Depending on the algorithm implementation, the model can be
stored in the database, what enables constructing optimization
procedures based on built in relatively simple path calculating
capabilities (e.g. PostGIS extension to PostgreSQL database
[27] or in the memory. The memory based storage is preferred
in case of improvement algorithms.

Weights Adapter calculates additional graph weights from
time-varying parameters. It uses ontologies of users and
monitoring parameters. It also relies on the services of the
Prediction Module that, on the basis of information stored in
the Data Warehouse predicts values of the relevant parameters
in the optimization time horizon.

Optimization Procedure takes as input the requested route
points, calculates the optimum solution and stores it in the
database of calculated routes.
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VII. RULES FOR SELECTION OF OPTIMIZATION
ALGORITHMS

As indicated in the section VI, the Decision Module builds a
list of optimization algorithms and their configurations that can
be applied in a particular route planning problem instance. The
algorithms selection is based on set of rules encoded in SWRL
language [25] stored in the dedicated Rules ontology. This
ontology imports several compound ontologies enumerated in
the section V, because the rules premises and conclusions
are expressed in terms of various concepts defined in the
underlying ontologies. The high level concepts appearing in
the rules definitions are:

• Task characteristics including defined route points (start,
end, intermediary), areas to which the route points belong
and their properties (street layout, density, road infrastruc-
ture, road classes, number of lanes, length of segments,
intersections, traffic characteristic), distance to the base
paths, travel time and distance.

• User profile, including vehicle type, traffic role, privileges
and preferences.

• General context (including season and weather condi-
tions).

• Algorithms (a class of algorithm and configuration pa-
rameters, usually flags and boolean switches).

Below, in Table I examples of two rules are presented:
• SnowfallAndTruck specifying, that: ”In case of snow fall

and a truck vehicle, use a greedy algorithm, which prefers
selection of main roads.”

• VelocityDisparity that can be formulated as: ”If any route
point belongs to an area with observed speed disparity
between roads, an algorithm should attempt to calculate
routes alternative to base paths.”

The procedure of algorithm selection realized within the
decision module consists of the following steps:

1) For the delivered route planning request, a temporary
ABox is constructed by adding an individual proot be-
longing to the auxiliary class Premise (the root element)



Rule SnowFallAndTruck:
Premise(?p),
context(?p, ?c),Context(?c),event(?c, ?e),SnowFall(?e),
user profile(?p,?u),UserProfile(?u),vehicle type(?u, ?vt),Truck(?vt)
→ entails(?p, algorithm sf),
GreedyAlgorithm(algorithm sf),
alg.preferred main roads(algorithm sf, true),
alg.priority(algorithm sf, 0.7)

Rule VelocityDisparity:
Premise(?p),
task(?p, ?t),Task(?t),task.point(?t, ?p),RoutePoint(?p),
point.in area(?p, ?a), Area(?a), area.velocity disparity(?a, true)
→ entails(?p, algorithm vd),
alg.calculate alternative routes(algorithm vd, true),
alg.priority(algorithm vd, 0.65)

TABLE I
SAMPLE RULES SNOWFALLANDTRUCK AND VELOCITYDISPARITY

linked with subgraphs describing the task, the user
profile and the context. The graph content is extended by
various decorators interpreting the request parameters
and, where needed, adding individuals and asserting
relations (e.g. indicating a snow fall, setting vehicle type
to a truck or the area.velocity disparity flag).

2) For each rule an individual belonging to class Algo-
rithm is added to the ABox. If n rules are defined,
then n individuals are created. Conclusions of rules
reference different individuals, e.g. algorithm sf for the
rule SnowfallAndTruck and algorithm vd for Velocity-
Disparity.

3) In the next step the Pellet [28] reasoning engine is
invoked to execute the set of rules and to infer assertions
about algorithm type, its configuration parameters and
a priority. As rules configure independent individuals,
there is no dependency on order in which they are fired.

4) Finally, the list of resulting algorithms and their con-
figurations is merged (algorithms and switches with the
highest priorities are taken).

Fig. 7 illustrates the layout of the ABox resulting from rules
executions. Continuous lines mark individuals and properties
there were input before firing the rules, dashed lines are used
to show properties and literals introduced to the ABox by rules’
consequences. Several individuals belonging to the Algorithm
class are linked by entails property with proot element and
assertions about their parameters are made. Each algorithm
configuration is attributed with the priority parameter repre-
senting the belief that they are suitable for the given input
conditions.

There are at least two approaches to constructing rules and
interpreting the results of inferences made. The first approach
consists in writing rule consequents in such a manner, that they
define full, ready to use algorithm configurations, i.e. a web
service address and a set of switches. In this case selection
of an algorithm is straightforward: a configuration with the
highest priority is taken.

The second approach is more fuzzy: the rules make less as-
sertions and set only some switches (rules in Table I represent
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Fig. 7. ABox after applying the set of rules

this approach). As the result a sequence of algorithm configu-
rations ordered by priority is obtained: α = (a0, a1, ..., ar). We
can not merge them all, as some configurations may be con-
flicting, e.g one configuration may set preferred main roads
switch set to on, and an other to off. Such conflicts can be
statically identified by an analysis of rule consequences and
formally expressed as the conflict relation between algorithm
configurations. We calculate the highest priority set of non-
conflicting configurations to be merged using the relatively
simple heuristic procedure, that starts with an empty set
A0 and adds subsequent non-conflicting configurations from
a0 . . . ar according to the priority based ordering. If needed,
analogously can be calculated other sets Aj (with the for loop
starting from i = j).

A0 = ∅
for i = 0 . . . r do:
if∀a ∈ A0: (a, ai) /∈ conflict then add ai toA0

merge all graphs from the setA0

Certainly, an interesting issue is the source of knowledge
encoded in rules. As the route planning subsystem is still
in the development phase, the rules for algorithm selection
and configuration originate from three sources: comparison
of performance of implemented algorithms for a various test
cases, experts assessment and architectural decisions.

Each implemented algorithm (understood here as an opti-
mization procedure coupled with a road model) is tested on a
few thousands of randomly generated route planning tasks.
The tests allow to establish the performance and accuracy
for specific groups of tasks. To give an example, algorithms
from the A* family behave very well for urban environment:
typically, an optimal route between points lying at a distance of
10 km is obtained within 100 ms. However their performance
for longer routes is low, e.g. a 600 km route between two cities
in Poland: Kraków and Gdańsk is calculated in 68 s. On the
other hand, tests shown that greedy algorithms are generally
inferior in urban environment, whereas they are capable to
calculate long non-optimal routes in a few milliseconds.

The rule SnowFallAndTruck (see Table I) represents a
typical rule introduced by an expert. It attempts to mimic
qualitative user decision in case of severe weather conditions.



The same effect can be probably obtained in a quantitative
model that would increase costs assigned to secondary or
tertiary roads. However, validation of such model would have
been extremely difficult.

The last source of rules is related to architectural decisions.
The architecture of the Route Planning Subsystem can be
considered as multi-instance (in opposition to multi-tenant).
In particular, for selected privileged users, e.g. local police
services, dedicated instances are developed, which uses much
more detailed models of road network in an urban area
including tracks and roads reserved for pedestrian traffic. Such
models are not available for normal users.

We also expect, that during the system exploitation, we will
be able to collect a representative set of historical data and
perform in depth analysis aiming at optimizing and learning
rules.

VIII. CONCLUSION

This paper discusses application of ontologies in the route
planning subsystem for highly dynamic urban environment
realized within the INSIGMA project. An innovative feature
of the described approach is using semantic description of
the route planning context including both static and dynamic
properties: type of the road network, historical data, dynam-
ically collected information about the traffic. The services of
the system are adapted to user profile taking into account its
preferences, and various constraints as physical dimensions
of vehicles and traffic organization. A central role in the
developed system plays the decision module, which based on
set of rules and the knowledge stored in ontologies selects the
most efficient algorithms and configures them to perform the
route planning tasks. At the lower level of algorithms imple-
mentation ontologies are also used by structure and weights
adapters that are responsible for construction of graph models
constituting problem models for optimization procedures.
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