
Application of New ATAM Tools to Evaluation of
the Dynamic Map Architecture ?

Piotr Szwed, Igor Wojnicki, Sebastian Ernst, and Andrzej Glowacz

AGH University of Science and Technology
{pszwed,wojnicki,ernst,aglowacz}@agh.edu.pl

Abstract. The paper reports an application of Architecture-based Trade-
off Analysis Method (ATAM) for early evaluation of the Dynamic Map
architecture. The Dynamic Map is a complex information system, com-
posed of spatial databases, storing static and dynamic data relevant for
urban traffic, as well as a set of software modules responsible for data
collection, interpretation and provision. Due to the complexity of the
system, its size and key importance of its services to other subsystems,
we decided to perform architecture evaluation using the ATAM method.
To facilitate the task new tools supporting ATAM based assessment are
proposed: Scenario Influence Matrix and Architectural Decision Matrix.
Taking as example an excerpt from the system architecture, we present
how they were used during the architecture evaluation. The gathered
experience confirm usefulness of the tools, enabling ATAM to help de-
tecting real flaws in a design and identify potential risks.

Keywords: dynamic map, ATAM, architecture, evaluation

1 Introduction

Development of complex information systems is a difficult process, and the suc-
cess of the outcome is largely dependent on appropriate decisions made early in
the design process. Features such as diversity of data models, platform heterogen-
ity, performance (e.g. real-time) requirements and the need for interoperability
make it even more complicated.

The Dynamic Map is one of the key subsystems of the INSIGMA project [1].It
can be considered a complex information system, composed of spatial databases,
storing static and dynamic data related to urban traffic, as well as a set of soft-
ware modules responsible for data collection, interpretation and provision to
clients. The data originates from a network of sensors, both fixed (e.g. video de-
tectors, acoustic sensors, inductive loops) and on-board GPS receivers installed
in vehicles. Clients of the Dynamic Map include various software modules per-
forming such tasks as visualization, route planning, traffic optimization, object
tracking and threat detection.
? Work has been co-financed by the European Regional Development Fund under the
Innovative Economy Operational Programme, INSIGMA project no. POIG.01.01.02-
00-062/09.



The paper reports the experiences gained by using the Architecture-based
Tradeoff Analysis Method (ATAM)[12] for early evaluation of the Dynamic Map
architecture. The main contribution of this paper is an extension of ATAM
through introduction of additional supporting tools, as well as adaptation of the
method to fit the characteristics of the Dynamic Map.

The paper is organized as follows. A more detailed description of the IN-
SIGMA Project, the concept of the Dynamic Map and challenges related to the
design process are given in Section 2. It is followed by an introduction to the
ATAM method (Section 3). Application of the proposed approach is given in
Section 4. Section 5 presents the actual subset of the INSIGMA system under
consideration, its architecture, scenarios and architectural decisions. It also de-
scribes the results of ATAM analysis. Finally, conclusions and observations are
given in Section 6.

2 Motivation

The INSIGMA project aims at development and implementation of an advanced
information system for optimizing road traffic. While more and more cities now
are facing the problem of traffic jams and worsening ecological conditions, IN-
SIGMA will provide tools for efficient traffic control and threat detection. In
case of existing solutions for map creation and traffic management, the main
problem is related to the lack of efficient tools that enable conversion of object
location and audiovisual data into dynamic maps. In practice, traffic control is
often based on low-frequency components of traffic dynamics. Thus, in case of
road accidents or other threats, these systems are incapable of fast response. In
such scenarios, traffic problems can be first detected after 30 minutes. Another
issue is the limited area of the managed region. Traffic detectors are mostly
deployed in major highways but in limited scope in access roads.

On the other hand, vehicle users demand efficient route planning and opti-
mization. Existing navigation solutions consist in analysis of static parameters
(e.g. total route length or road type), and even recent solutions rarely use statis-
tical data (e.g. maximum driving speed in selected hours). The dynamic traffic
component still remains unaddressed and relevant traffic conditions need to be
personally recognized by the user in advance or, worse, in the place of event.
Thus, in case of a jammed metropolis, the efficiency of route optimization is
far from what is expected. This is particularly important in daily operations of
emergency services, fire brigades, police, etc.

The first and foremost feature of INSIGMA is analysis of traffic parameters
and further processing on basis of dynamic maps. Dynamic map can be viewed
as a set of data describing the state of the road infrastructure. This corresponds
to dedicated system services. In the INSIGMA project, these include: route plan-
ning, navigation, traffic control or crisis management. Managed data consists of:
specifics of road infrastructure, current traffic conditions and preferences.

The road infrastructure is defined by the road network (road locations, con-
nections, lanes and points of interest) with information about organization of



traffic, which contains traffic signs, lights, temporary exclusions (e.g. road re-
pairs) or detours.

The traffic conditions include monitored traffic density and atmospheric phe-
nomenons such as rain or snow, icing, etc. It is also important to consider ex-
traordinary events, e.g. traffic accidents or other dangerous situations.

The scope described above is supplemented by the preferences which corre-
spond to specific needs of particular system. For example, route planning for
transport of dangerous materials can operate on reduced map containing only
main highways. On the other hand, emergency service may require fastest naviga-
tion through jammed city – using all possible connections (also against one-way
streets).

Thus, the Dynamic Map can be perceived as a representation of the road
transport infrastructure combined with up-to-date information about traffic in-
tensity and historical traffic data. Such a combination includes information
stored in a database and map visualization, which can be presented to the end
user via a network or mobile interface. Algorithms for dynamic route optimiza-
tion are applied to the system; they aid traffic control systems and are particu-
larly useful in urban environments.

There are several factors that influence the design of the Dynamic Map. They
include the expected performance, flexibility concerning representation of pro-
cessed information and seamless integration of various types of sensors, including
those already present in the urban traffic infrastructure.

Due to the complexity of the system, its size and key importance of its
services to other subsystems, we decided to perform architecture evaluation at
an early system development stage to identify and correct potential design flaws
and limitations, as well as to mitigate the risks of not meeting functional and
non-functional requirements. The ATAM[12], was selected for this purpose, as it
is considered a mature, efficient and non-costly method which can be applied to
various types of architectural designs.

Faced with the task of applying the ATAM to Dynamic Map architecture
assessment, we realized that the method provides excellent guidelines on how
to organize the entire process and how to specify requirements and describe the
outcomes. However, due to its generic character, the ATAM lacks supporting
tools and techniques which would allow to describe the impacts of scenarios
on particular components and to collect various properties (design decisions) of
architectural elements.

During the assessment, we developed and used two such tools: the Scenario
Influence Matrix (SIM) and the Architectural Decision Matrix (ADM), which
extended the architectural views described in the ArchiMate [17] language.

This paper discusses the key elements of the adopted approach in a case study
reduced to just few of the high priority requirements (scenarios) and a limited
number of components and architectural decisions. Due to the high number of
components of the Dynamic Map, a presentation of the full analysis would have
exceeded the expected volume of the paper. For the analyzed scenarios, the



outcomes (sensitivity points, tradeoffs, risks and recommendations) have been
listed.

3 The ATAM method

The goal of software architecture evaluation methods is to assess whether a sys-
tem meets or will meet certain requirements concerning quality characterized
as quality attributes. A standardized list of quality attributes is published in
ISO/IEC 9126-1 [7] and ISO/IEC 25010 [8] standards, which define nine at-
tribute categories, e.g. Functionality, Reliability, Usability, Efficiency, Maintain-
ability, Modifiability and Portability.

Architecture evaluation methods may bring the greatest benefits to software
development if applied early in the software lifecycle, as identified flaws in system
design can be corrected at a lower cost [14]. Typically, an assessment is conducted
based on the specification of the software architecture (architectural views) and
use other sources of information, such as interviews with various stakeholders
such as owners, future users, architects and development teams.

The ATAMwas developed at the Software Engineering Institute (SEI) in 2000
[12], [4]. Its goal is to evaluate architectural decisions against specific quality at-
tributes and to detect: risks – architectural decisions that may cause problems
to assure some quality attributes, sensitivity points – decisions related to com-
ponents or their connections that are critical for achieving required level of a
quality attribute and tradeoffs – decisions that increasing one quality attribute
have negative impact on others.

ATAM uses a quality model called the utility tree. At the root of the utility
tree, an abstract concept Utility is placed. Its child nodes are annotated with
general quality attributes, which can be decomposed into more specific attributes
at the next level; finally, scenarios are placed at leaves.

The advantage of using scenarios is that they turn somehow vague expecta-
tions into verifiable requirements. ATAM distinguishes three types of scenarios:
use case, growth and exploratory.

Use case scenarios define the expected interactions between users and an
implemented system. Most often, they are assigned in the utility tree to such
quality attributes as: performance (response time, throughput), usability (a user
can easily perform a specific task) or reliability (actions to be taken in case of
failures or exceptional conditions).

Growth scenarios capture anticipated future changes in the system. Scenarios
belonging to this group usually fall into such categories as modifiability, scala-
bility, interoperability or portability.

Exploratory scenarios are not likely to occur. However, they can be identified
and analyzed to detect implicit assumptions and communicate to the stakehold-
ers limits in the architectural design.

There are reports on successful applications of ATAM to assessment of a
battlefield control system [10], wargame simulation [9], product line architecture
[5], control of a transportation system [3] and credit card transactions system[13].



Recently, a few extensions of ATAM were proposed, including combination with
the Analytical Hierarchy Process [18] and APTIA [11].

4 Supporting tools for the ATAM method

The ATAM has many obvious benefits: it precisely defines the quality model
based The on the utility tree, enumerates the expected outcomes, indicates the
participants and provides an organizational framework for the evaluation.

Nevertheless, due to its generic character, the method can cause problems
related to gathering and representing information that can be used for an ar-
chitecture assessment. When preparing the assessment of the Dynamic Map
according to ATAM, we realized that architectural views that can be the input
to the ATAM do not provide constructs do describe the influence of a given
scenario on a particular component. This regards in particular growth scenarios,
achievement of which may require modifications, redesign of components, but
may also increase resource utilization or generate demand on data capacity.

We have decided to design and develop two specifications (artifacts) that
helped us conduct the evaluations: the Scenario Influence Matrix and the Archi-
tectural Decision Matrix.

4.1 Scenario Influence Matrix

The Scenario Influence Matrix (SIM) describes an influence of a scenario on
components using a standard set of values defined in a vocabulary established
for evaluation purposes. At this point, a remark should be made. Typically, an
architecture description encompasses components and their connections. In most
cases we omit connections during analysis, because in the architectural view we
used ArchiMate [17] diagrams, which distinguish an Interface from a module
providing it. The interface specification (e.g. a Web Service interface) very often
decides on the nature of a connections that use it. Typically, an interface can be
realized by a Façade – a module responsible for its implementation.

The Scenario Influence Matrix is defined as a partial function that assigns
actions or influences to scenarios and components:

SIM : S × C → Mod ×Act ∪ Inf , (1)

where: S – is a set of scenarios, C – is a set of components, Mod – is an access
mode Mod = {M, A}, where M stands for manual and A for automatic, Act –
is a set of actions on components, Inf – is a set of influences.

The vocabulary of actions Act used in the evaluation is as follows:

– AC : adding a dedicated component,
– UF : using a function of a component,
– MStr : modifying a component structure,
– MF : modifying a component function,
– RC : remove component,



– CC : cloning a component,
– PC : partitioning component,
– MS : modify component state,
– CD : creating data managed by a component,
– RD : reading component data,
– MD : modifying data,
– DD : deleting data.

For Inf (influences) three values were used: IRU : increase resource utilization,
ICP : increase capacity and ICL: influence component’s logic.

For evaluation purposes, the SIM matrix was represented by a spreadsheet
with scenarios placed at rows and components (including interfaces) at columns.
The vocabulary of possible actions and influences was selected to fit the particu-
lar task of Dynamic Map evaluation. For other applications, it can be extended
according to particular needs.

4.2 Architectural Decision Matrix

The second artifact prepared as an input for evaluation is the Architectural
Decision Matrix (ADM). Its goal is to assign design approaches or decisions to
each component. Filling the ADM is an important step of evaluation, as it helps
to ask questions about certain decisions that can be perceived as important to
reach expected scenario responses.

The Architectural Decision Matrix is defined as a partial function that as-
signs sets of possible decision values to pairs of decisions and components under
consideration. The mapping is defined in (2) as follows. For each design decision
d ∈ D, the function ADM (d) assigns a set of possible decisions to a compo-
nent. The whole mapping is a sum of ADM (d) mappings for individual decisions
corresponding to rows of an ADM matrix.

ADM =
⋃
d∈D

ADM (d), where ADM (d) : C → 2V (d) (2)

Examples of design decisions from the set D and their values are:

1. Platform (PostgreSQL, Linux, IIS, Glassfish,..., choice<list of platforms>)
2. Component logic (fixed, customizable)
3. Query granularity (bulk, low, medium, high, flexible)
4. Transaction distribution (no, over<list of components>)
5. Use of web services (REST, SOAP, RPC, document, encoded, literal)
6. Communication type (synchronous, asynchronous)
7. Buffering (yes, no)
8. Security method (https, WS Security, XML Encryption, XML Signature...)
9. Separation of concerns (coupled with <component name> )
10. Use of ontologies (structure definition, integration, semantic querying)



We do not claim that the above list is either complete or general enough to be
applied to any architectural design. However, it reflects some salient questions
that emerged during the assessment of the Dynamic Map architecture. We treat
the lists of decisions and their values as a flexible mean to collect and describe
those properties of the design which are missing in architectural views.

As ATAM-based evaluation should be conducted at an early stage of a soft-
ware lifecycle, it may frequently occur that particular design decisions have not
been made or some specification is missing. In this case, we use the values not
decided or not specified (e.g. a platform is not decided, the logic of a component
is not specified).

We consider ADM a useful tool, which provides an overview of the map of
architectural decisions and helps detect white spots (e.g. decisions that have not
been made), which can introduce a substantial risk during future development.
Beyond the assessment task, ADM provides a useful background reference sup-
plementing the architectural views, therefore we decided to maintain it during
system development.

5 Evaluation of the Dynamic Map

ATAM-based evaluation of the Dynamic Map was performed in accordance to the
general method guidelines, with some minor deviations. The INSIGMA system
is being developed by several distributed teams and it was extremely difficult
to gather all stakeholders to participate in the brainstorming sessions. Direct
communication was replaced by teleconference and wiki-based voting.

5.1 Architecture

The architecture of the Dynamic map is functionally decomposed into three
subsets of components: the Static Map, the Traffic Repository and the Event
Repository (the top layer). These subsets are collections of active components
and interfaces grouped around databases.

1. The Static Map is responsible for storing information about road connections
and other objects appearing on the map. These data originate from Open
Street Map project [2] and have similar representation. The Static Map also
contains information about traffic organization and uses additional struc-
tures: Lanes, Turns and Crossroads.

2. The Traffic Repository adopts a simple data model: it stores Types of moni-
toring parameters, typed Instances linked indirectly to locations on the map
and roads and current Values. Traffic Repository has two functions coupled
in one database: it provides a discoverable directory of monitoring param-
eters and the storage supporting high volume of feeds and queries about
values of instances. The design of the Traffic Repository is general enough,
to integrate various types of sensors. This approach was positively verified
while integrating video detectors [6].



3. The Event Repository follows the approach taken for the Traffic Reposi-
tory, it defines various types of events (e.g. traffic jams, accidents, weather
conditions) and information on their occurrences.

Such approach defines clear separation of concerns. However, certain queries
are distributed between databases; that may introduce performance risks. It
should also be mentioned that all data structures, including dictionaries repre-
senting types of monitoring parameters and events, are defined using ontologies
which were used at the development stage to model the domain [15] and provide
further semantic reference to support integration [19, 16].

The Static Map architecture is given in Fig. 1. It consists of a relational
database (DB Static Map) with an SQL-based interface (OSM SQL interface).
It also provides an interface façade: IMS (Insigma Map Static) Facade. The
Façade is used by two separate interfaces: IMS.Query and IMS.Management for
querying and managing Static Map data respectively.

IMS.Query IMS.Management

OSM Import
Component

Static Map

DB Static Map

OSM SQL
interface

IMS Facade

Fig. 1: Static Map architecture.

The Traffic Repository architecture (Fig. 2) introduces several new com-
ponents. The External Subscriber Façade allows to subscribe to chosen traffic
parameter data feeds and therefore have such information delivered as soon as
it is available in the repository. The RT Event Interpreter analyzes traffic pa-
rameters and infers events that are caused by them. The repository is fed with
data through the Feed Interface from diverse sensors.

The Event Repository architecture (Fig. 3) consists of a database, native
SQL-based interface and several façades with corresponding interfaces (IMD
stands for Insigma Map Dynamic). It also introduces a discovery interface which
enables to identify what kind of events are actually stored in the repository.
Since events are geo-localized the Query Facade and the Event Reporting Facade
utilize the Static Map interfaces (OSM SQL interface, IMS.Query).



IMD Feed
Interface

VIP (video
image

processor)

Meteo Station
client

Inductive
Loop Client

GPS Tracker

GPS Sensor
Interface

IMD
Management

Interface

IMD
Management

Software

Other clients

Event
Reporting
Interface

RDNR

DB Monitoring
Parameters

RT Sensor
State Analyzer

(watchdog)

RT Event
Interpreter

IMD.Feed
Facade

DM SQL
Interface

IMD.Management
Facade

GPS Tracker
Facade

IMD.Discovery
Facade

IMD.Query
Facade

IMD.Read
Facade

External
Subscriber

Facade

Graph Facade

GPS Tracker
Interface

IMS.Query OSM SQL
interface

IMD.Discov...
Interface

IMD.Query
Interface

IMD.Read
Interface

External
Subscriber
Interface

Graph
Interface

Fig. 2: Traffic Repository architecture.

Event
reporting
service

Web Interface

Mobile Event
Reporting

Client

Dedicated Event
Reporting

Software (trusted)

Event Repository

DB Events

Event
Reporting

Facade

Events SQL
Interface

IMD.Event.Discovery
Facade

IMD.Event.Management
Facade

IMD.Event.Query Facade 

Event
Reporting
Interface

IMD.Event.Discovery
Interface

IMD.Event.Management
Interface

IMD.Event.Query
Interface

OSM SQL
interface

IMS.Query

Fig. 3: Event Repository architecture.



5.2 High priority scenarios

High priority scenarios, which are usually identified in a brainstorming session,
were elicited in a few sessions performed with smaller teams, documented on the
project wiki pages and submitted to voting. Their list is presented below. The
related quality attributes are marked in parentheses.

1. New sensor types and sensor processing software will be integrated in <6 days>
(Modifiability)

2. Dynamic Map will be capable of accepting feeds from up to 1000 sensors
occurring every <60> sec (Performance)

3. Dynamic Map will be capable of processing up to <200> read queries per
second (Performance)

4. New map features can be introduced and made discoverable with built-in
functionality (Usability).

5. Updating of data defining the road network can cause a loss of at most 10
values of a single monitoring parameter (Reliability).

6. Sensor failures will be detected in a configurable period ranging from 3 to
20 minutes (Reliability).

7. New event types and corresponding customizable detection routines can be
introduced in 1 day (Modifiability)

8. System will be able to accommodate and interpret location data from 5000
GPS tracker units updated every 5 sec (Performance).

9. A Dynamic Map component can be ported to another platform within 20
days (Portability)

5.3 Results of evaluation and mitigation strategies

The input for the architecture evaluation were two matrices: the SIM and ADM
discussed in Section 4.

Table 1 representing SIM specifies influence of scenarios (listed in rows) on
architecture components (table columns). Cells of the table are filled with actions
defined in Section 4.1.

For ADM shown in Table 2 column headers contain architecture components,
row headers types of architectural decisions. Cells define assignments of decision
values to particular components.

The contents of the presented matrices are excerpts from the specifications
that are a few times larger. For better readability, just a subset of the defined
scenarios (see Section 5.2) and decisions (see Section 4.2) is chosen.

Further part of the section presents results of evaluation for two selected
scenarios.

Scenario #1: New sensor types and sensor processing software will be
integrated in <6 days> The goal of the scenario is to integrate a new sensor,
e.g. a videodetector, within the Dynamic Map, with developed and tested pro-
cessing software capable of calculating several types of traffic parameters. It is



Scenario D
B

S
ta
ti
c
M
a
p

O
S
M

im
p
o
rt

co
m
p
o
n
en
t

IM
S
fa
ca
d
e

D
B

M
o
n
it
o
ri
n
g
P
a
ra
m
et
er
s

M
o
n
it
o
ri
n
g
P
a
ra
m
et
er
s
O
n
to
lo
g
y

IM
D
.F
ee
d
fa
ca
d
e

R
T

S
en
so
r
S
ta
te

A
n
a
ly
ze
r

R
T

E
v
en
t
In
te
rp
re
te
r

IM
D
.D

is
co
v
er
y
fa
ca
d
e

IM
D
.Q

u
er
y
fa
ca
d
e

D
B

E
v
en
ts

E
v
en
t
R
ep

o
rt
in
g
F
a
ca
d
e

IM
D
.E
v
en
t
D
is
co
v
er
y
F
a
ca
d
e

E
v
en
t
S
u
b
sc
ri
b
e

G
ra
p
h
In
te
rf
a
ce

1 New sensor types and sensor processing
software will be integrated in <6 days>

A:
MD

M:
MD

IRU IRU M:
MF

ICP ICP ICP

2 Dynamic Map will be capable of accept-
ing feeds from up to 1000 sensors occur-
ring every <60> sec

A:
CD

A:
UF

A:
UF

A:
UF

A:
MD
A:
CD

A:
UF

A:
UF

ICP

4 New map features can be introduced
and made discoverable with built-in func-
tionality

A:
CD

A:
UF

A:
UF

A:
RD

A:
UF

5 Updating of data defining the road net-
work can cause a loss of at most 10 values
of a single monitoring parameter

A:
MD

A:
UF

M:
MD

ICL ICL

Table 1: Scenario Influence Matrix. Used acronyms: A – automatic, M – manual,
MD – modifying data, MF – modifying a component function, ICP – increase
capacity, IRU – increase resource utilization, CD – creating data managed by
a component, UF – using a function of a component, RD – reading component
data, ICL – influence component’s logic.

Decision S
M

d
a
ta
b
a
se

O
S
M

Im
p
o
rt

C
o
m
p
o
n
en
t

IM
S
F
a
ca
d
e

D
B

M
o
n
it
o
ri
n
g
P
a
ra
m
et
er
s

M
o
n
it
o
ri
n
g
P
a
ra
m
et
er
s
O
n
to
lo
g
y

IM
D

F
ee
d
F
a
ca
d
e

R
T

S
en
so
r
S
ta
te

A
n
a
ly
ze
r

R
T

E
v
en
t
In
te
rp
re
te
r

IM
D

D
is
co
v
er
y
F
a
ca
d
e

IM
D

Q
u
er
y
F
a
ca
d
e

D
B

E
v
en
ts

E
v
en
t
R
ep

o
rt
in
g
F
a
ca
d
e

IM
D
.E
v
en
t
D
is
co
v
er
y
F
a
ca
d
e

E
v
en
t
S
u
b
sc
ri
b
e

G
ra
p
h
In
te
rf
a
ce

Data objects OSM
Lane
Turn
Crsd.

OSM OSM
Lane
Turn
Crsd.

Snsr.
Type
Inst.
Value

All Inst.
Value

Snsr.
Inst.
Value

Value
Event

Type
Inst.

Inst.
Value

Event
Occr.

Occr. Event
Occr.

Event OSM
Lane
Turn
Crsd.

Use of ontolo-
gies

SD ND yes RD RD RD SD RD RD RD

Use of web ser-
vices

ND yes
SOAP

yes
SOAP

yes
SOAP

yes
SOAP

yes
SOAP

yes
SOAP

yes
SOAP

ND ND

Communication
type

syn syn syn
ND

syn syn asyn
ND

syn syn
or
poll

Platform Pg Lin
Sc

Nd
IIS
Gs

Gs Nd
IIS
Gs

Nd
IIS
Gs
SP

Nd
IIS
Gs
RB

Nd
IIS
Gs

Nd
IIS
Gs

Nd
IIS
Gs

Nd
IIS
Gs

Nd
IIS
Gs

Query granular-
ity

B F H F H F H F

Component
logic

Fi Fi F F ND ND Fi ND ND ND

Table 2: Architectural Decision Matrix. Used acronyms: ND – not decided, Nd
– not defined, SD – structure definition, RD – reference data, Pg – PostgreSQL,
Lin – linux, Sc – script, Gs – Glassfish, IIS – Internet Information Services, SP
– stored procedure, RB – rule-based (rule expression language), B – bulk, F –
flexible, H – high, Fi – fixed.



assumed that the sensor software will be augmented by a ready-to-use commu-
nication component using a web service interface over a SSL-secured network.

Introduction of a new sensor type may result in adding descriptions of a
sensor and measured parameters into the system ontology, inserting new values
to the dictionaries and the directory of sensors and instances in the TM database.
Adding a new sensor indirectly increases the required capacity of components
that store or allow access to instances of measured parameters and their values.

– Sensitivity point : definitions of monitoring parameter types appear in the
ontology and dictionaries within the TM database.

– Tradeoff : coupling of directory and storage functions within the TM database
is a tradeoff between performance and modifiability. While feeding values,
their ranges are to be checked within real-time constraints. This precludes
examining the directly the ontology, due to the lack mature of Semantic
Web tools at .NET platform. Access to the ontology is wrapped by a web
service, what would introduce an overhead influencing the performance. On
the other hand, the directory in TM database has a fixed structure, what
may hinder changes.

– Risk : there is a potential risk of loosing cohesion between the ontology and
dictionaries as no decision is made concerning the rules for updating the
dictionaries within TM database to reflect changes in the ontology.

– Non-risk : data structures and interfaces are designed to support seamless
integration.

– Recommendation: Make a decision on the ontology storage and define a
workflow for updating the dictionaries based on ontology.

Scenario #2: Dynamic Map will be capable of accepting feeds from up
to 1000 sensors occurring every <60> sec The scenario specifies a typical
performance requirement. The approach taken assumes that a single sensor can
feed multiple values of monitoring parameters (typically 20) at time using a
synchronous web service that place them into a common memory buffer. Values
collected in memory are entered to the database by bulk queries executed by a
periodical process.

– Sensitivity points: query granularity, use of synchronous web services and
buffering

– Non-risk : the initial tests of the communication overhead and data base per-
formance indicate that there is no substantial risk to achieving the scenario
response. Data originating from the assumed number of sensor can be pub-
lished in the database with the latency limited to 10 seconds (assuming 5
second period of a thread executing bulk inserts of maximum 20000 values)

6 Conclusions

Experience gathered during theanalysis of the Dynamic Map architecture indi-
cates that ATAM is a valuable method, as it helps to detect real flaws in the



design and identify potential risks. We did not use ATAM to gain a false con-
viction that the system is optimally designed, but to collect requirements that
were not expressed earlier, which represent expectations of various stakeholders,
and to assess that they can be satisfied with the proposed system architecture
(including adaptations and changes at limited costs). The presented list of risks
and recommendations proves that the initial system architecture was not perfect
in every detail and several issues were detected by applying ATAM.

A significant contribution of this paper is development and application of
two supporting tools for ATAM: the Scenario Influence Matrix (SIM) and the
Architectural Decision Matrix (ADM).

SIM is used to collect information on the impact of a scenario on particu-
lar components. Obviously, for use case scenarios, e.g. related to performance,
message sequence charts are a more natural way to represent the communica-
tion flow. However, for growth scenarios, there is no appropriate language to
represent their impact on components.

ADM provides a centralized view on properties and decisions related to com-
ponents (and in some cases, connections). Maintaining such a view is of high
importance for a large project being developed by independent teams working
in different locations, because many implicit decisions are made locally and are
difficult to track.

References

1. INSIGMA project. http://insigma.kt.agh.edu.pl (Last accessed: Jan 2013)
2. OpenStreetMap wiki. http://wiki.openstreetmap.org/wiki (Last accessed: Jan

2013)
3. Bouck’e, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the ATAM to an

Architecture for Decentralized Control of a Transportation System, vol. 4214, pp.
180–198. Springer (2006)

4. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley Professional (2001)

5. Ferber Stefan, Heidl Peter, L.P.: Reviewing product line architectures: Experience
report of ATAM in an automotive context, vol. 2290, pp. 364–382. Springer (2001)

6. Glowacz, A., Mikrut, Z., Pawlik, P.: Video detection algorithm using an op-
tical flow calculation method. In: Dziech, A., Czyżewski, A. (eds.) Multime-
dia Communications, Services and Security, Communications in Computer and
Information Science, vol. 287, pp. 118–129. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-30721-8_12

7. ISO/IEC: ISO/IEC 9126. Software engineering – Product quality. ISO/IEC (2001)
8. ISO/IEC: ISO/IEC CD 25010.3: Systems and software engineering - Software prod-

uct Quality Requirements and Evaluation (SQuaRE) - Software product quality
and system quality in use models. ISO/IEC (2009)

9. Jones, L.G., Lattanze, A.J.: Using the architecture tradeoff analysis method to
evaluate a wargame simulation system: A case study. Technical Report CMU-
SEI2001TN022 Software Engineering Institute Carnegie Mellon University Pitts-
burgh PA (December), 33 (2001)



10. Kazman, R., Barbacci, M., Klein, M., Carriere, S.J., Woods, S.G.: Experience with
performing architecture tradeoff analysis. Proceedings of the 21st international
conference on Software engineering ICSE 99 pp. 54–63 (1999)

11. Kazman, R., Bass, L., Klein, M.: The essential components of software architecture
design and analysis. Journal of Systems and Software 79(8), 1207–1216 (2006)

12. Kazman, R., Klein, M., Clements, P.: ATAM: Method for architecture evaluation.
Tech. rep., Carnegie Mellon University, Software Engineering Institute (2000)

13. Lee, J., Kang, S., Chun, H., Park, B., Lim, C.: Analysis of VAN-core system
architecture- a case study of applying the ATAM. In: Proceedings of the 2009 10th
ACIS International Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing. pp. 358–363. SNPD ’09, IEEE
Computer Society, Washington, DC, USA (2009)

14. Roy, B., Graham, T.C.N.: Methods for evaluating software architecture : A survey.
Computing 545(2008-545), 82 (2008)

15. Sliwa, J., Gleba, K., Chmiel, W., Szwed, P., Glowacz, A.: IOEM - ontology engi-
neering methodology for large systems. In: Jędrzejowicz, P., Nguyen, N., Hoang, K.
(eds.) Computational Collective Intelligence. Technologies and Applications, Lec-
ture Notes in Computer Science, vol. 6922, pp. 602–611. Springer Berlin Heidelberg
(2011), http://dx.doi.org/10.1007/978-3-642-23935-9_59

16. Szwed, P., Kadluczka, P., Chmiel, W., Glowacz, A., Sliwa, J.: Ontology based
integration and decision support in the insigma route planning subsystem. In:
Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) FedCSIS. pp. 141–148 (2012)

17. Van Den Berg, H., Bosma, H., Dijk, G., Van Drunen, H., Van Gijsen, J., Langeveld,
F., Luijpers, J., Nguyen, T., Oosting, Gerand Slagter, R., et al.: Archimate made
practical. Work (2007)

18. Wallin, P., Froberg, J., Axelsson, J.: Making decisions in integration of automotive
software and electronics: A method based on ATAM and AHP. Fourth Interna-
tional Workshop on Software Engineering for Automotive Systems SEAS 07 pp.
5–5 (2007)

19. Wojnicki, I., Szwed, P., Chmiel, W., Ernst, S.: Ontology oriented storage, retrieval
and interpretation for a dynamic map system. In: Dziech, A., Czyżewski, A. (eds.)
Multimedia Communications, Services and Security, Communications in Computer
and Information Science, vol. 287, pp. 380–391. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-30721-8_37


