
A Framework For Testing Web Services Based On
XQPN Petri Nets

Piotr Szwed1, Dariusz Wadowski1, Krzysztof Paździora1

1 Institute of Automatics, AGH University of Science and Technology, al. Mickiewicza 30,
30-060 Kraków, Poland

pszwed@ia.agh.edu.pl, slashwadowice@tlen.pl, gryzli83@gmail.com

Abstract. A framework for testing web applications basing on web services is
presented. The framework uses a formal specification of the tested system in
form of XQPN net, a colored Petri net allowing manipulation of XML data.
Tests of real application are driven by transitions in XQPN net. After
performing transitions in the XQPN model and corresponding calls to the tested
system, the equality between the states of model and tested system is checked.
The paper describes XQPN nets and its application in modeling of web
applications and presents architecture and main components of the framework.

Keywords: XQuery, Petri net, testing, web service

1 Introduction

The need of testing of web services and web service based applications emerged with
the rapid development of this technology. At present there exist several tools for
carrying out unit testing and performance analysis of web services, e.g. soapUI [1] or
tools for ASP.NET platform included in Visual Studio. They offer a capability of
defining individual test cases specifying called operation of a web service, its
parameters and assertions concerning expected results. They allow also running a
manually prepared sequence (scenario) of test cases. One of the recent initiatives in
this field is Web Service Test Forum [2] a community grouping leading companies
that decided to develop and publish testing scenarios that can be checked against
various implementations of web services.

In the presented framework we have taken a different approach to defining
scenarios. Instead of manually preparing a sequence of test cases, we deliver a formal
specification of the tested system in form of XQPN Petri network, a dedicated type of
colored Petri network being capable of manipulating XML data. Randomly generated
sequence of transitions in XQPN network defines a scenario that is used to invoke
calls to an application build on a web service. We believe that such solution is
superior to testing predefined scenarios, as automatically generated sequences can be
notably longer and due to their random nature provide better coverage.

The paper is organized as follows. Chapter 2 discusses the application of relative
correctness methods in testing and verification. In Chapter 3 XQPN networks are
introduced. Chapter 4 presents a partial XQPN model of a web service based

application. In Chapter 5 the infrastructure of the tested system is specified; finally
Chapter 6 describes the architecture of the framework and its main components.

2 Background

The approach presented in this paper is closely related to previous research on relative
correctness of concurrent and real time systems conducted in Institute of Automatics
at AGH University of Science and Technology. The statement of relative correctness
problem comprises three objects: a verified system, a system specification serving as
a criterion and a mapping between those systems. To present this concept without
theoretic details we may assume that both the verified system and the criterion are
amenable to transition systems TS = (S, →), where S is a set of states and → ⊆ S × S
is a transition relation. The notion of state is quite general. It can be interpreted as a
vector of states of sequential processes and shared variables in a concurrent system, as
suggested in [3,4], a marking in a Petri net [6,7] or a state of a data base and system
views in case of web application. The mapping may take the form of relation between
states of the verified and criterion systems [3,4] or a relation between transitions
taking the form of observation function [5,6,7].

This concept is depicted in Fig. 1. The transition system at left Imp represents the
verified system or implementation, the system Spec is the criterion system
(specification). Usually, the implementation is more complex than the specification, it
may contain transient states not mapped directly to states of specification (eg. 3) and
nonobservable actions (τ).

The definitions of relative correctness assume a certain form of synchronous
execution of both systems: if the current state of Imp is (1) and the corresponding
state of Spec is (1’) then in the next step both systems should synchronize on actions a
and a’ and reach states (2) and (2’) associated by sm relation: In the next step Imp
should reach the state (4) or (5) via transient state (3) executing nonobservable
transition τ and b1 or b2, whereas Spec synchronously should get to 3’ making the
transition b’. 124 3 5 1'2'3'a a'b1 b2 b'smsmsmImp Spec

Fig. 1 Illustration of relative correctness problem; two transition systems Imp and Spec linked
by sm relation between states.

The verification process in model checking approach is driven by transitions in Imp
that models the behavior of the verified system under the stimuli originating from the
environment (Fig. 2). After performing an observable transition or reaching an
observable state in Imp it is checked whether corresponding transition is allowed or
corresponding state is a successor of previous state in Spec.

The relative correctness definition identifies also special conditions that may occur
in Imp: a deadlock (impossibility to perform any transition at a certain state) and a
divergence (possible infinite loop of nonobservable transitions). Both conditions have
similar effects: execution of Imp does not manifest the behavior expected by the
analysis of Spec.

Fig. 2 Control flow in model checking approach

The flow of control in verification process may be reverted (Fig. 3). In this case
Spec is treated as a source of formally defined test cases for Imp. Execution of a
transition (or sometimes a set of transitions) in Spec is mapped onto stimuli from the
environment of verified system. After executing corresponding transition in Imp,
assertions about reached state of Imp can be checked. This may imply some
rearrangements as regards nonobservable states and transitions.

Fig. 3 Control flow in testing

In our framework the subject of verification (Imp) is a real web application
implemented as a client of a web service. Transitions in verified system correspond to
web service operations as defined in WSDL language [8]. We assume that the verified
application has standard three tier architecture comprising model, view and controller
layers. The state of verified system is an aggregation of data displayed in views, data
managed internally by the controller, eg. session state and the data base state. As the
common platform to represent system state XML representation is used.

As a specification tool XQPN nets, a dedicated brand of colored Petri nets are
used. XQPN nets manipulate XML data stored in places using as expressions
constructs of XQuery language [9].

Transitions in XQPN net serving as formal specification of test cases invoke calls
to operations of the web service. It is required that if call to the web service succeeds
and corresponding transition in XQPN is enabled, they both lead to states that are
linked by a state mapping relation (sm in Fig. 1). In particular, sm may be defined as
the equality of selected state components for both systems taking the form of XML
data.

Using a real web application instead of a model implies some limitations. For a
real application it is difficult or even impossible to construct a representation of its
whole state space. This might require restoring previous data base state, as well as
undoing changes to internally managed data, eg. a session state. Instead, we attempt to
cover partially the state space of the system leaving at the moment as an open
question the criteria of a good coverage.

3 XQPN Petri nets

XQPN (XQuery Petri Networks) are colored Petri networks allowing manipulation of
XML documents stored in places. Marking in XQPN can be treated as a set of XML
documents contained in places or a large XML document encompassing them all.
Similarly to Colored Petri Nets (CPN) [10], places store sets of distinguishable
objects corresponding to various nodes in a document hierarchy. Another common
property with CPN networks is the presence of expressions assigned to arcs or guards
assigned to transitions. In XQPN they take the form of XQuery [9] language
expressions.

3.1 XQuery language

XQuery is the language for querying XML data. We selected XQuery as a basic
element of XQPN because it is a widely recognized standard of XML processing
recommended by W3C organization, moreover, many vendors offer commercial and
free XQuery engines suitable to process XML documents in textual form (located in
memory or in a file) [11,12] as well as stored in a data base, e.g. IBM DB2 [13] or
Oracle [14].

Queries of XQuery return sequences of XML tags (nodes) or atomic values. There
is no syntactical difference between a sequence containing one element and its single
element. Structure of nodes returned by queries may differ from this appearing in the
source document due to the capability of transforming and adding nodes. The other
capability offered by XQuery is joining data originating from different sources.

XQuery is a programming language. It allows defining variables and assigning
values to them, defining and calling functions. XQuery syntax includes conditional
expressions and loops in form of FLWOR expression. (FLWOR is the abbreviation of
first letters of keywords for , let , where , order by , return). An example of
FLWOR expression is:

for $x in /bookstore/book
where $x/price>30

order by $x/title
return $x/title

This expression iterates over sequence of nodes returned by XPath [] expression
bookstore/book and returns ordered sequence of nodes title being children of
the node book and matching the criterion price>30 .

Both conditional and FLWOR expressions could not be treated as structured
instructions controlling a program flow, they rather resemble operators, as they return
sequences of nodes.

3.1 Description of XQPN nets

XQPN network is defined as the tuple XQPN = (P, T, A, Q, W, I, G), where
• P – is a finie set of places,
• T – is a finie set of transitions,
• A ⊆ P × T ∪ T × P is a set of arcs,
• Q: A → Q, is a function, assigning XQuery queries to arcs, we will denote a set

of all XQuery queries by Q,
• W: P × T → (N ∪ {*}) × (N ∪ {*}) is a function that assigns multiplicity to

input arcs of transitions,
• I: P × T → {delete, read} is a function that assigns input mode to input arcs,

for delete mode the transition linked by the arc will remove tokens from the
input place, for read mode it will only query their values and leave them intact,

• G: T → Q is a function assigning guards to transitions (guards are XQuery
queries returning Boolean values).

We will introduce XQPN nets on a small preliminary example presented in Fig. 4.

The transition T is linked with an input arc with a place store. The input arc
expression let $x := /*/item[./@id>12] assigns to the variable $x all
nodes <item> whose value of attribute id is greater then 12.

Assuming, that the place store contains data:

<store>
 <item id='7'/>
 <item id='12'/>
 <item id='13'/>
 <item id='21'/>
 <item id='27'/>
</store>

as the transition T is fired the variable $x will be assigned with the node sequence:
(<item id='13'/> <item id='21'/> <item id='27'/>)
and then the nodes in $x will be removed from the place store and added to the place
out as specified in the output arc expression: $x .

Using expressions of XQuery language as arc inscriptions allows a great flexibility
in selecting nodes from input places arcs and creating nodes in output places. A

transition can change organization of data before transferring them to an output place.
For example using the expression

for $y in $x return
<item><id>{data($y/@id)}</id></item>

containing FLWOR construct for output arc of transition T will extract id values
from attributes and place them in <id> tags.

The exact number of nodes moved by a transition is controlled by a multiplicity
parameter assigned to input arc, marked as mul in the drawing in Fig. 4. This
parameter corresponds to the weight in PT-nets [15]. Multiplicity is defined as a pair
of two numbers [min, max] specifying bounds. A transition is enabled if input arc
expression can evaluate using at least min tokens. However, if more then min tokens
are available, then a maximal number not greater then max will be taken. If min and
max are equal, it can be marked on the diagram as a single number. Apart from
numbers specification of bounds can contain a symbol of ‘*’ corresponding to all
tokens (infinity). In most cases values of ‘1’ or ‘*’ are used as multiplicity parameters.

For a net presented in Fig. 4 setting multiplicity to ‘*’ implies that input arc
expression will evaluate to all tokens satisfying /*/item[./@id>12] , and $x
will contain all three nodes. If this parameter is set to ‘1’, then exactly one element
will be arbitrary selected among those matching the expression and $x will contain
only one node. This node will be then removed from the place store and added to the
place out.

 store Tlet $x := /*/item[./@id>12] out$xmul

Fig. 4 Transition T moving nodeset specified by input arc expression from the place store to the
place out

The net in Fig. 5 shows other constructs that may appear in XQPN specification.
The place users is connected with the transition T by a read arc. Lack of arrow
symbolizes that the transition T only reads data from its input place, but does not
remove them. The other element is a guard that enables the transition only for a those
combination of values of $users and $fdata , where login and password
subnodes are matched.

It should be emphasized that in XQPN all variables appearing in guards and output
arc expressions should be bounded by let instruction in input arc expressions (e.g:
let $users := /users/user) , In case of additional variables appearing only
in output arcs they serve mainly for iteration over nodesets and must be bounded by
FLWOR expressions. XQPN specification allows a dependency between input
variables (values of previously bound variables can be used in expressions defining
subsequent variables).

Fig. 5 Example of the transition with read arc and guard

4 Modeling Web Applications with XQPN

We assume that modeled web applications have classical three tier architecture
consisting of a View, Controller and a Model. Corresponding layers can be found in
XQPN specifications comprising places for View, transitions and auxiliary places for
Controller and places representing data base tables in Model. Specifications are
usually supplemented by the fourth layer Test Data containing places where data
corresponding to values entered by users are stored.

We will present this approach on a partial model of an application representing
internet shop covering two use cases: Display Goods (Fig. 6) and Add to Cart (Fig.
7).

In Display Goods use case a logged user with assigned session id selects a category
and executes a script of the web application. The place insession in Test Data layer
contains session numbers surrounded by <id> tags. similarly the place incategory
contains identifiers of categories.

The place goods of the Model layer contains the following XML data:

<goods>
 <item id='7' category='1'>
 <name>Mouse</name>
 <price>10</price><stock>12</stock>
 </item>
 <item id='10' category='2'>
 <name>Notebook Basic</name>
 <price>299</price><stock>0</stock>
 </item>
 <item id='11' category='2'>
 <name>Notebook</name>
 <price>499</price><stock>2</stock>
 </item>
 <item id='17' category='3'>
 <name>LCD Screen</name>
 <price>399</price><stock>8</stock>
 </item>
</goods>

Those data may originate from a data base table and can be assigned to the place
before running the test.

The transition display reads data from its input places and put them to the place
vgoods executing the output arc query (partially visible on the diagram):

return <vgoods session='{$ses}'>{
for $i in $items
where $i/@category=$cat
return $i } </vgoods>

The place vgoods belongs to the View layer, potentially it can contain multiple

<vgoods> nodes, each for different category and session combination. This models
a situation where different logged users concurrently display goods offered by an
internet store. As it can be noticed, a View model in the specification defines the data
that are presented by the view, but not the way how they are presented, i.e before they
are transformed to HTML representation.

 insessionTest Data View Controller Modelincategory display goodsvgoods let $items := //item11 *let $ses := //idlet $cat := //idreturn <vgoods session='{$ses}'>...

Fig. 6 Model of the use case Display Goods

The net in Fig. 7 models the use case Add to Cart. It is assumed that the use case
starts when a browser displays a list in vgoods and the users enters a number of items
he wants to buy. The place inquantity contains numbers that will be used in test cases
placed in <num> tags, e.g: 0,1,….10. The script is modeled by three transitions:
addToCart, displayCart and addToCartFail.

Fig. 7 Model of the use case Add to Cart

The transition addToCart is executed if its guard evaluates to true; as it can be seen
the guard tests if the selected number of items $iq is greater then 0 and less or equal
quantities in vgoods (list in a view) and goods (data base state). Execution of this
transition adds an item to the cart (together with the session identifier and the
requested quantity) and enables the transition displayCart. On the other hand, if the
transition addToCart can not be executed due to guard evaluation returning false, the
transition addToCartFail with complementary guard can be executed and produce
vbuyerror notification.

The transition displayCart produces a view of the cart executing an inner join
expression at its output arc (partially visible on the diagram):

return <vcart session='{$ses}'>
{
for $i in $items
 return <item>{$i/@id}
 {$i/name}
 {
 for $p in $cart
 where $i/@id=$p/id
 return $p/quantity
 }
 </item>
}
</vcart>

Input arc expressions for this transitions contain typical dependency between

variables that influence the order in which they should be bounded: ($cart depends
on $ses and $items depends on $cart), thus variables should be bounded by
evaluating queries in the order:
let $ses:=//id , then
let $cart := //cartitem[./@session=$ses] and finally:
let $items := //item[./@id=$cart/id] .

5 Tested system

Designing the testing framework we assumed that the tested system is a web service
or a web application build entirely on the functionality provided by a web service. A
web service can be viewed as a collection of executable code hosted on a web server
whose functions are exposed through standard XML protocols. The interface of a web
service is defined as a WSDL document [8] specifying operations, their parameters
and return values. A web service consumer accesses the web service operations
through an object of Proxy class that for majority of implementation platforms can be
automatically generated basing on WSDL description of the web service. The Proxy
class takes care of communication with a web service and allows calling web service
operations as if they were invoked on a local object.

To validate the framework design we have implemented a web service and a web
application for an internet shop, whose partial specification was presented in Chapter
4. The tested system (Fig. 8) was implemented in C# language on the ASP.NET
platform. Its functionality covers typical tasks: logging, searching for goods, adding
them to the cart, finalizing the purchase, etc.

Fig. 8 Components of Web Application basing on a web service

Operations of the tested web service correspond to transitions in Controller layer
of XQPN specification presented in Chapter 4. It is assumed that the access to the
data base is fully wrapped by the web service and there is no direct communication
between the WebApp and the data base. The WebApp client of the web service is
responsible for calling web service operations and translating its output to HTML
format acceptable by a browser. In some cases it implements parts of business logic,
eg. after calling the operation addToCart() and receiving the success notification it
calls displayCart() to show the list of goods selected for the purchase.

6 Architecture of the framework

The testing framework is build of a several components allowing carrying out a set of
test cases by synchronously executing XQPN specification and web service
operations and then comparing states reached in the specification and the tested
system. The components and the data they exchange are shown in Fig. 9. Below we
provide their short description.

XQPN Editor is a tool for preparing the network specification containing both the
network structure as well as marking of selected places in form of XML data.
Specification is saved in a file that can be read by XQPN Executor.

XQPN Executor is capable of executing transitions in XQPN network. It can fire a
specified transition, fire any enabled transition or run a simulation consisting in
consecutive execution of randomly selected transitions. At any moment a simulation
can be halted and the current marking in XQPN can be examined. XQPN Executor
provides an interface to be called programmatically; it provides also a console, where
a user can issue commands. The console can be used for debugging and validating
XQPN specification before applying it in tests as well as for manual execution of test
cases.

DB Logger is a tool that examines a data base structure and content and returns its
state in XML format. It can also log changes in the data base in more compact
differential form. DB Logger is used to retrieve initial marking of Model places of
XQPN network before running test cases and for examining their content during the
tests execution.

Proxy (patched) is a standard proxy class generated from WSDL web service
description. The generated source code (in C# language) is modified by inserting
extra code that logs web service calls and responses. Those data are written to WS
Log. Output data (Output XML) are also used for further comparison with the content
of places representing views in XQPN model.

Log Viever is a utility for examining data written in WS Log. This can be helpful in
analysis of errors detected by running test cases.

Transition2Web Mapper translates information on transition and variables binding
to calls of web application build on the tested web service. It uses additional data
specifying mapping of transitions in the XQPN model to scripts, mapping of
parameter names and preferred call method (POST or GET). The module includes an
embedded browser component that manages internal browser data, e.g. cookies, if
applicable, and is capable of displaying output of web application after translation to
HTML format.

Transition2Proxy Mapper plays similar role in our framework. The main difference
is that it directly calls web service methods via the proxy class. It can be used instead
of Transition2Web Mapper to test a web service rather then application using it.

Comparator is used for testing equality (inclusion in some cases) of marking
retrieved from XQPN Executor and the data originating from the tested application
(Output XML and DB content XML). In general we expect equality the data base
state and XML data in places belonging to the Model layer in XQPN specification
and, and inclusion between Output XML and content of the View data. It is planned
to modify the framework at this point by implementing additional functionality that
would accumulate and assign to virtual places responses from web service.

Test Driver is responsible for coordination of the automatic execution of test cases.
(As it was mentioned earlier it is also possible to execute tests step by step in manual
mode using the Console provided by XQPN Executor.). After initiating the test suite
(loading XQPN specification to XQPN Executor, retrieving data base state and setting
initial marking, loading mapping information) Test Driver repetitively execute test
cases makes the following steps:
1. Sends a request to the XQPN Executor module to fire an enabled transition.
2. The transition with a binding selected in XQPN Executor is transformed to a call

of WebApp by Transition2Web Mapper. The call to WebApp propagates through
Proxy and results in execution corresponding Web Service method.

3. Its output corresponding to the View layer data is caught at the Proxy.
4. Those data are merged with data base state returned by DB Logger to form Test

Result.
5. TestDriver invokes Comparator module that checks whether Test Result data are

included in the Reached Marking retrieved from XQPN Executor module and
formulates a verdict: Test Case Result.

The whole process stops when an error is detected, there is no enabled transition in
XQPN network or a user halts it at a certain moment.

Assembling those components needs certain orchestration. In some cases it is
required that several transitions in XQPN are executed in a sequence, e.g. addToCart
and displayCart in Fig. 7. We manage with this issue by assigning internal priorities
to transitions and defining breakpoints where Test Result data should be compared
with the marking reached in XQPN Executor. That means that in step (1) of a test case
execution XQPN Executor potentially may fire a few enabled transitions until
reaching a breakpoint.

The other issue is the synchronization of transitions in the model and calls to
WebApp. In general, XQPN specification is executed faster then a tested web
application and a maximal time the TestDriver waits for Test Result must be
specified.

Fig. 9 Architecture of the framework

At present the framework is in prototype phase. Basic modules of the framework
were implemented and validated by preparing and running a set of test cases. In
general, it is an iterative process, in which a new functionality to the tested
application is added, then a XQPN specification defining test cases is prepared and
after running the test elements of framework design are fine-tuned.

The framework components were implemented in C# language on a .NET
platform. We consider XQPN Executor as the crucial module in the framework.
Current implementation of this module uses free COM component Altova XML [11]
for XQuery processing. In parallel an alternative executor based on Java Saxon
libraries [12] is developed. Tests proved that Altova component is superior while
executing queries on small data sets, for larger XML documents containing thousands
of nodes Saxon libraries are more efficient and they provide greater flexibility.

Our framework still lacks of tools providing GUI for configuration of tests. For
example mapping between XQPN transitions and calls to a web application is
specified in form of XML configuration files that should be prepared manually. It is
planned to extend the XQPN Editor with a capability of defining such mapping after
validating the framework on further examples and establishing detailed requirements.

7 Conclusion

The presented framework for testing web services and web applications based on web
services uses the formal specification in form of XQPN Petri net as the source of test

sequences. Tests are driven by transitions in XQPN model. After executing a
transition and invoking a corresponding call to the tested application the equivalence
between reached model state and data containing the system response and data base
state is checked.

This approach offers an advantage that was not mentioned earlier: it is possible to
validate the specification before the system is created by simulating and observing its
behavior in XQPN Executor. Moreover, if developer selects to implement the system
in XQuery environment, queries used in XQPN specification can be ported to
implemented application or even the application can be generated automatically from
its specification. We plan to examine this solution in the future.

The other direction that is quite straightforward is the verification based on
interaction of the tester with the real application. This may be done offline, by
examining logs that are already registered or online by intercepting calls to web
application and synchronously making transitions in XQPN Executor module.

References

1. eviware software ab, http://www.soapui.org/
2. Web Service Test Forum, www.wstf.org
3. Szmuc, T.: Correctness verification of concurrent systems. In Shriver, B.D.: (eds.):

Proceedings of the Twenty-Second Annual Hawaii International Conference on
System Sciences, vol. II, Software Track, IEEE Computer Society Press, 1989, 295–
304

4. Szmuc, T.: Poprawność współbieŜnych systemów oprogramowania, Zeszyty
Naukowe AGH, Automatyka, vol. 46, 1989

5. Szwed, P.: Analiza poprawności oprogramowania współbieŜnego z wykorzystaniem
funkcji obserwacji, praca doktorska, Wydział Elektrotechniki, Automatyki,
Informatyki i Elektroniki AGH, Kraków 1999

6. Szwed P. Verification of relative correctness of Petri nets, In: 5th Conference on
Computer Methods and Systems, Kraków 14-16 november 2005, 295—300

7. Szwed P. Verification of the correctness of Real Time systems specified with timed
Petri nets Computer Methods and Systems. In: 5th Conference on Computer Methods
and Systems, Kraków 14-16 november 2005, 289—294

8. Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
9. W3C: XQuery 1.0: An XML Query Language, http://www.w3.org/TR/xquery/
10. Jensen K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,

Vol. I-III, Springer Verlag, 1995/96
11. Altova XML, http://www.altova.com/altovaxml.html
12. Saxonica: XSLT and XQuery Processing, http://www.saxonica.com/
13. Chamberlin, D. Saracco, C.M.:Query DB2 XML data with XQuery,

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/
14. Oracle XQuery, http://www.oracle.com/technology/tech/xml/xquery/index.html
15. Reisig W.: Petri Nets – An Introduction, EATCS Monographs on Theoretical

Computer Science, Volume 4. Springer. 1985

