A Framework For Testing Web Services Based On
XQPN Petri Nets

Piotr Szweé, Dariusz Wadowskj Krzysztof Padziora

! Institute of Automatics, AGH University of Science aretfinology, al. Mickiewicza 30,
30-060 Krakéw, Poland
pszwed @ia.agh.edu,glashwadowice @tlen.piiryzli83@gmail.com

Abstract. A framework for testing web applications basing on webises\is
presented. The framework uses a formal specificatiaheftested system in
form of XQPN net, a colored Petri net allowing manipolatof XML data.
Tests of real application are driven by transitions QPN net. After
performing transitions in the XQPN model and corresponditig trathe tested
system, the equality between the states of model and ®gtem is checked.
The paper describes XQPN nets and its application in modelingebf
applications and presents architecture and main componehts fohmework.

Keywords: XQuery, Petri net, testing, web service

1 Introduction

The need of testing of web services and web servisedbapplications emerged with
the rapid development of this technology. At present tlegist several tools for
carrying out unit testing and performance analysis of webces, e.gsoapUI[1] or
tools for ASP.NET platform included in Visual Studio. Yheffer a capability of
defining individual test cases specifying called operatibra oveb service, its
parameters and assertions concerning expected resulis.alfbe also running a
manually prepared sequence (scenario) of test casesof@ne recent initiatives in
this field is Web Service Test Forum [2] a communitguging leading companies
that decided to develop and publish testing scenarios thabeachecked against
various implementations of web services.

In the presented framework we have taken a differgproach to defining
scenarios. Instead of manually preparing a sequence chtsesgt, we deliver a formal
specification of the tested system in form of XQPNriReetwork, a dedicated type of
colored Petri network being capable of manipulating Xdiéita. Randomly generated
sequence of transitions in XQPN network defines a sietfzat is used to invoke
calls to an application build on a web service. We belithat such solution is
superior to testing predefined scenarios, as automgtgeherated sequences can be
notably longer and due to their random nature providerbetiverage.

The paper is organized as follows. Chapter 2 discussexptilieation of relative
correctness methods in testing and verification. Inp@ra3 XQPN networks are
introduced. Chapter 4 presents a partial XQPN model of la sesvice based

application. In Chapter 5 the infrastructure of the tesiedem is specified; finally
Chapter 6 describes the architecture of the framewatktamain components.

2 Background

The approach presented in this paper is closely relafgcbtious research on relative
correctness of concurrent and real time systems comtlirciestitute of Automatics
at AGH University of Science and Technology. The stat® of relative correctness
problem comprises three objects: a verified systemsi@msyspecification serving as
a criterion and a mapping between those systems. Terdréhis concept without
theoretic details we may assume that both the verdfistem and the criterion are
amenable to transition systeS= (S -), whereSis a set of states and [1 Sx S

is a transition relation. The notion of state is qgkaeral. It can be interpreted as a
vector of states of sequential processes and sharetllgariia a concurrent system, as
suggested in [3,4], a marking in a Petri net [6,7] or a sfadedata base and system
views in case of web application. The mapping may takeottme 6f relation between
states of the verified and criterion systems [3,4] aelation between transitions
taking the form of observation function [5,6,7].

This concept is depicted IFg. 1. The transition system at ldfnp represents the
verified system orimplementation the systemSpec is the criterion system
(specification. Usually, the implementation is more complex thansihecification, it
may contain transient states not mapped directly tesst specification (eg. 3) and
nonobservable actions)(

The definitions of relative correctness assume aaiceform of synchronous
execution of both systems: if the current staténgf is (1) and the corresponding
state ofSpeds (1’) then in the next step both systems should synite on actiona
anda’ and reach states (2) and (2') associatedrhyelation: In the next stefmp
should reach the state (4) or (5) via transient stdYeexecuting nonobservable
transitiont andb; or b,, whereasSpecsynchronously should get to 3' making the
transition b’.

Imp Spec

Fig. 1 lllustration of relative correctness problem; two titims systems Imp and Spec linked
by smrelation between states.

The verification process in model checking approachiigniby transitions ihmp
that models the behavior of the verified system unuerstimuli originating from the
environment Fig. 2). After performing an observable transition or reaghian
observable state imp it is checked whether corresponding transition is alloared
corresponding state is a successor of previous st&jgein

The relative correctness definition identifies algedial conditions that may occur
in Imp: a deadlock(impossibility to perform any transition at a cemtaitate) and a
divergencgpossible infinite loop of nonobservable transitiorB)th conditions have
similar effects: execution dimp does not manifest the behavior expected by the
analysis ofSpec

Environment
model

State mapping
Transition mapping DI Criterion
D model

Imp Spec

Fig. 2 Control flow in model checking approach

The flow of control in verification process may beeded Fig. 3). In this case
Specis treated as a source of formally defined test csebnp. Execution of a
transition (or sometimes a set of transitionsppecis mapped onto stimuli from the
environment of verified system. After executing cqomsling transition inimp,
assertions about reached statelmfp can be checked. This may imply some
rearrangements as regards nonobservable states rasitidres.

Environment
model

Stimuli

Transition mapping

Criterion
model

'

State mapping

Imp Spec

Fig. 3 Control flow in testing

In our framework the subject of verificatiodmp) is a real web application
implemented as a client of a web service. Transitiongrified system correspond to
web service operations as defined in WSDL language [8]aggume that the verified
application has standard three tier architecture comprisotginview and controller
layers. The state of verified system is an aggregatiatata displayed in views, data
managed internally by the controller, eg. session statdtee data base state. As the
common platform to represent system state XML regriedion is used.

As a specification tool XQPN nets, a dedicated brandotdired Petri nets are
used. XQPN nets manipulate XML data stored in placesguam expressions
constructs of XQuery language [9].

Transitions in XQPN net serving as formal specificatod test cases invoke calls
to operations of the web service. It is required theall to the web service succeeds
and corresponding transition in XQPN is enabled, they ledld to states that are
linked by a state mapping relatioen{in Fig. 1). In particular,smmay be defined as
the equality of selected state components for bothregstaking the form of XML
data.

Using a real web application instead of a model impg@®se limitations. For a
real application it is difficult or even impossible to stmct a representation of its
whole state space. This might require restoring previotss lose state, as well as
undoing changes to internally managed data, eg. a sessmnirsstégad, we attempt to
cover partially the state space of the system leavintheatmoment as an open
guestion the criteria of a good coverage.

3 XQPN Petri nets

XQPN (XQuery Petri Networks) are colored Petri netwalktswing manipulation of
XML documents stored in places. Marking in XQPN can bedteas a set of XML
documents contained in places or a large XML document grassing them all.
Similarly to Colored Petri Nets (CPN) [10], placesret sets of distinguishable
objects corresponding to various nodes in a document ttigraAnother common
property with CPN networks is the presence of expressissigned to arcs or guards
assigned to transitions. In XQPN they take the formX@juery [9] language
expressions.

3.1 XQuery language

XQuery is the language for querying XML data. We sele¢€lery as a basic
element of XQPN because it is a widely recognized stanofadXML processing

recommended by W3C organization, moreover, many vendiasammmercial and
free XQuery engines suitable to process XML documentexitual form (located in
memory or in a file) [11,12] as well as stored in aadadse, e.g. IBM DB2 [13] or
Oracle [14].

Queries of XQuery return sequences of XML tags (nodesfoaria values. There
is no syntactical difference between a sequence cargaime element and its single
element. Structure of nodes returned by queries may difier this appearing in the
source document due to the capability of transformingaattting nodes. The other
capability offered by XQuery is joining data originatingrfr different sources.

XQuery is a programming language. It allows defining vaemtdnd assigning
values to them, defining and calling functions. XQuery syimaludes conditional
expressions and loops in formEBEWORexpression.KLWORIs the abbreviation of
first letters of keywordgor , let , where, order by, return). An example of
FLWOR expression is:

for $x in /bookstore/book

where $x/price>30

order by $x/title

return $x/title
This expression iterates over sequence of nodes retlmpnetPath [] expression
bookstore/book and returns ordered sequence of ndifles being children of
the nodebook and matching the criterigorice>30

Both conditional andFLWOR expressions could not be treated as structured

instructions controlling a program flow, they rathesemble operators, as they return
sequences of nodes.

3.1 Description of XQPN nets

XQPN network is defined as the tupdl®@PN= (P, T, A, Q, W, |, G), where
 P-—isafinie set of places,

+ T-is afinie set of transitions,

« AOPxTOTxPis aset of arcs,

« Q A- Q,is afunction, assigning XQuery queries to arcs, Wedenote a set
of all XQuery queries b,

e WPxT (NO{*) x(NO{} is a function that assigns multiplicity to
input arcs of transitions,

« 1|:PxT - {delete read} is a function that assigns input mode to input arcs,
for deletemode the transition linked by the arc will remove tok&osm the
input place, foread mode it will only query their values and leave theraétt

* G:T - Q is a function assigning guards to transitions (guardsx&eery
queries returning Boolean values).

We will introduce XQPN nets on a small preliminary exderpresented ifrig. 4.
The transitionT is linked with an input arc with a placgore The input arc
expressionlet $x := [*/item[./@id>12] assigns to the variabigx all
nodes #tem> whose value of attributie is greater then 12.

Assuming, that the plastorecontains data:

<store>
<item id="7'/>
<item id="12'/>
<item id="13/>
<item id="21'/>
<item id="27'/>
</store>

as the transitiofd is fired the variabl&x will be assigned with the node sequence:
(<item id="13"/> <item id="21"/> <item id="27'/>)
and then the nodes $x will be removed from the placstoreand added to the place
out as specified in the output arc expresstn.:

Using expressions of XQuery language as arc inscriptitmssah great flexibility
in selecting nodes from input places arcs and creating riadestput places. A

transition can change organization of data before &atirsf them to an output place.
For example using the expression

for $y in $x return
<item><id>{data($y/@id)}</id></item>

containing FLWOR construct for output arc of transition T will extradt values
from attributes and place themd<id> tags.

The exact number of nodes moved by a transition is dl@utrby amultiplicity
parameter assigned to input arc, markedmag in the drawing inFig. 4. This
parameter corresponds to the weight in PT-nets [15]. Mialty is defined as a pair
of two numbers rhin, maq specifying bounds. A transition is enabled if input arc
expression can evaluate using at leasttokens. However, if more thenin tokens
are available, then a maximal number not greater itheexwill be taken. Ifmin and
max are equal, it can be marked on the diagram as a singleenudpart from
numbers specification of bounds can contain a symbol o€dtresponding tall
tokens(infinity). In most cases values of ‘1’ or *" are usad multiplicity parameters.

For a net presented iRig. 4 setting multiplicity to “*' implies that input arc
expression will evaluate to all tokens satisfyififitem[./@id>12] , and $x
will contain all three nodes. If this parameter isteetl’, then exactly one element
will be arbitrary selected among those matching theesgon andsx will contain
only one node. This node will be then remofenin the place store and added to the
placeout

let $x := /*fitem[/@id>12] $x
mul
store T out

Fig. 4 Transition T moving nodeset specified by input arc expression e place store to the
place out

The net inFig. 5 shows other constructs that may appear in XQPN speidfn.
The placeusersis connected with the transitioh by aread arc Lack of arrow
symbolizes that the transition only reads data from its input place, but does not
remove them. The other element is a guard that entldgl@gansition only for a those
combination of values ofusers and $fdata , wherelogin and password
subnodes are matched.

It should be emphasized that in XQPN all variables appgamiguards and output
arc expressions should be boundeddty instruction in input arc expressions (e.qg:
let $users := /users/user), In case of additional variables appearing only
in output arcs they serve mainly for iteration over etk and must be bounded by
FLWOR expressions. XQPN specification allows a dependency betvirgeut
variables (values of previously bound variables can be msegpressions defining
subsequent variables).

1 $users/login = $fdata/@login and
let $users := Jusers/user $ P =$ P
users Susers
let $fdata :=/form/formdata

i : T logged
1

form

Fig. 5 Example of the transition with read arc and guard

4 Modeling Web Applicationswith XQPN

We assume that modeled web applications have classied thar architecture
consisting of aview Controller and aModel Corresponding layers can be found in
XQPN specifications comprising places Miew transitions and auxiliary places for
Controller and places representing data base tableblddel Specifications are
usually supplemented by the fourth layEest Datacontaining places where data
corresponding to values entered by users are stored.

We will present this approach on a partial model of pplieation representing
internet shop covering two use cases: Display Goeids §) and Add to CartKig.

7).

In Display Goods use case a logged user with assigned sibs&acts a category
and executes a script of the web application. The presgsssion in Test Data layer
contains session numbers surroundeckiolp tags. similarly the place incategory
contains identifiers of categories.

The placegoodsof theModellayer contains the following XML data:

<goods>
<item id="7" category="1">
<name>Mouse</name>
<price>10</price><stock>12</stock>
<fitem>
<item id="10' category="2">
<name>Notebook Basic</name>
<price>299</price><stock>0</stock>
</item>
<item id="11' category="2">
<name>Notebook</name>
<price>499</price><stock>2</stock>
<fitem>
<item id="17' category='3">
<name>LCD Screen</name>
<price>399</price><stock>8</stock>
<fitem>
</goods>

Those data may originate from a data base table amdeassigned to the place
before running the test.

The transitiondisplay reads data from its input places and put them to the plac
vgoodsexecuting the output arc query (partially visible on the diagr

return <vgoods session="{$ses}>{
for $i in $items

where $i/@category=$cat

return $i } </vgoods>

The placevgoodsbelongs to theView layer, potentially it can contain multiple
<vgoods> nodes, each for different category and session cotitind his models
a situation where different logged users concurrently dispteods offered by an
internet store. As it can be noticed, a View modeh@specification defines the data
that are presented by the view, but not the way howdhe presented, i.e before they
are transformed to HTML representation.

Test Data View Controller Model

Q 1 let $ses := fid

insession
N let $items := /fitem N
Q 1 let $eat := /id | |
incaty . goods
incategory G return <vgoods session={$ses}>|.. display

vgoods

Fig. 6 Model of the use case Display Goods

The net inFig. 7 models the use case Add to Cart. It is assumed that ¢hease
starts when a browser displays a lisvgoodsand the users enters a number of items
he wants to buy. The plageguantity contains numbers that will be used in test cases
placed in<num> tags, e.g: 0,1,....10. The script is modeled by three transiti
addToCart displayCartandaddToCartFail

Test Data View Controller Model

vgoods 1
let $ses := /ivgoods/@session let $ses := /ivgoods/@session
let $vitem := /fitem let $vitem := /fitem
f 1 goods
[$ig=0 and $iq<=$vitem/stock and
$iqe=Sitem/stock] let Sitem := ffitem[/@id=$viter/@id]]
[l
: |
@ T return <cartitem>{$ses}
let $iq := #inum return <id>{$ses}</i id>{string(itemi
addToCart 1sesy @d)<ic
inquantity session <quantity>{string($ic)} cart
<fquantity></cartitem>
let $ses := /iid
return <vcart
session="{$ses}’>... I let $cart = /icartitem[./@session=$ses]
-
veart displayCart
let $items := /fitem[/@id=$cart/id] 1
[$ig=0 or $ig>$vitem/stock or
$ig>Sitern/stock] goods
—>I let $item := /iitem[./@id=$vitem/@id] 1
let $iq = /inum
addToCartFail
@ return <vbuy {$ses} <id>{stri itemni id:
vbuyerror quantity>{ Sic)}</q {si G<ivbuy

Fig. 7 Model of the use case Add to Cart

The transitioraddToCartis executed if its guard evaluates to true; as it candve se
the guard tests if the selected number of itgigs is greater then 0 and less or equal
guantities invgoods(list in a view) andgoods(data base state). Execution of this
transition adds an item to the cart (together with ¢kesion identifier and the
requested quantity) and enables the transiisplayCart On the other hand, if the
transitionaddToCartcan not be executed due to guard evaluation returning tlaése,
transition addToCartFail with complementary guard can be executed and produce
vbuyerror notification.

The transitiondisplayCart produces a view of the cart executing an inner join
expression at its output arc (partially visible on dregram):

return <vcart session="{$ses}>
{
for $i in $items
return <item>{$i/@id}
{$i/name}

for $p in $cart
where $i/@id=$p/id
return $p/quantity

}

</item>

}

</vcart>

Input arc expressions for this transitions contain glpdependency between
variables that influence the order in which they shduddbounded:$cart depends
on $ses and$items depends or$cart), thus variables should be bounded by
evaluating queries in the order:
let $ses:=//id , then
let $cart := //cartitem[./@session=$ses] and finally:
let $items := //item[./@id=$cart/id]

5 Tested system

Designing the testing framework we assumed that the tegstein is a web service
or a web application build entirely on the functionafitpvided by a web service. A
web service can be viewed as a collection of executaiole hosted on a web server
whose functions are exposed through standard XML protoEoésinterface of a web
service is defined as a WSDL document [8] specifying afp®rs, their parameters
and return values. A web service consumer accessewdheservice operations
through an object of Proxy class that for majority of iempéntation platforms can be
automatically generated basing on WSDL description ofubie service. The Proxy
class takes care of communication with a web seamckallows calling web service
operations as if they were invoked on a local object.

To validate the framework design we have implemente@taservice and a web
application for an internet shop, whose partial spetiipavas presented in Chapter
4. The tested systenfif. 8 was implemented in C# language on the ASP.NET
platform. Its functionality covers typical tasks: loggingaching for goods, adding
them to the cart, finalizing the purchase, etc.

-+ WebApp Proxy WebService DB

Fig. 8 Components of Web Application basing on a web service

Operations of the tested web service correspond toittcarssin Controller layer

of XQPN specification presented in Chapter 4. It is asduthat the access to the
data base is fully wrapped by the web service and there @rect communication
between theNebAppand the data base. ThéebAppclient of the web service is
responsible for calling web service operations andskating its output to HTML
format acceptable by a browser. In some cases it ingolenparts of business logic,
eg. after calling the operaticmddToCarf) and receiving the success notification it
callsdisplayCarf) to show the list of goods selected for the purchase.

6 Architecture of the framework

The testing framework is build of a several componentsvedtpcarrying out a set of
test cases by synchronously executing XQPN specificatioth web service
operations and then comparing states reached in theficgtgmn and the tested
system. The components and the data they exchange are ishe\gn9. Below we
provide their short description.

XQPN Editor is a tool for preparing the network specification conitey both the
network structure as well as marking of selected placeform of XML data.
Specification is saved in a file that can be read®yN Executor

XQPN Executor is capable of executing transitions in XQPN networlcalt fire a
specified transition, fire any enabled transition on & simulation consisting in
consecutive execution of randomly selected transitionganftmoment a simulation
can be halted and the current marking in XQPN can benmed.XQPN Executor
provides an interface to be called programmaticallyraviges also a console, where
a user can issue commands. The console can be used tiggiheband validating
XQPN specification before applying it in tests as waslifor manual execution of test
cases.

DB Logger is a tool that examines a data base structure andntaartd returns its
state in XML format. It can also log changes in the dsdae in more compact
differential form.DB Loggeris used to retrieve initial marking Model places of
XQPN network before running test cases and for examining ¢betent during the
tests execution.

Proxy (patched) is a standard proxy class generated from WSDL web cgervi
description. The generated source code (in C# languagendddied by inserting
extra code that logs web service calls and responseseTdata are written /S
Log. Output data@utput XML are also used for further comparison with the content
of places representing views in XQPN model.

Log Viever is a utility for examining data written WS Log This can be helpful in
analysis of errors detected by running test cases.

Transition2Web Mapper translates information on transition and varialdiesling
to calls of web application build on the tested web servit uses additional data
specifying mapping of transitions in the XQPN model twipgs, mapping of
parameter names and preferred call method (POST or GE&)module includes an
embedded browser component that manages internal browseredptaookies, if
applicable, and is capable of displaying output of web agjgicafter translation to
HTML format.

Transition2Proxy Mapper plays similar role in our framework. The main diéfece
is that it directly calls web service methods via phexy class. It can be used instead
of Transition2Web Mappédp test a web service rather then application using it.

Comparator is used for testing equality (inclusion in some cas#smarking
retrieved fromXQPN Executoand the data originating from the tested application
(Output XML and DB content XML). In general we expect eqyalie data base
state and XML data in places belonging to Medel layer in XQPN specification
and, and inclusion between Output XML and content of tlesv\data. It is planned
to modify the framework at this point by implementing addiéil functionality that
would accumulate and assign to virtual places respormaswWeb service.

Test Driver is responsible for coordination of the automatic exenutibtest cases.
(As it was mentioned earlier it is also possible tecexe tests step by step in manual
mode using th€onsoleprovided byXQPN Executa). After initiating the test suite
(loading XQPN specification t§QPN Executqrretrieving data base state and setting
initial marking, loading mapping informatiof)jest Driverrepetitively execute test
cases makes the following steps:

1. Sends a request to thH€@PN Executomodule to fire an enabled transition.

2. The transition with a binding selected in XQPN Executdransformed to a call
of WebAppby Transition2Web MappeiThe call towebApppropagates through
Proxyand results in execution correspondiigb Servicenethod.

3. lts output corresponding to théewlayer data is caught at tReoxy.

4. Those data are merged with data base state returneB hyggerto form Test
Result

5. TestDriverinvokesComparatormodule that checks wheth€est Resultlata are
included in theReached Markingetrieved fromXQPN Executormodule and
formulates a verdicffest Case Result

The whole process stops when an error is detected, ithaeenabled transition in

XQPN network or a user halts it at a certain moment.

Assembling those components needs certain orchestrétiosome cases it is
required that several transitions in XQPN are executedsegaence, e.gddToCart
anddisplayCartin Fig. 7. We manage with this issue by assigning internal prégriti
to transitions and defining breakpoints whéaiest Resultata should be compared
with the marking reached MQPN ExecutarThat means that in step (1) of a test case
execution XQPN Executorpotentially may fire a few enabled transitions until
reaching a breakpoint.

The other issue is the synchronization of transitionshe model and calls to
WebApp In general, XQPN specification is executed faster thetested web
application and a maximal time thEestDriver waits for Test Resultmust be
specified.

XQPN Editor |

XQPN
Structure

Test Data
Initial Marking XML
Model Il DB Logger Ir

XQPN EXecutor

Transition
Binding

ransition

Transition2Proxy
Mapper
" Proxy
777777777777 2iebApp WebApp WebService -
Mapper la——
Reached | .
@@ Test Driver I

i Output XML
c Test Result
XML _I
DB ;lc\:ﬂnl_tent Wi DB Logger

Result
Fig. 9 Architecture of the framework

At present the framework is in prototype phase. Basidules of the framework
were implemented and validated by preparing and running a sestofases. In
general, it is an iterative process, in which a newmcfionality to the tested
application is added, then a XQPN specification definirsy ¢ases is prepared and
after running the test elements of framework design aectfined.

The framework components were implemented in C# languag& oNET
platform. We consider XQPN Executor as the crucial modul¢he framework.
Current implementation of this module uses free COM carapbAltova XML [11]
for XQuery processing. In parallel an alternative execilimsed on Java Saxon
libraries [12] is developed. Tests proved that Altovangonent is superior while
executing queries on small data sets, for larger XML doctsyamtaining thousands
of nodes Saxon libraries are more efficient and theyigeayreater flexibility.

Our framework still lacks of tools providing GUI for configtica of tests. For
example mapping between XQPN transitions and calls to la application is
specified in form of XML configuration files that shoulé prepared manually. It is
planned to extend the XQPN Editor with a capability ofrde§ such mapping after
validating the framework on further examples and estahblisdetailed requirements.

7 Conclusion

The presented framework for testing web services and p@izations based on web
services uses the formal specification in form of XJPetri net as the source of test

sequences. Tests are driven by transitions in XQPN Imdkfter executing a
transition and invoking a corresponding call to the tesggplication the equivalence
between reached model state and data containing ttersyssponse and data base
state is checked.

This approach offers an advantage that was not mentesrédr: it is possible to
validate the specification before the system is eckly simulating and observing its
behavior in XQPN Executor. Moreover, if developer seléstimplement the system
in XQuery environment, queries used in XQPN specificattam be ported to
implemented application or even the application can hergéed automatically from
its specification. We plan to examine this solution in thark.

The other direction that is quite straightforward is tregification based on
interaction of the tester with the real applicatidhis may be done offline, by
examining logs that are already registered or online bycepdng calls to web
application and synchronously making transitions in XQRcHtor module.

References
1. eviware software alttp://www.soapui.org/
2. Web Service Test Forumww.wstf.org
3. Szmuc, T.: Correctness verification of concurrent systémsShriver, B.D.: (eds.):

Proceedings of the Twenty-Second Annual Hawaii Internati@@iference on
System Sciences, vol. Il, Software Track, IEEE Comp8teiety Press, 1989, 295—
304

4. Szmuc, T.: Poprawrd wspotbienych systemdéw oprogramowania, Zeszyty
Naukowe AGH, Automatyka, vol. 46, 1989

5. Szwed, P.: Analiza poprawém oprogramowania wspothirego z wykorzystaniem
funkcji obserwacji, praca doktorska, Wydziatl Elektrotechnidutomatyki,
Informatyki i Elektroniki AGH, Krakow 1999

6. Szwed P. Verification of relative correctness of Patdis, In: 5th Conference on
Computer Methods and Systems, Krakéw 14-16 november 2005, 295—300

7. Szwed P. Verification of the correctness of Real Tigsesns specified with timed

Petri nets Computer Methods and Systems. In: 5th ConfererCenoputer Methods

and Systems, Krakdw 14-16 november 2005, 289—294

Web Services Description Language (WSDL) hitp://www.w3.org/TR/wsdl

W3C: XQuery 1.0: An XML Query Languagettp://www.w3.org/TR/xquery/

0. Jensen K.: Coloured Petri Nets. Basic Concepts, Analysthdds and Practical Use,

Vol. I-1ll, Springer Verlag, 1995/96

11. Altova XML, http://www.altova.com/altovaxml.html

12. Saxonica: XSLT and XQuery Processihtip://www.saxonica.com/

13. Chamberlin, D. Saracco, C.M..Query DB2 XML data with XQuer
http://www.ibm.com/developerworks/db2/library/techarticle/@6®4saracco/

14. Oracle XQueryhttp://www.oracle.com/technology/tech/xml/xquery/index.html

15. Reisig W.: Petri Nets — An Introduction, EATCS Monograplms Theoretical
Computer Science, Volume 4. Springer. 1985

B ©o®

