

6th International Conference on Human System Interaction June 06-08 2013

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

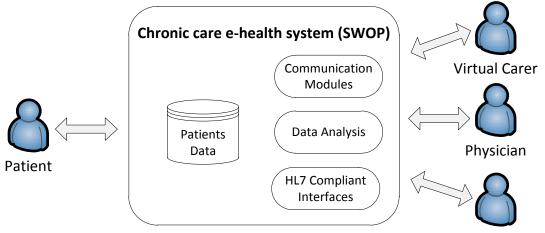
Application of Fuzzy Ontological Reasoning in an Implementation of Medical Guidelines

Piotr Szwed

AGH University of Science and Technology Department of Applied Computer Science e-mail: pszwed@agh.edu.pl

Agenda

- 1. Goal
- 2. SWOP e-health system
- 3. Fuzzy rules and reasoning
- 4. Rules formalizing a guideline for asthma assessment
- 5. Solution:
 - Ontology with extensions required for fuzzy reasoning
 - Software architecture
 - SWRL rules
- 6. Conclusions



Goal

- Implementation of medical guidelines in an e-health system:
 - Reuse of ontologies
 - Approach based on fuzzy rules
- Application of available crisp Semantic Web tools and technologies to perform fuzzy reasoning

SWOP (in Polish: *System Wspomagania Opieki Przewlekłej*) an e-health system supporting patients suffering from chronic conditions by: self-assessment, telemonitoring and interactions with health care professionals.

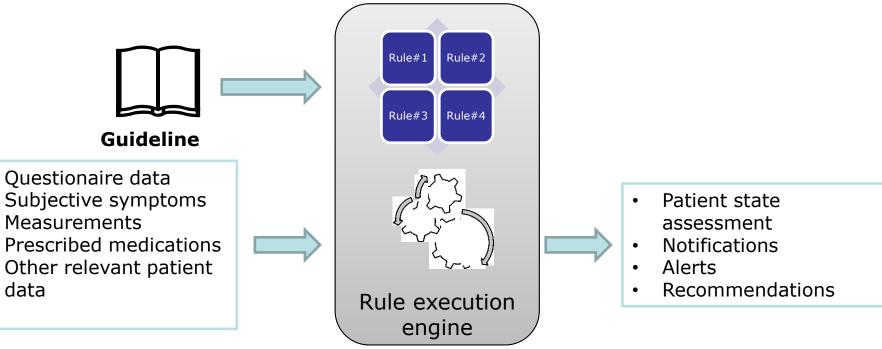
Telemonitoring process:

Consultant

- Patients manually or automatically send results of self-observations or selfmeasurements specific for their chronic disease.
- Entered data are automatically analyzed to determine patients' status, trends in disease course and a risk of symptoms exacerbation.
- Patient or a family member is notified about results of the assessment (in a web browser or via e-mail/SMS)

٠

٠

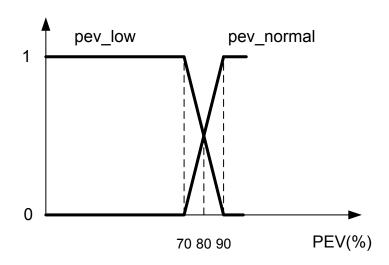

٠

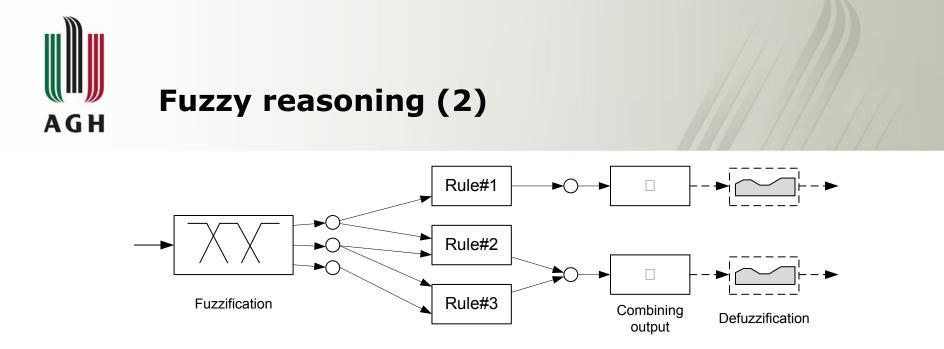
٠

٠

Data analysis component

- Rule based implementation
- Rules formalize a guideline
- Fuzziness is introduced to cope with uncertainty resulting from selfobservations bias, low quality of sensors and limited patients skills




Fuzzy reasoning (1) Mamdani rules

 $IF var_1 = value_{11}AND var_2 = value_{21} ... THEN var_{out} = out$

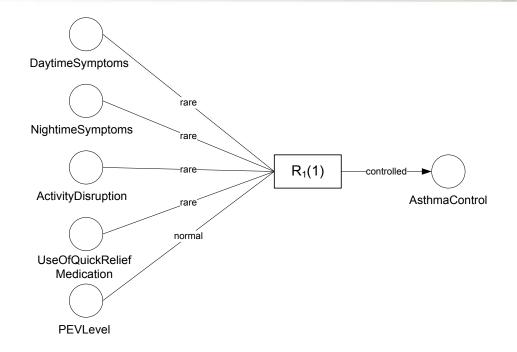
var_i- linguistic variable *value_{ij}*, *out* - fuzzy sets

- Fuzzy sets are described by membership functions defining the confidence factor from the interval [0,1] that a particular element is a member of the set.
- At left: an example of two fuzzy sets *pev_low* and *pev_normal* representing classes of PEV (peak expiratory volume) values.

- Fuzzification values of the parameters are mapped to fuzzy sets according to defined membership functions and assigned to linguistic variables. (A variable can be bound to multiple values).
- *Inference*: applying defined rules and assigning values to output variables;
- Aggregation: the contents of the output variables is combined (typically based on maximal on average membership value).
- Defuzzification converting fuzzy values to crisp

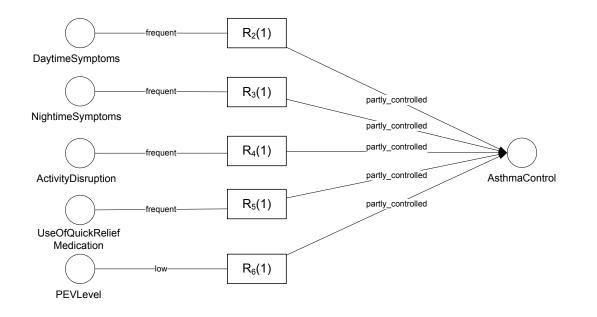
Guideline for asthma assessment (1)

Guideline issued by Global Initiative for Asthma (GINA) 2011


Assessments of asthma control should be performed on a weekly basis considering the following features:

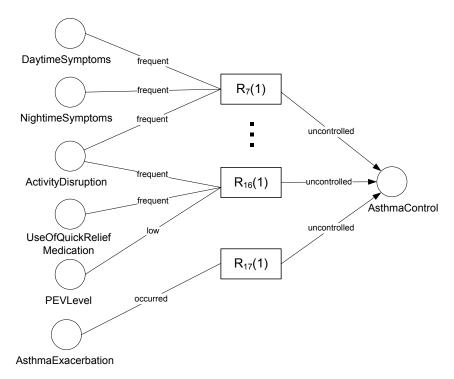
- presence of daytime or nocturnal symptoms (including awakening),
- disruption of daily activities,
- need for reliever treatment and
- evaluation of lung function (based on PEV measurement).

Customization of the system to bronchial asthma was selected as one of the proof-of-concept exemplifications of the system.


Guideline for asthma assessment (2)

IF DaytimeSymptoms IS rare AND NighttimeSymptoms IS rare AND ActivityDisruptions IS rare AND UseOfQuickReliefMedication IS rare AND PEVLevel IS normal THEN AsthmaControl IS controlled

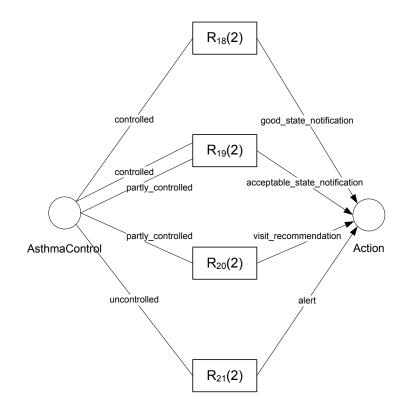
Guideline for asthma assessment (3)


Asthma is partly controlled if any of symptoms exceeds a save level, e.g. **Rule R₄(1)**:

IF ActivitiDisruption IS frequent THEN AsthmaControl IS partly_controlled

Guideline for asthma assessment (2)

Asthma is considered uncontrolled if there are three or more indications of partial control or an exacerbation occurs in the analyzed period.

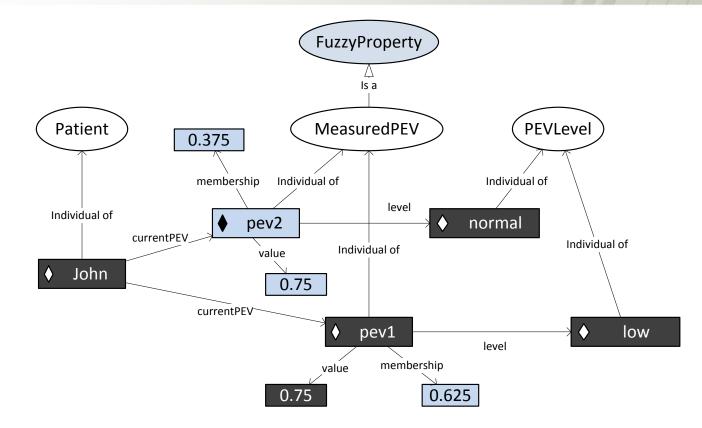

Rule R₇(1):

IF DaytimeSymptoms IS frequent AND NightimeSymptoms IS frequent AND ActivitiDisruption IS frequent THEN AsthmaControl IS uncontrolled

$$\binom{5}{3} + 1 = 11$$
 rules required

Rules for actions

These rules are responsible for selecting actions: notifications, recommendations, alerts.

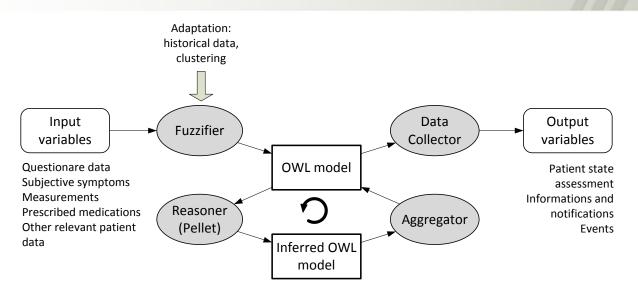


Implemented solution

- Reusing a domain knowledge formalized in OWL ontologies and introducing extensions required to perform fuzzy reasoning
- Rewritting fuzzy rules in *Semantic Web Rule Language* (SWRL)
- Building a software responsible for fuzzification, aggregation of results and coordination of the whole process.

Ontology extended with properties expressing fuzzy relations and weights

- Object property level used to link with a fuzzy set
- Datatype property **membership** is used to assert fuzzy set membership
- Cardinality restriction Patient currentPEV [max 1] MeasuredPEV must be relaxed.


Refactored ontology

- Class MeasuredPEV removed and membership property moved to a class representing a symptom
- Added **imembership** (inferenced membership) property
 15

Architecture of the reasoning engine

- *Fuzzifier* converts input data into values in the range [0,1] and asserts **membership** values.
- Reasoner executes SWRL rules to process assertions defined in input model and yields imembership inferences.
- Aggregator collects arguments of **imembership** statements for an individual, calculates aggregated (maximum) values and asserts **membership** values.
- At the end, *DataCollector* is responsible for reading the values asserted by *Aggregator* and setting output variables.

SWRL based implementation of fuzzy rules

Rule R₁(1)[a-e]

hasValue(Step.current, 1), membership(DaytimeAsthmaSymptom.rare, ?m1), membership(NightimeAsthmaSymptom.rare, ?m2), membership(ActivityDisruption.rare, ?m3), membership(UseOfQuickReliefMedication.rare, ?m4), membership(PEVLevel.normal, ?m5), lessThanOrEqual(?m1, ?m2), lessThanOrEqual(?m1, ?m3), lessThanOrEqual(?m1, ?m4), lessThanOrEqual(?m1, ?m5) -> imembership(AsthmaControl.controlled, ?m1)

- The premise hasValue(Step.current, number) activates a rule at a certain iteration,
- Binary predicates membership map property values to variables
- The conclusion assigns imembership value to the target individuals.
- Problem: calculate the rule activation level: min(?m1,?m2,?m3,?m4,?m5)
 - Multiple lessThanOrEqual predicates referencing the built-in SWRL function are used,
 - To calculate a minimum of 5 variables 5 SWRL rules are required!

SWRL based implementation of fuzzy rules

Rule R₂(1)

hasValue(Step.current, 1), membership(DaytimeAsthmaSymptom.frequent, ?m) -> imembership(AsthmaControl.partly controlled, ?m)

Rule R₇(1) [a-c]

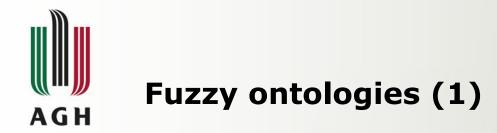
hasValue(Step.current, 1), membership(DaytimeAsthmaSymptom.frequent, ?m1), membership(NightimeAsthmaSymptom.frequent, ?m2), membership (ActivityDisruption.frequent, ?m3), lessThanOrEqual(?m1, ?m2), lessThanOrEqual(?m1, ?m3) -> imembership(AsthmaControl.uncontrolled, ?m1)

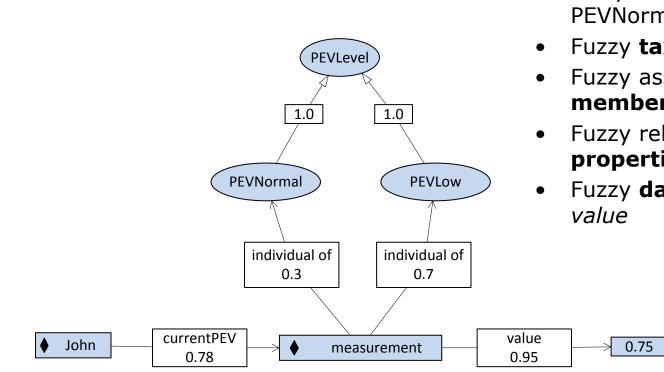
Rule	Number of SWRL rules
Asthma controlled	5
Asthma partly controlled	5
Asthma uncontrolled	31
Actions	5
Total	46

Testing

- Multiple random tests covering 2000 cases (with the assumed garanularity over 1000000 combinatons of input values are possible)
- Results were analyzed, then errors in manually encoded SWRL rules were corrected and introduced changes to membership functions
- Execution time for each test case: about 300ms

Conclusions

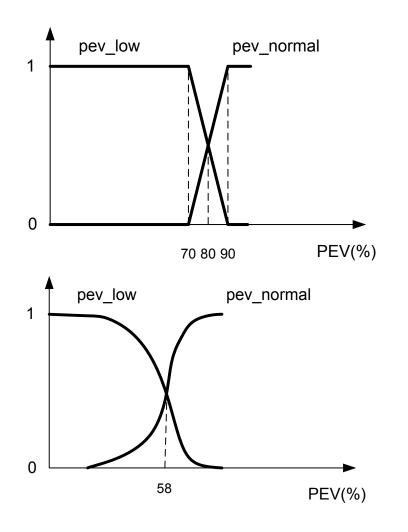

- Commonly used Semantic Web languages and supporting tools are not intended to handle fuzzy reasoning.
- The work is an attempt to apply them to specify and execute a set of fuzzy rules.
- The proposed approach consists in
 - refactoring a domain ontology
 - introducing additional relations expressing fuzzy properties,
 - encoding Mamdani fuzzy rules in SWRL language
 - executing them with use of Pellet reasoner.
- The approach was discussed on a set of rules formalizing a medical guideline for asthma control assessment


Thank you

Appendix

Relations of crisp ontologies extended by adding weights from [0,1]

- Fuzzy concepts (equivalents of fuzzy sets): PEVLevel, PEVNormal, PEVLow
- Fuzzy taxonomic relations
- Fuzzy assertions on class membership: individual of
- Fuzzy relations (object properties): currentPEV
- Fuzzy **datatype properties**: *value*



Fuzzy ontologies (2)

- Typical extensions: membership functions are part of an ontology language or a Description Logic (Calegari and Ciucci 2007) or (Lukasiewicz and Straccia,2008)
- Weak resoning support. Reported fuzzy reasoning engines:
 - FiRE (closed)
 - fuzzyDL (publicly available)
 Can be used to implement Mamdani rules.

Externalized membership functions Suport for adaptation

- It was assumed that the set of defined fuzzy rules applies to all patients.
- Adaptation can be achieved at the level of membership functions:
 - individual, i.e. related to a particular patient,
 - related to a group based on a common characteristic, e.g. patients using common hardware, exposed to similar environment factors or belonging to a particular age range.