

Verification of the correctness of Real Time systems
specified with timed Petri nets

Piotr Szwed
Katedra Automatyki, Akademia Górniczo-Hutnicza, al. Mickiewicza 30, 30-059 Kraków

pszwed@ia.agh.edu.pl

Abstract. This paper tackles the problem of the
verification of the correctness of Real Time systems.
In our approach a Real Time system is modeled as a
timed Petri net. We specify requirements using
another type of timed Petri net and the observation
function that maps transitions in one net into
another. The paper introduces both timed Petri net
models, defines partial and total correctness and
presents formal tools for their automatic verification.

1. Introduction. The verification of the correctness
of Real Time systems should cover two types of
requirements: the first are related to an ordering of
operations exhibited by the checked system, the
second are the timing requirements. In our paper we
propose how to specify both types requirements and
how to verify them. The results described in this
paper are the continuation of former works [1,2,3] on
application of observation functions in specification
and verification of concurrent systems.
The correctness problem consists of three objects: the
verified Petri net modeling the examined Real Time
system, the criterion net specifying the requirements
and an observation function coupling the verified and
the criterion net.
We use two models basing on places and transitions
Petri nets (PT-net) enhanced with time: PTRT nets
are used to model a distributed Real Time application
while PTR nets specify requirements concerning the
ordering as well as the timing of operations.
In both models classical PT-nets are extended with
time counters which can be modified by an
assignment and whose values can be tested in guards
of transitions. Method of specifying timing
requirements in PTR nets is closely related to timed
automata approach [4]
We define the relative correctness problem using a
linear observation function. The function maps
selected transitions in verified system into sets of
transitions of the criterion net. The results of the
function are somehow similar to an application of
restriction and remapping operators of CCS i CSP
algebras [5, 6].

The paper is organized as follows. Chapter 2 gives
the basic definitions concerning place and transitions
Petri nets. Chapter 3 defines the PTRT model,
Chapter 4 the PTR model. In Chapter 5 the notions
of partial and total correctness are introduced. and the
methods of relative correctness verification are
discussed.
2. Petri nets. Petri net is a bipartite directed graph
whose vertices belong to two disjoint sets: places and
transitions. Arcs can bind only the places with
transitions and transitions with places. Marking
represents a state of a net. It is an assignment of non-
negative values to places. Due to the graphical
representation of Petri nets those values are called
tokens. Marking M is a vector of non-negative
integer numbers whose size is equal to the number of
places. By M(p) we will denote the number of tokens
in the place p.
Definition 1. A Petri net is a tuple PN =
(P, T, F, W, M0), where: P is a finite set of places, T
is a finite set of transitions, F ⊂ (P × T) ∪ (T × P)
is a finite set of arcs, W : F → N is a function
assigning weights to arcs, M0 : P → N ∪ {0} is an
initial marking.
Execution (firing) of a transition changes the net state
(marking). When a transition fires, it moves tokens
from its input places to output places. Number of
removed and added tokens is determined by the arcs
weights. A transition t removes W(pin, t) tokens
from its input place pin and adds W(t, pout) tokens to
the output place pout. Firing a transition can not lead
to negative markings. Thus a transition t is enabled
and can fire, if for any its input place p holds
M(p) ≥ W(p, t).
A marking is called dead if it enables no transitions.
The set of enabled transitions for a given marking
can contain a number of elements. In this way the
Petri net can specify the nondeterminsim in the
modeled system.
Transitions t1 and t2 are called concurrent for a
marking M if both are enabled and for all their

common input places the condition M(pi) ≥ W(pi, t1)
+ W(pi, t2) holds.
A marking Mn is reachable from M0 if there is a firing
sequence ρ = 〈 t1, t2,…, tn〉 that leads from M0 to Mn.
The set of all markings reachable from M0 is denoted
by R(PN). The net is called bounded if
∃ k ∈ N .∀ M ∈ R(PN) .∀ p . M(p) ≤ k .
Many properties of Petri nets can be verified by the
analysis of their matrix representation [7, 8]. As any
graph, a Petri net can be described by an incidence
matrix. The incidence matrix A of a Petri net has | P |
rows and | T | columns. Its elements A(p , t) specify
how many tokens are removed or added to a place p
as the result from firing a transition t. The value of
the matrix element A(p , t) is calculated basing on the
weight function W as: A(p , t) = A(p , t)+ – A(p , t)–,
where A(p , t)+ = W(p, t) for (p,t) ∈ F; A(p , t)– =
W(t, p) for (t,p) ∈ F.
The summary effect of a firing sequence ρ leading
from the marking M0 to Mn can be described as an
integer valued vector xn ∈ R |T| whose i—th element
is equal to the number of occurrences of transition ti

in the sequence ρ. As a consequence we obtain the
state equation of a Petri net: Mn = M0 + A x , where
x ∈ X = R |T| .
We represent a behavior of a Petri net by
nondecreasing sequences of vectors
s = 〈 x1, x2,..., xj, xj+1,...,xn,...〉. We will call vectors
xj ∈ X the solutions. An i—ths component xj(i) of a
vector xj reports the number of firings of a transition
ti starting from the initial marking.
The assumed representation of a net behavior is more
general then the firing sequence, because it enables
modeling instantaneous execution of a number of
concurrent transitions in one step. It admits also
multiple repetitions of the same element in a
sequence.
W introduce temporal information by assigning to
solutions additional attribute representing a moment,
when corresponding net transitions occurred.
By a timed solution sequence we will denote a
sequence of pairs (xi, Ti) , where xi belongs to a
certain solutions space X, whereas Ti is a nonnegative
number: Ti ∈ R. For a given sequence
s = 〈 (x0,T0), (x1,T1),…,(xi–1, Ti–1), (xi, Ti),…〉, time
values satisfy T0 = 0 and Ti < Ti+1 for i ≥ 0.

3. Modeling Real Time systems. In this chapter we
will introduce PTRT nets, an extension to PT nets
allowing to model a distributed multitasking Real
Time application. An application consists of several
active processes (tasks) that are statically assigned to
multiple processors. We define tasks as disjoint sets
of transitions. We assume that there is a global time
that is common to all processors. The time of a
processor is distributed among the tasks that are
executed on it. Each transition is assigned a

parameter defining the time of its execution. It is a
single rational number.
In classical Petri net approach, a task state can be
interpreted as the presence of tokens in a certain
places of a PT-net modeling the whole application.
We extend the task state by additional components:
time counters (clocks): delay and timeout. First of
them allows a simulation of a task suspension for a
given period, the second is used to model operations
with timeouts. A clock z can be set by an assignment
of a constant being a nonnegative rational number to
a time counter z := c. Single counter can be an
argument of a comparison z = 0 or z > 0.
Valuation tv is a function that assigns to a set of time
counters C nonnegative real numbers. Function
tv’=tv + t, where t ∈ R, is defined as follows: tv’(z) =
tv(z) – t, if tv(z) ≥ t or tv’(z) = 0 in other case.
Definition 2. For a Petri net PN = (P, T, F, W, M0)
task Θi is defined as Θi = (Ti, Ci, Guardi, SetDi, SetTi),
where Ti ⊂ T . Ci = {delayi, timeouti} is a set of time
counters. We assume that their initial values are
equal to zero. Guardi: Ti→ {true, delayi = 0,
delayi > 0, timeouti = 0, timouti > 0} is a function,
that assigns to each task transition a predicate taking
time counters as arguments. SetDi: Ti→ C0+ is a
function that specifies nonnegative rational constant
c, that should be used in the assignment delayi := c
when a transition tj ∈ Ti is fired. Similarly, SetTi: Ti→
C0+, defines assignment constants for expressions
timeouti := c.
For a set of tasks Θ = {Θi}, their sets of transitions
are disjoint and cover the whole set of transitions:
Ti ∩ Tj = ∅ for j ≠ j and U . TTi =

In our model tasks are statically assigned to
processors. A processor is defined by specifying
tasks that are executed on it. We have assumed that:
1. Time of all processors advance in parallel.

Execution of a transition belonging to a task
consumes the processor’s time.

2. If in a set of tasks assigned to a processor exists
tasks that are ready, a transition of one of them
should be immediately fired, what results in
consuming the processor’s time.

3. Transitions are atomic. While a task executes a
transition, the other executed on the same
processor are suspended.

The observable system behavior is a timed sequence
of events signaling finalization of subsequent
transitions. Transitions on a given processor are
interleaved while transitions on different processors
execute in parallel.

4. Modeling requirements. The PTR net is an
extension of PT net allowing to specify temporal
requirements. It introduces to the model a set of
clocks and timing constraints using the clock values.
This approach is related to the solutions from the
theory of timed automata [4].

Definition 3. Let Θ = {Θi} be a set of tasks defined
for a Petri net PN. Processor is defined as
ΠI = (Θ(Πi), utci), where
• Θ(Πi) ⊆ Θ is a set of tasks assigned to a

processor; we assume Θ(Πi) ∩ Θ(Πj) = ∅
• utci – is an unassigned time counter. Clocks are variables taking nonnegative real values.

Their goal is to store information on the time flow
starting from the moment when they were reset. All
clocks advance with the same speed.

The goal of unassigned time counters utci is to
synchronize the time flow on processors. If we fire a
transition α that is assigned to a processor Πj and the
time of its execution is tα, then the global time
advances by ∆ gt = tα – utcj . Unassigned time
counters of other processors Πi, i ≠ j are increased by
∆ t. In the case when the value utci + ∆ gt is greater
then the maximum time of all transitions ready to
execute on a processor Πi, we treat the transition α as
infeasible (any ready transition from the processor Πi
should terminate earlier.)

Let Z be a set of clocks. Timing constraints δ belong
to a set of predicates Φ(Z) defined recursively as:
δ := true | z ≤ c | c ≤ z | ¬ δ | δ1 ∧ δ2,
where z ∈ Z is a clock, c is a constant from the set of
nonnegative rational numbers C+.
Valuation cv: Z → R0+ is a function that assigns
nonnegative real values to clocks. Valuation cv
satisfy timing constraint δ, if predicate δ is true for
cv. For a clock z ∈ Z we will denote by Cz the
greatest constant appearing in the expressions
δ := z ≤ c | c ≤ z. Let cv’ = cv + t denote new
valuation for clocks z ∈ Z after a time t:
cv’(z) = cv(z) + t, if cv(z) + t ≤ Cz or cv’(z) = Cz , in
other case.

Definition 4. A PTRT net is defined as
PTRT = (PN, Θ, Π, time), where:
PN = (P, T, F, W, M0) is a Petri net; Θ is a set of
tasks; Π is a set of processors; time: T → C+.
Timed Petri net PTRT is defined by specifying a set
of tasks, a set of processors and the function time that
assigns time of execution to transitions of underlying
Petri net. A time of execution is always a rational
number. The model introduces additional state
members: time counters delay and timeout for tasks
and unassigned time counters utc for processors.
Those counters can have only values that are rational
numbers and are bounded. Timers timeout are delay
are bounded by rational constants used to initialize
them. Unassigned time counters are bounded by the
maximum execution time of transitions assigned to a
given processor.

Clock values can grow until they reach the greatest
constant appearing in the constraints, thus a clock z
can have values from the range [0, Cz]. If a clock z
reached a value greater that the constant Cz this
would have no influence on the satisfaction of the
constraints δ(z).
We show in Fig.1. how clocks can be used to
formulate real-time requirements. Clock in Fig.1.a
specify bounded response time. At the moment, when
the transition request fires, the clock variable x is
reset. The transition response meets timing
requirements if: T(response) – T(request) < 10. (By
T(a) we denote the moment when transition a
occurred.) A fragment of a net in Fig.1.b specify a
delay. Execution times of subsequent transitions
should satisfy: T(resume) – T(delay) ≥ 10.

Due to the fact that execution time of all transitions
and constants in assignment and comparison
expressions are rational numbers, all time parameters
can be transformed to integer values. As all timers in
the model are bounded, the set of their valuations TV
is finite.
By the state of PTRT net we will denote a pair
(M, tv), where M is a marking of the Petri net PN and
tv ∈ TV is a valuation of time counters. We assume
that initial values of all counters are zero.

request

response

x:=0

x <10

delay

resume

x:= 0

x ≥ 10

setTimeout

timedOut

x:= 0

x ≥ 10
action
x <10

(a) (b) (c)

Let us assume that PN component of a PTRT net is
described with a sate equation Mn = M0 + A x , where
x ∈ X = R|T|. Any transition ti in PTRT net can be
described by a pair (v, ∆ gt), where v ∈ X is a vector
whose i—th element is equal to 1, whereas ∆ gt is a
change of the global time. Execution of a transition is
accompanied by changing the current marking M and
the valuation of time counters tv. Fig. 1 Examples of using clocks in the specification

of real-time constraints A behavior of a PTRT net is described by a timed
solution sequence s = 〈 (x0,T0), …,(xi–1, Ti–1),
(xi, Ti),…〉, for which x0 = 0, T0 =0 and xi = xi–1 + vi ,
Ti = Ti–1 + ∆ gti, where (vi, ∆ gti) is a transition
executed in the i—th step.

A net in Fig.1.c specifies a transition that should be
accomplished in a certain time interval. The sequence
〈 …setTimeout, …, action,… 〉 is correct if

mailto:Fig.@1
mailto:Fig.@1
mailto:Fig.@1
mailto:Fig.@1.c

T(action) – T(setTimeout) < 10 holds, otherwise the
transition timedOut should be observed.
Definition 5. PTR net is defined as a tuple
PTR = (PN, C, cv0, Φ(C), g, r), where PN =
(P, T, F, W, M0) is a Petri net; C – is a set of clocks;
cv0 – is the initial valuation; Φ(C) – is a set of timing
constraints. g: T → Φ(C) is a function that assign
condition expressions to transitions, in particular it
may assign a guard true). r: T → 2C is a function
specifying which clocks should be reset after
executing a transition.
Let us assume that PN (Petri net) component of a
PTR is described with a state equation M = M0 + A x,
x ∈ X=R|T|. The state of a PTR net is a pair (M, vc),
where M is a marking of the Petri net PN, vc is a
valuation of clock variables.
Vector v ∈ X represents a set of transitions if its
elements have values from {0,1}. By Guard(v,cv) we
will denote a Boolean function that evaluates to true
if all conditional expressions g(ti) for v(i)=1 are true
for a given clock valuation cv. Analogously, by
Reset(v) we will denote the set of clocks that should
be reset by execution of all transitions in v.
Let e(i) ∈ X be a vector whose exactly one i—th
element is equal to 1, other are 0. Vector e(i)
corresponds to a transition ti. Pair (v, ∆ t) is a feasible
step of PTR net at the state (M, cv) if
∀ i.v(i)=1. M + A e(i) ≥ 0 and Guard(v, cv + ∆ t) =
true. The feasibility of a sets of transitions is based
on two conditions: the transitions should be enabled
and concurrent in the marking M and they should be
feasible according to the timing constraints.
Let us define the function newClokValue(cv, v, ∆ t),
that calculates new clock values basing on their
current state cv, executed transitions v and the change
of global time ∆ t:
cv' = newClockValue(cv, v, ∆ t) ⇔
• cv'(z) = (cv+∆ t)(z), if z ∉ Reset(v) or
• cv'(z) = 0, if z ∈ Reset(v)
Definition 6. We say that timed solution sequence
s = 〈 (x0,T0),…,(xi–1, Ti–1), (xi, Ti),…〉 is accepted by
PTR net if
1. There exist a sequence of states of PTR net σ =

〈 (M0,cv0),…, (Mi, cvi),…〉, where Mi =M0+AI xi ,
and cvi = newClockValue(cvi–1, xi – xi–1, Ti – Ti–1)

2. For all i ≥ 1 transition (xi – xi–1, Ti – Ti–1) is a
feasible step at the state (Mi–1, cvi–1).

5. Relative correctness. For two spaces X = Rn and
X’=Rm we define a matrix L of size of size m × n
whose elements take values from the set {0,1}. The
function π : X → X’ defined as π(x) = L⋅x is called
the observation function. If we treat X and X’ as
spaces appearing in the state equations of Petri nets,
we can notice that the observation function π is
capable of mapping transitions in one net to another.

We use this property to formulate the correctness
problem consisting of the elements:
• the verified net PTRT = (PN, Θ, Π, time)

described by the state equation M = M0 + A x ,
x ∈ X; this net models distributed real-time
application;

• the criterion net PTR = (PN’, C, cv0, Φ(C), g, r)
described by the state equation M’ = M0’ + A’ x,
x ∈ X’;

• the observation function π: X→X’
5.1 The correctness definition. The main idea of the
presented approach is that we execute the net PTRT
and obtain a timed solution sequence
s = 〈 (x0,T0),…,(xi–1, Ti–1), (xi, Ti),…〉 representing its
behavior. Then we transform it to the X’ space using
the observation function obtaining the timed solution
sequence: s’ = 〈 (π(x0),T0),…,(π(xi), Ti1),,…〉. The
sequence s representing a behavior of the verified net
is considered correct if it is accepted by the criterion
PTR net specifying requirements regarding correct
sequences of operations as well as their timings.
Let us define a predicate dead(x, PN), that evaluates
to true, if the marking M = M0 + A x is dead. We use
additional information on how the net models
underlying system to distinguish markings, that can
be identified as correctly reached final states. We
define a predicate final(x, PN) that is true if the
marking M = M0 + A x is dead and only selected
elements of the vector M has non-zero values.
Definition 7. For Let s = 〈 (x0,T0),…,(xi, Ti),…〉 be a
timed solution sequence of a net PTRT.
The sequence s is correct with respect to the
observation function π and the criterion net PTR,
what we denote by the predicate correct(s, π, PTR’)
if
1. The timed solution sequence

s’ = 〈 (π(x0),T0),…,(π(xi), Ti1),,…〉 is accepted by
the net PTR.

2. There is no such element xi in the sequence that
dead(xi, PN) ∧¬ final(xi, PN)

3. ∀ j ≥ 0 . final(xj, PN) ⇒ final(π(xj), PN’).
The second condition is introduced to prevent the
situation when an infinite solutions sequence reaches
a marking that is dead and not final. Occurrence of
such marking can be considered as finding a
deadlock state.
Definition 8. Let us denote by S(PTRT) the set of all
timed solutions sequences of the net PTRT. The net
PTRT is partially correct relatively to PTR if the
following condition holds:
∀ s ∈ S(PTRT) . correct(s, π, PTR)
One of the properties of an observation function is
that it can make a transition in verified system non-
observable. Such non observable transition
corresponds to a column of matrix of observation
function L containing only zero values. If non-

observable transitions in verified net build up a loop,
after executing them the verified net returns to the
same marking and is ready to continue the loop
infinite number of times. In the same time we do not
observe any transitions and as the consequence the
marking of the criterion net does not change. From
the observers point of view the system does not
manifest any desired activity although its still alive.
Such situation can be referred as a violation of the
livness property (we expect that a desired transition
occur and it does not happen) . Following the CSP
[5] we denote such situation with the term
divergence.
In the case of various types of clocks present in both
PTRT and PTR specifications the conditions for
divergence are slightly more complicated, because
they should take into account valuation of clock
variables.

Definition 9. Let s = 〈 (x0,T0),…,(xi, Ti),…〉 be a timed
solution sequence of a verified net PTRT. Let σ = 〈
(M0,tv0),…, (Mi, tvi),…〉 be a corresponding sequence
of states of the PTRT net. For timed sequence
s’ = 〈 (π(x0),T0),…,(π(xi), Ti),…〉 σ’ is a sequence of
states of the criterion PTR net σ’ = 〈 (M’0,cv0),…,
(M’i, cvi),…〉
Observation of the sequence s is divergent, if it
contains a subsequence
sdiv = 〈 (xdiv1,Tdiv1),…,(xdivn, Tdivn), 〉 satisfying:
1. Mdiv 1 = Mdiv n ∧ tvdiv 1 = tvdiv n
2. ∀ i : div1 ≤ i ≤ divn . Mi’ = Mdiv1’ ∧ cvi= cv div1
We define a predicate divergent(s, PTRT, π, PTR),
which is true, if for a given observation function π
and the criterion net PTR a timed sequence of
solutions s of the net PTRT is divergent.
Definition 10. Let PTRT be a verified net, PTR a
criterion net and π an observation unction. The net
PTRT is totally correct in relation to PTR if:
1. It is partially correct
2. The observation of its behavior covers the whole

space X’: ∀ i ≤ dim X’ . (∃ s ∈ S(PTRT) .
∃ xk ∈s. x’ = π(xk) ∧ x’(i) > 0), where dim X’
denotes the size of the space X’ .

3. There is no divergence:
∀ s ∈ S(PTRT) . ¬ divergent(s, PTRT, π, PTR)

5.2 Relative correctness verification. Automatic
correctness verification for linear observation
function is based on the construction of the graph of
coupled net execution G describing synchronous
execution of both verified and criterion nets [1,2,3].
Analysis of the properties of this graph allows to
determine partial correctness of the verified system.
Definition 11. For a verified Petri net PTRT
described by state equations M = M0 + A⋅x , x ∈ X, a
criterion net PTR with corresponding state equation
M’ = M0’ + A’⋅x’, where x’ ∈ X’ and an observation

function π we define the graph of coupled net
execution G as the tuple G = (P, E, F, s, t), where
• P is a set of graph vertices
• E ⊂ P × P is a set of edges
• F ⊂ P is a set of final (leaf) vertices
• s: P → (M × TV) × (M’ × CV), is a function that

assigns states of both nets to the graph vertices;
M is a set of all markings of the net PTRT, TV is
a set of all valuations of their clocks; similarly,
M’ is a set of all markings of a net PTR and CV
the set of all valuations of their clocks.

• t: E → X × X’ × C+ is a function that assigns
tuples (v, π(v), ∆ t) to edges; v is a vector
representing a transition in the verified net, π(v)
its image in observation function, ∆ t is a change
of the global time.

The graph of coupled net execution G is constructed
as an upper bound of a sequence G0, G1,…,Gn,…. We
start with G0 (P0, E0, F0, s0, t0) satisfying: P0 = {p0},
E =∅ , F = ∅, s(p0) = (M0, tv0, M0’, cv0), t= ∅.
At i—th step we select a vertex p from the set P \ F ,
for which there exist an enabled transition vi not
assigned to edges starting form p:
∀ e=(p,•) ∈ E. ∀t(e) =(ve,π(ve),∆ te) ve ≠ vi . From tv
state component in s(p) = (M, tv, M’, cv) the change
of global time ∆ ti and new clock valuation tvi are
evaluated. Then we check if the timed transition
(vi, ∆ ti) is feasible in PTRT model. For feasible
transition we calculate π(vi), Mi’ = M’ + A’ π(vi) and
cvi = newClockValue(cv, π(vi), ∆ ti).
New graph components are a vertex pi and an edge
(p,pi). Relations between the graph Gi-1 and Gi are as
follows:
• Pi = Pi-1 ∪ {pi}
• Ei = Ei ∪ {(p,pi)}
• si = si+1 ∪ {(si, (Mi,tvi,Mi’,cvi)}
• ti = ti+1 ∪ {((p,pi), vi, π(vi), ∆ ti)}
The new vertex pi is added to the set Fi in the
following situations:
1. There exist a vertex pk∈ Pi-1 such that si(pk) =

si(pi). That means that we have reached a vertex
that has been already analyzed or that has been
scheduled for further analysis.

2. There exist a vertex pk∈ Pi-1 assigned a coupled
net state (Mk, tvk, Mk’, cvk) such that Mk = Mi,
tvk = tvi, Mk’ < Mi’ and cvk = cvi . This case is
similar to the previous with one difference: The
marking Mi’ covers Mk’. However, for all
successors of the state (Mi’,cvi) the PTR net will
be capable of accepting the same transitions as for
(Mk’,cvk).

3. There exist a vertex pk∈ Pi-1 assigned a coupled
net state (Mk, tvk, Mk’, cvk) such that Mk < Mi. In
this case the verified net is not bounded (safe).
We treat this case as undecidable.

4. The step (π(vi), ∆ ti)) is not accepted by the PTR
net in the state (Mi’,cvi). In this case we state
incorrectness of the verification problem and a
path leading from p0 to pi serve as a
counterexample.

Theorem 1. Graph of coupled net execution G is
finite.
Sketch of the proof: It can be noticed that the rules of
adding vertices to the set F provide that the graph is
acyclic and prevent unbounded growth of markings
M and M’. The sets of possible valuations of clocks
in PTRT and PTR models are also bounded and
finite. This provides that there is no infinite strongly
growing subsequence of G0, G1,…,Gn,…. Thus
applying the Koenig’s lemma, see [8] the graph G is
finite.
Theorem 2. If the problem is decidable and all edges
of the graph G are marked with correct transitions,
the verified net PTRT is partially correct relatively to
π and PTR.
Sketch of the proof: It can be observed that any timed
solutions sequence is represented by a path in the
graph or can be constructed by the concatenation of
several graph paths. After reaching a vertex in the set
F we can continue exploration from the vertex which
is assigned the same state values.
Technically, in the implemented prototype software
for correctness verification we do not construct the
full graph G. Instead, we remember only the current
sequence of solutions and coupled states
corresponding to a path in a graph. We remember
also a set S of encountered coupled net states:
(M,tv,M’,cv). At each step we try to calculate new
element of the current sequence by execution of a
transition that is enabled in the last state. If the
transition is incorrect or a deadlock occurs, the
current sequence of solutions and states serves as a
counterexample. If the selected transition leads to a
state already present in S (see above conditions 1 and
2) we remove one or more last elements from the
current solutions sequence until we can select a new
transition to execute. The process finishes when the
current sequence of solutions and states becomes
empty.
6. Conclusions. The paper describes a relative
correctness problem for Real Time systems and
presents the formal tools that are the basis for the
implementation a software for correctness
verification. We model a Real Time system as a
timed Petri net. To describe the system requirements
we use a Petri net extended with time counters.
Specification of timing requirements is similar to the
approach from the theory of timed automata [4].
Using the matrix representation of Petri nets we
define the partial correctness as the correctness of all
timed solutions sequences. The satisfaction of total
correctness requires additionally the lack of
divergences in observations and covering all

transitions in the criterion net specifying the
requirements.
A graph of coupled execution is a formal tool for
relative correctness verification. The verification
algorithm constructs this graph exploring a finite
state space being a Cartesian product of state spaces
of both nets. In case of large size problems it is
possible to apply partial search algorithms, e.g. those
from [11].
The paper was supported by the KBN grant
Nr 4T11C 035 24 Zastosowanie metod formalnych do
wspomagania wytwarzania poprawnego
oprogramowania systemów czasu rzeczywistego.
References.
[1] Szwed, P.: Analiza poprawności

oprogramowania współbieżnego
z wykorzystaniem funkcji obserwacji, praca
doktorska, Wydział Elektrotechniki,
Automatyki, Informatyki i Elektroniki AGH,
Kraków 1999

[2] Szwed, P.: Zastosowanie liniowej funkcji
obserwacji do analizy poprawności
oprogramowania współbieżnego, Materiały VII
Konferencji Systemy Czasu Rzeczywistego,
Kraków 2000,Katedra Automatyki Akademii
Górniczo-Hutniczej, 99–108

[3] Szwed, P.: Zastosowanie liniowej funkcji
obserwacji do analizy poprawności
oprogramowania czasu rzeczywistego, w Pod
red. Szmuc T. Werewka J. Analiza i
projektowanie systemów komputerowych czasu
rzeczywistego o różnym stopniu rozproszenia,
Kraków 2001

[4] Alur, R., Dill, D.: A Theory of Timed Automata,
Theoretical Computer Science, 126; 1994, 183-
235

[5] Hoare, C. A. R.: Communicating Sequential
Processes, Prentice-Hall International,
Englewood Cliffs, 1985

[6] Milner, R.: Communication and Concurrency.
Prentice Hall, Englewood Cliffs, 1989

[7] Murata T.: Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE, Vol.77,
No 4, April 1989

[8] Reisig W.: Petri Nets – An Introduction,
EATCS Monographs on Theoretical Computer
Science, Volume 4. Springer. 1985

[9] Holzmann, G.J., An improved reachability
analysis technique, Software Practice and
Experience, Vol. 18, No. 2, 1988, 137–161

