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Abstract. This paper tackles the problem of the 
verification of the correctness of Real Time systems. 
In our approach a Real Time system is modeled as a 
timed Petri net. We specify requirements using 
another type of timed Petri net and the observation 
function that maps transitions in one net into 
another. The paper introduces both timed Petri net 
models, defines partial and total correctness and 
presents formal tools for their automatic verification. 

1. Introduction. The verification of the correctness 
of Real Time systems should cover two types of 
requirements: the first are related to an ordering of 
operations exhibited by the checked system, the 
second are the timing requirements. In our paper we 
propose how to specify both types requirements and 
how to verify them. The results described in this 
paper are the continuation of former works [1,2,3] on 
application of observation functions in specification 
and verification of concurrent systems.  
The correctness problem consists of three objects: the 
verified Petri net modeling the examined Real Time 
system, the criterion net specifying the requirements 
and an observation function coupling the verified and 
the criterion net. 
We use two models basing on places and transitions 
Petri nets (PT-net) enhanced with time: PTRT nets 
are used to model a distributed Real Time application 
while PTR nets specify requirements concerning the 
ordering as well as the timing of operations.  
In both models classical PT-nets are extended with 
time counters which can be modified by an 
assignment and whose values can be tested in guards 
of transitions. Method of specifying timing 
requirements in PTR nets is closely related to timed 
automata approach [4]  
We define the relative correctness problem using a 
linear observation function. The function maps 
selected transitions in verified system into sets of 
transitions of the criterion net. The results of the 
function are somehow similar to an application of 
restriction and remapping operators of CCS i CSP 
algebras [5, 6]. 

The paper is organized as follows. Chapter 2 gives 
the basic definitions concerning place and transitions 
Petri nets. Chapter 3 defines the PTRT model, 
Chapter 4 the PTR model. In Chapter 5  the notions 
of partial and total correctness are introduced. and the 
methods of relative correctness verification are 
discussed. 
2. Petri nets. Petri net is a bipartite directed graph 
whose vertices belong to two disjoint sets: places and 
transitions. Arcs can bind only the places with 
transitions and transitions with places. Marking 
represents a state of a net. It is an assignment of non-
negative values to places. Due to the graphical 
representation of Petri nets those values are called 
tokens. Marking M is a vector of non-negative 
integer numbers whose size is equal to the number of 
places. By M(p) we will denote the number of tokens 
in the place p.  
Definition 1. A Petri net is a tuple PN = 
( P, T, F, W, M0), where: P is a finite set of places, T 
is a finite set of transitions, F ⊂ ( P × T ) ∪ ( T × P ) 
is a finite set of arcs, W : F → N  is a function 
assigning weights to arcs, M0 : P → N ∪ {0} is an 
initial marking.  
Execution (firing) of a transition changes the net state 
(marking). When a transition fires, it moves tokens 
from its input places to output places. Number of 
removed and added tokens is determined by the arcs 
weights. A transition t removes W( pin, t ) tokens 
from its input place pin and adds W( t, pout ) tokens to 
the output place pout. Firing a transition can not lead 
to negative markings. Thus a transition t is enabled 
and can fire, if for any its input place p holds 
M(p) ≥ W( p, t ).  
A marking is called dead if it enables no transitions. 
The set of enabled transitions for a given marking 
can contain a number of elements. In this way the 
Petri net can specify the nondeterminsim in the 
modeled system. 
Transitions t1 and t2 are called concurrent for a 
marking M if both are enabled and for all their 



common input places the condition M(pi) ≥ W( pi, t1 ) 
+ W( pi, t2 ) holds. 
A marking Mn is reachable from M0 if there is a firing 
sequence ρ = 〈 t1, t2,…, tn〉 that leads from M0 to Mn. 
The set of all markings reachable from M0 is denoted 
by R(PN). The net is called bounded if 
∃ k ∈ N .∀ M ∈ R(PN) .∀ p . M(p) ≤ k . 
Many properties of Petri nets can be verified by the 
analysis of their matrix representation [7, 8]. As any 
graph, a Petri net can be described by an incidence 
matrix. The incidence matrix A of a Petri net has | P | 
rows and | T | columns. Its elements A(p , t) specify 
how many tokens are removed or added to a place p 
as the result from firing a transition t. The value of 
the matrix element A(p , t) is calculated basing on the 
weight function W as: A(p , t) = A(p , t)+ – A(p , t)–, 
where  A(p , t)+ = W(p, t) for (p,t) ∈ F;  A(p , t)– = 
W(t, p) for (t,p) ∈ F. 
The summary effect of a firing sequence ρ leading 
from the marking M0 to Mn can be described as an 
integer valued vector xn ∈ R |T| whose i—th element 
is equal to the number of occurrences of transition ti 

in the sequence ρ. As a consequence we obtain the 
state equation of a Petri net: Mn = M0 + A x , where 
x ∈ X = R |T| . 
We represent a behavior of a Petri net by 
nondecreasing sequences of vectors 
s = 〈 x1, x2,..., xj, xj+1,...,xn,...〉. We will call vectors 
xj ∈ X the solutions. An i—ths component xj(i) of a 
vector xj reports the number of firings of a transition 
ti starting from the initial marking.  
The assumed representation of a net behavior is more 
general then the firing sequence, because it enables 
modeling instantaneous execution of a number of 
concurrent transitions in one step. It admits also 
multiple repetitions of the same element in a 
sequence. 
W introduce temporal information by assigning to 
solutions additional attribute representing a moment, 
when corresponding net transitions occurred.  
By a timed solution sequence we will denote a 
sequence of pairs (xi, Ti) , where xi belongs to a 
certain solutions space X, whereas Ti is a nonnegative 
number: Ti ∈ R. For a given sequence 
s = 〈 (x0,T0), (x1,T1),…,(xi–1, Ti–1), (xi, Ti),…〉, time 
values satisfy T0 = 0 and Ti < Ti+1 for i ≥ 0. 

3. Modeling Real Time systems. In this chapter we 
will introduce PTRT nets, an extension to PT nets 
allowing to model a distributed multitasking Real 
Time application. An application consists of several 
active processes (tasks) that are statically assigned to 
multiple processors. We define tasks as disjoint sets 
of transitions. We assume that there is a global time 
that is common to all processors. The time of a 
processor is distributed among the tasks that are 
executed on it. Each transition is assigned a 

parameter defining the time of its execution. It is a 
single rational number.  
In classical Petri net approach, a task state can be 
interpreted as the presence of tokens in a certain 
places of a PT-net modeling the whole application. 
We extend the task state by additional components: 
time counters (clocks): delay and timeout. First of 
them allows a simulation of a task suspension for a 
given period, the second is used to model operations 
with timeouts. A clock z can be set by an assignment 
of a constant being a nonnegative rational number to 
a time counter  z := c. Single counter can be an 
argument of a comparison z = 0 or z > 0.  
Valuation tv is a function that assigns to a set of time 
counters C nonnegative real numbers. Function 
tv’=tv + t, where t ∈ R, is defined as follows: tv’(z) = 
tv(z) – t, if tv(z) ≥ t or tv’(z) = 0 in other case. 
Definition 2. For a Petri net PN = ( P, T, F, W, M0) 
task Θi is defined as Θi = (Ti, Ci, Guardi, SetDi, SetTi), 
where Ti  ⊂ T . Ci = {delayi, timeouti} is a set of time 
counters. We assume that their initial values are 
equal to zero. Guardi: Ti→ {true, delayi = 0, 
delayi > 0, timeouti = 0, timouti > 0} is a function, 
that assigns to each task transition a predicate taking 
time counters as arguments. SetDi: Ti→ C0+ is a 
function that specifies nonnegative rational constant 
c, that should be used in the assignment delayi := c 
when a transition tj ∈ Ti is fired. Similarly, SetTi: Ti→ 
C0+, defines assignment constants for expressions 
timeouti := c.   
For a set of tasks Θ = {Θi}, their sets of transitions 
are disjoint and cover the whole set of transitions: 
Ti ∩ Tj = ∅ for j ≠ j and U . TTi =

In our model tasks are statically assigned to 
processors. A processor is defined by specifying 
tasks that are executed on it. We have assumed that: 
1. Time of all processors advance in parallel. 

Execution of a transition belonging to a task 
consumes the processor’s time. 

2. If in a set of tasks assigned to a processor exists 
tasks that are ready, a transition of one of them 
should be immediately fired, what results in 
consuming the processor’s time. 

3. Transitions are atomic. While a task executes a 
transition, the other executed on the same 
processor are suspended. 

The observable system behavior is a timed sequence 
of events signaling finalization of subsequent 
transitions. Transitions on a given processor are 
interleaved while transitions on different processors 
execute in parallel. 



4. Modeling requirements. The PTR net is an 
extension of PT net allowing to specify temporal 
requirements. It introduces to the model a set of 
clocks and timing constraints using the clock values. 
This approach is related to the solutions from the 
theory of timed automata [4]. 

Definition 3. Let Θ = {Θi} be a set of tasks defined 
for a Petri net PN. Processor is defined as 
ΠI = (Θ(Πi), utci), where  
• Θ(Πi) ⊆ Θ is a set of tasks assigned to a 

processor; we assume Θ(Πi) ∩  Θ(Πj) = ∅  
• utci – is an unassigned time counter.   Clocks are variables taking nonnegative real values. 

Their goal is to store information on the time flow 
starting from the moment when they were reset. All 
clocks advance with the same speed. 

The goal of unassigned time counters utci is to 
synchronize the time flow on processors. If we fire a 
transition α that is assigned to a processor Πj and the 
time of its execution is tα, then the global time 
advances by ∆ gt = tα – utcj . Unassigned time 
counters of other processors Πi, i ≠ j are increased by 
∆ t. In the case when the value utci + ∆ gt is greater 
then the maximum time of all transitions ready to 
execute on a processor Πi, we treat the transition α as 
infeasible (any ready transition from the processor Πi 
should terminate earlier.) 

Let Z be a set of clocks. Timing constraints δ belong 
to a set of predicates Φ(Z) defined recursively as:  
δ := true | z ≤ c | c ≤ z | ¬ δ | δ1 ∧ δ2,  
where z ∈ Z is a clock, c is a constant from the set of 
nonnegative rational numbers C+.  
Valuation cv: Z → R0+ is a function that assigns 
nonnegative real values to clocks. Valuation cv 
satisfy timing constraint δ, if predicate δ is true for 
cv. For a clock z ∈ Z we will denote by Cz the 
greatest constant appearing in the expressions 
δ := z ≤ c | c ≤ z. Let cv’ = cv + t denote new 
valuation for clocks z ∈ Z after a time t: 
cv’(z) = cv(z) + t, if cv(z) + t ≤ Cz or cv’(z) = Cz , in 
other case.  

Definition 4. A PTRT net is defined as 
PTRT = (PN, Θ, Π, time), where:  
PN = ( P, T, F, W, M0) is a Petri net; Θ is a set of 
tasks; Π is a set of processors; time: T → C+.   
Timed Petri net PTRT is defined by specifying a set 
of tasks, a set of processors and the function time that 
assigns time of execution to transitions of underlying 
Petri net. A time of execution is always a rational 
number. The model introduces additional state 
members: time counters delay and timeout for tasks 
and unassigned time counters utc for processors. 
Those counters can have only values that are rational 
numbers and are bounded. Timers timeout are delay 
are bounded by rational constants used to initialize 
them. Unassigned time counters are bounded by the 
maximum execution time of transitions assigned to a 
given processor. 

Clock values can grow until they reach the greatest 
constant appearing in the constraints, thus a clock z 
can have values from the range [0, Cz]. If a clock z 
reached a value greater that the constant Cz this 
would have no influence on the satisfaction of the 
constraints δ(z).  
We show in Fig.1. how clocks can be used to 
formulate real-time requirements. Clock in Fig.1.a 
specify bounded response time. At the moment, when 
the transition request fires, the clock variable x is 
reset. The transition response meets timing 
requirements if: T(response) – T(request) < 10. (By 
T(a) we denote the moment when transition a 
occurred.) A fragment of a net in Fig.1.b specify a 
delay. Execution times of subsequent transitions 
should satisfy: T(resume) – T(delay) ≥ 10.  

Due to the fact that execution time of all transitions 
and constants in assignment and comparison 
expressions are rational numbers, all time parameters 
can be transformed to integer values. As all timers in 
the model are bounded, the set of their valuations TV 
is finite. 
By the state of PTRT net we will denote a pair 
(M, tv), where M is a marking of the Petri net PN and 
tv ∈ TV is a valuation of time counters. We assume 
that initial values of all counters are zero. 
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Let us assume that PN component of a PTRT net is 
described with a sate equation Mn = M0 + A x , where 
x ∈ X = R|T|. Any transition ti in PTRT net can be 
described by a pair (v, ∆ gt), where v ∈ X is a vector 
whose i—th element is equal to 1, whereas ∆ gt is a 
change of the global time. Execution of a transition is 
accompanied by changing the current marking M and 
the valuation of time counters tv. Fig. 1 Examples of using clocks in the specification 

of real-time constraints A behavior of a PTRT net is described by a timed 
solution sequence s = 〈 (x0,T0), …,(xi–1, Ti–1), 
(xi, Ti),…〉, for which x0 = 0, T0 =0 and xi = xi–1 + vi , 
Ti = Ti–1 + ∆ gti, where (vi, ∆ gti) is a transition 
executed in the i—th step. 

A net in Fig.1.c specifies a transition that should be 
accomplished in a certain time interval. The sequence 
〈 …setTimeout, …, action,… 〉 is correct if 
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T(action) – T(setTimeout) < 10 holds, otherwise the 
transition timedOut should be observed. 
Definition 5. PTR net is defined as a tuple  
PTR = (PN, C, cv0,  Φ(C), g, r), where PN = 
( P, T, F, W, M0) is a Petri net; C – is a set of clocks; 
cv0 – is the initial valuation; Φ(C) – is a set of timing 
constraints. g: T → Φ(C) is a function that assign 
condition expressions to transitions, in particular it 
may assign a guard true). r: T → 2C is a function 
specifying which clocks should be reset after 
executing a transition.  
Let us assume that PN (Petri net) component of a 
PTR is described with a state equation M = M0 + A x, 
x ∈ X=R|T|. The state of a PTR net is a pair (M, vc), 
where M is a marking of the Petri net PN, vc is a 
valuation of clock variables.  
Vector v ∈ X represents a set of transitions if its 
elements have values from {0,1}. By Guard(v,cv) we 
will denote a Boolean function that evaluates to true 
if all conditional expressions g(ti) for v(i)=1 are true 
for a given clock valuation cv. Analogously, by 
Reset(v) we will denote the set of clocks that should 
be reset by execution of all transitions in v. 
Let e(i) ∈ X be a vector whose exactly one i—th 
element is equal to 1, other are 0. Vector e(i) 
corresponds to a transition ti. Pair (v, ∆ t) is a feasible 
step of PTR net at the state (M, cv) if 
∀ i.v(i)=1. M + A e(i) ≥ 0 and Guard(v, cv + ∆ t) = 
true. The feasibility of a sets of transitions is based 
on two conditions: the transitions should be enabled 
and concurrent in the marking M and they should be 
feasible according to the timing constraints.  
Let us define the function  newClokValue(cv, v, ∆ t), 
that calculates new clock values basing on their 
current state cv, executed transitions v and the change 
of global time ∆ t: 
cv' = newClockValue(cv, v, ∆ t) ⇔ 
• cv'(z) = (cv+∆ t)(z), if z ∉ Reset(v) or 
• cv'(z) = 0, if z ∈ Reset(v) 
Definition 6. We say that timed solution sequence 
s = 〈 (x0,T0),…,(xi–1, Ti–1), (xi, Ti),…〉 is accepted by 
PTR net if 
1. There exist a sequence of states of PTR net σ = 

〈 (M0,cv0),…, (Mi, cvi),…〉, where Mi =M0+AI xi ,  
and cvi = newClockValue(cvi–1, xi – xi–1, Ti – Ti–1)  

2. For all i ≥ 1 transition (xi – xi–1, Ti – Ti–1) is a 
feasible step at the state (Mi–1, cvi–1).  

5. Relative correctness. For two spaces X = Rn and 
X’=Rm we define a matrix L of size of size m × n 
whose elements take values from the set {0,1}. The 
function π : X → X’ defined as  π( x) = L⋅x is called 
the observation function. If we treat X and X’ as 
spaces appearing in the state equations of Petri nets, 
we can notice that the observation function π is 
capable of mapping transitions in one net to another. 

We use this property to formulate the correctness 
problem consisting of the elements: 
• the verified net PTRT = (PN, Θ, Π, time) 

described by the state equation M = M0 + A x , 
x ∈ X; this net models distributed real-time 
application; 

• the criterion net PTR = (PN’, C, cv0,  Φ(C), g, r) 
described by the state equation M’ = M0’ + A’ x, 
x ∈ X’; 

• the observation function π: X→X’ 
5.1 The correctness definition. The main idea of the 
presented approach is that we execute the net PTRT 
and obtain a timed solution sequence 
s = 〈 (x0,T0),…,(xi–1, Ti–1), (xi, Ti),…〉 representing its 
behavior. Then we transform it to the X’ space using 
the observation function obtaining the timed solution 
sequence: s’ = 〈 (π(x0),T0),…,(π(xi), Ti1),,…〉. The 
sequence s representing a behavior of the verified net 
is considered correct if it is accepted by the criterion 
PTR net specifying requirements regarding correct 
sequences of operations as well as their timings. 
Let us define a predicate dead(x, PN), that evaluates 
to true, if the marking M = M0 + A x is dead. We use 
additional information on how the net models 
underlying system to distinguish markings, that can 
be identified as correctly reached final states. We 
define a predicate final(x, PN) that is true if the 
marking M = M0 + A x  is dead and only selected 
elements of the vector M has non-zero values. 
Definition 7. For Let s = 〈 (x0,T0),…,(xi, Ti),…〉 be a 
timed solution sequence of a net PTRT.  
The sequence s is correct with respect to the 
observation function π and the criterion net PTR, 
what we denote by the predicate correct(s, π, PTR’) 
if 
1. The timed solution sequence  

s’ = 〈 (π(x0),T0),…,(π(xi), Ti1),,…〉 is accepted by 
the net PTR. 

2. There is no such element xi in the sequence that  
dead(xi, PN) ∧¬ final(xi, PN) 

3. ∀ j ≥ 0 .  final(xj, PN) ⇒ final(π(xj), PN’).     
The second condition is introduced to prevent the 
situation when an infinite solutions sequence reaches 
a marking that is dead and not final. Occurrence of 
such marking can be considered as finding a 
deadlock state. 
Definition 8. Let us denote by S(PTRT) the set of all 
timed solutions sequences of the net PTRT. The net 
PTRT is partially correct relatively to PTR if the 
following condition holds:  
∀ s ∈ S(PTRT) . correct(s, π, PTR )   
One of the properties of an observation function is 
that it can make a transition in verified system non-
observable. Such non observable transition 
corresponds to a column of matrix of observation 
function L containing only zero values. If non-



observable transitions in verified net build up a loop, 
after executing them the verified net returns to the 
same marking and is ready to continue the loop 
infinite number of times. In the same time we do not 
observe any transitions and as the consequence the 
marking of the criterion net does not change. From 
the observers point of view the system does not 
manifest any desired activity although its still alive. 
Such situation can be referred as a violation of the 
livness property (we expect that a desired transition 
occur and it does not happen) . Following the CSP 
[5] we denote such situation with the term 
divergence.  
In the case of various types of clocks present in both 
PTRT and PTR specifications the conditions for 
divergence are slightly more complicated, because 
they should take into account valuation of clock 
variables. 

Definition 9. Let s = 〈 (x0,T0),…,(xi, Ti),…〉 be a timed 
solution sequence of a verified net PTRT. Let σ = 〈 
(M0,tv0),…, (Mi, tvi),…〉 be a corresponding sequence 
of states of the PTRT net. For timed sequence 
s’ = 〈 (π(x0),T0),…,(π(xi), Ti),…〉 σ’ is a sequence of 
states of the criterion PTR net σ’ = 〈 (M’0,cv0),…, 
(M’i, cvi),…〉 
Observation of the sequence s is divergent, if it 
contains a subsequence 
sdiv = 〈 (xdiv1,Tdiv1),…,(xdivn, Tdivn), 〉 satisfying: 
1. Mdiv 1 = Mdiv n ∧ tvdiv 1 = tvdiv n 
2. ∀ i : div1 ≤ i ≤ divn . Mi’ = Mdiv1’ ∧ cvi= cv div1  
We define a predicate divergent(s, PTRT, π, PTR), 
which is true, if for a given observation function π 
and the criterion net PTR a timed sequence of 
solutions s of the net PTRT is divergent. 
Definition 10. Let PTRT be a verified net, PTR a 
criterion net and π an observation unction. The net 
PTRT is totally correct in relation to PTR if: 
1. It is partially correct 
2. The observation of its behavior covers the whole 

space X’: ∀ i ≤ dim X’ . ( ∃ s ∈ S(PTRT) . 
∃ xk ∈s. x’ = π( xk) ∧ x’(i) > 0), where dim X’ 
denotes the size of the space X’ . 

3. There is no divergence: 
∀ s ∈ S(PTRT) . ¬ divergent( s, PTRT, π, PTR )  
      

5.2 Relative correctness verification. Automatic 
correctness verification for linear observation 
function is based on the construction of the graph of 
coupled net execution G describing synchronous 
execution of both verified and criterion nets [1,2,3]. 
Analysis of the properties of this graph allows to 
determine partial correctness of the verified system. 
Definition 11. For a verified Petri net PTRT 
described by state equations M = M0 + A⋅x , x ∈ X, a 
criterion net PTR with corresponding state equation 
M’ = M0’ + A’⋅x’, where x’ ∈ X’ and an observation 

function π we define the graph of coupled net 
execution G as the tuple G = (P, E, F, s, t), where 
• P is a set of graph vertices 
• E ⊂ P × P is a set of edges 
• F ⊂ P is a set of final (leaf) vertices 
• s: P → (M × TV) × (M’ × CV), is a function that 

assigns states of both nets to the graph vertices; 
M is a set of all markings of the net PTRT, TV is 
a set of all valuations of their clocks; similarly, 
M’ is a set of all markings of a net PTR and CV 
the set of all valuations of their clocks. 

• t:  E → X × X’ × C+ is a function that assigns 
tuples (v, π(v), ∆ t) to edges; v is a vector 
representing a transition in the verified net, π(v) 
its image in observation function, ∆ t is a change 
of the global time.  

The graph of coupled net execution G is constructed 
as an upper bound of a sequence G0, G1,…,Gn,…. We 
start with G0 (P0, E0, F0, s0, t0) satisfying: P0 = {p0}, 
E =∅ , F = ∅,  s(p0) = (M0, tv0, M0’, cv0), t= ∅. 
At i—th step we select a vertex p from the set P \ F , 
for which there exist an enabled transition vi not 
assigned to edges starting form p: 
∀ e=(p,•) ∈ E. ∀t(e) =(ve,π( ve),∆ te) ve ≠  vi . From tv 
state component in s(p) = (M, tv, M’, cv) the change 
of global time ∆ ti and new clock valuation tvi are 
evaluated. Then we check if the timed transition 
(vi, ∆ ti ) is feasible in PTRT model. For feasible 
transition we calculate π(vi), Mi’ = M’ + A’ π(vi) and 
cvi = newClockValue(cv, π(vi), ∆ ti).  
New graph components are a vertex pi and an edge 
(p,pi). Relations between the graph Gi-1 and Gi are as 
follows: 
• Pi = Pi-1 ∪ {pi} 
• Ei = Ei ∪ {(p,pi)} 
• si = si+1 ∪ {(si, (Mi,tvi,Mi’,cvi)} 
• ti = ti+1 ∪ {((p,pi), vi, π(vi), ∆ ti)} 
The new vertex pi is added to the set Fi in the 
following situations: 
1. There exist a vertex pk∈ Pi-1 such that si(pk) = 

si(pi). That means that we have reached a vertex 
that has been already analyzed or that has been 
scheduled for further analysis. 

2. There exist a vertex pk∈ Pi-1 assigned a coupled 
net state (Mk, tvk, Mk’, cvk) such that Mk = Mi, 
tvk = tvi, Mk’ < Mi’ and cvk = cvi . This case is 
similar to the previous with one difference: The 
marking Mi’ covers Mk’. However, for all 
successors of the state (Mi’,cvi) the PTR net will 
be capable of accepting the same transitions as for 
(Mk’,cvk). 

3. There exist a vertex pk∈ Pi-1 assigned a coupled 
net state (Mk, tvk, Mk’, cvk) such that Mk < Mi. In 
this case the verified net is not bounded (safe). 
We treat this case as undecidable. 



4. The step (π(vi), ∆ ti)) is not accepted by the PTR 
net in the state (Mi’,cvi). In this case we state 
incorrectness of the verification problem and a 
path leading from p0 to pi serve as a 
counterexample. 

Theorem 1. Graph of coupled net execution G is 
finite.  
Sketch of the proof: It can be noticed that the rules of 
adding vertices to the set F provide that the graph is 
acyclic and prevent unbounded growth of markings 
M and M’. The sets of possible valuations of clocks 
in PTRT and PTR models are also bounded and 
finite. This provides that there is no infinite strongly 
growing subsequence of G0, G1,…,Gn,…. Thus 
applying the Koenig’s lemma, see [8] the graph G is 
finite. 
Theorem 2. If the problem is decidable and all edges 
of the graph G are marked with correct transitions, 
the verified net PTRT is partially correct relatively to 
π and PTR.  
Sketch of the proof: It can be observed that any timed 
solutions sequence is represented by a path in the 
graph or can be constructed by the concatenation of 
several graph paths. After reaching a vertex in the set 
F we can continue exploration from the vertex which 
is assigned the same state values.  
Technically, in the implemented prototype software 
for correctness verification we do not construct the 
full graph G. Instead, we remember only the current 
sequence of solutions and coupled states 
corresponding to a path in a graph. We remember 
also a set S of encountered coupled net states: 
(M,tv,M’,cv). At each step we try to calculate new 
element of the current sequence by execution of a 
transition that is enabled in the last state. If the 
transition is incorrect or a deadlock occurs, the 
current sequence of solutions and states serves as a 
counterexample. If the selected transition leads to a 
state already present in S (see above conditions 1 and 
2) we remove one or more last elements from the 
current solutions sequence until we can select a new 
transition to execute. The process finishes when the 
current sequence of solutions and states becomes 
empty. 
6. Conclusions. The paper describes a relative 
correctness problem for Real Time systems and 
presents the formal tools that are the basis for the 
implementation a software for correctness 
verification. We model a Real Time system as a 
timed Petri net. To describe the system requirements 
we use a Petri net extended with time counters. 
Specification of timing requirements is similar to the 
approach from the theory of timed automata [4]. 
Using the matrix representation of Petri nets we 
define the partial correctness as the correctness of all 
timed solutions sequences. The satisfaction of total 
correctness requires additionally the lack of 
divergences in observations and covering all 

transitions in the criterion net specifying the 
requirements. 
A graph of coupled execution is a formal tool for 
relative correctness verification. The verification 
algorithm constructs this graph exploring a finite 
state space being a Cartesian product of state spaces 
of both nets. In case of large size problems it is 
possible to apply partial search algorithms, e.g. those 
from [11]. 
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