
Draft. The revised and slightly shortened version of the text appeared as Piotr SZWED

XQPN – colored Petri nets for processing XML data with XQuery language — Electrical

Review; ISSN 0033-2097. — 2010 R. 86 nr 9 s. 221–225.

XQPN – colored Petri nets for processing XML data with XQuery

language

Piotr SZWED

AGH - University of Science and Technology

Abstract

The paper presents basic concepts of a new class of colored Petri nets XQPN (XQuery Petri

Nets) designed for processing XML data assigned to places. Tokens in XQPN nets correspond

to nodes of XML documents. Token values that are deleted, read or created by transitions are

specified by XQuery expressions assigned to arcs, whereas their number is determined by

multiplicity parameters of input arcs. We describe the syntax of XQPN nets, algorithms of

binding calculation and net execution and discuss design decisions accompanying the

prototype implementation.

Introduction

The paper presents XQPN nets (XQuery Petri Nets), a class of colored Petri nes allowing

operations on XML documents assigned to places. XQPN nets are proposed as a modeling

and prototyping tool for a large class of applications that internally process XML data.

Petri net is a bipartite directed graph whose nodes belong to two disjoint sets: places and

transitions. Arcs can only connect places with transitions and transitions with places.

Transitions represent actions that can be performed in the system modeled by a net, whereas

places represent its resources. Execution of a transition is followed by a consumption of

resources in its input places and creation of new resources in the output places. Depending on

the current assignment of resources to places, i.e. the marking, some transitions are enabled

and can be executed. Petri nets have a traditional graphical form: places are symbolized by

circles and transitions by rectangles or bars. Elements stored in places are called tokens.

The most popular classes of Petri nets are Place Transition nets (PT-nets [1]) and Colored

Petri Nets (CPN)[2]. In PT nets tokens are indistinguishable. In colored nets each place is

assigned with a type (color) and may contain multiple different values of the type (a multiset

over the place type). The net syntax is enhanced by adding expressions to arcs. They are

responsible for selecting tokens in transitions’ input places or contain a recipe for how to

create tokens in output places.

In XQPN nets places store data in form of XML documents [3]. Places contents may be

treated as in CPN nets, as sets of distinguishable objects that in the case of XQPN correspond

to various nodes in the document’s hierarchy. Another shared property with colored nets is the

presence of expressions assigned to arcs. In XQPN they are expressions of XQuery [4]

language being a standard for querying and manipulation of XML data. In PT-nets arcs can be

attributed with weights specifying how many tokens a transition will remove from its input

places or produce in its output places. In XQPN nets input arcs are attributed with multiplicity

parameter playing similar role as weights.

The inspiration for development of XQPN nets was the idea of using colored nets as a tool for

formal specification of test cases for internet applications and web services. It was assumed,

that tests would be driven by transitions executed in a net serving as the model [of the system

and its environment]. We were searching for a modeling language that would rather be

loosely typed, provide direct support of XML processing and have certain primitives missing

in CPN, like atomic access to multiple tokens contained in a place. The performance issues

(e.g. number of transitions executed in a time unit) were considered as not essential in this

case. A successful implementation of this approach was described in [11]

The paper is organized as follows. In Section 2 some basic constructs of XQuery language are

presented; the main concepts of XQPN nets are shown in Section 3. Section 4 describes

methods of binding calculation and execution of a transition. In Section 5 design decisions

preceding prototype implementation are discussed. Finally, we present some concluding

remarks in Section 6.

XQuery Language

XQuery (XML Query Language) is a language for querying XML data, that can appear either

as a standalone XML document or data stored in a data base provided with an XML interface.

The language provides means for data extraction preserving independence of the physical data

representation. The works on language definition started in 2001, finally in January 2007 its

specification became an official recommendation of W3C organization.

The data model for XML content, that is used internally by XQuery takes the form of a tree

containing several kinds of nodes, among them document nodes, elements, attributes and text

nodes. XQuery uses XPath[] expressions to address and select nodes inside XML documents.

As the language was intended only for querying data, it is not capable of modifying the

document content. (However, there are efforts to define an improved version of the language

XQuery Update [6], allowing data modification.)

In XQuery a value is a sequence of XML nodes or values of atomic types. There is no

syntactical difference between a sequence containing one element and its single element.

XQuery sequences can be strongly typed, if a sequence contains elements whose type is

determined by a schema definition or loosely typed if no schema is referenced. Values

represented by sequences are returned from XQuery instructions and can be assigned to

variables.

Apart from the capability of extracting information from source documents, XQuery can

dynamically create nodes and use built in functions to change their values; this feature can be

used for transforming the content and structure of nodes in the resulting sequence. The other

capability offered by XQuery is joining data originating from different sources.

XQuery is a programming language. It allows declaring variables, defining functions and

even calling external functions, defined outside its execution environment.

XQuery language constructs include loops, assignments and conditionals. Loops are often

referred as FLWOR statements (FLWOR is an acronym for keywords for, let, where, order

by, return). An example of FLWOR statement is:
for $x in /bookstore/book

where $x/price>30

order by $x/title

return $x/title

This expression iterates over the sequence of nodes returned by the XPath [@] expression

bookstore/book and returns ordered sequence of nodes title being children of nodes book

that match the criterion price>30.

The resulting sequence can be returned from a query, but it also can be used as a value in an

assignment, e.g.

let $y := for ….

and further processed in subsequent instructions. Another XQuery statement is a conditional:

if(condition)then exp1 else exp2.

Both expressions exp1 and exp2 are obligatory; they however can be defined as an empty

sequence value ().

The FLWOR and if –then-else statments can not be treated as classical structural instructions

of high level languages. They rather resemble operators that return values, e.g. the if-then-else

statemant is similar to the ternary operator ? : appering in C, C++, Java and C# languages.

We have selected XQuery as the basic element of XQPN because it is a widely recognized

standard of XML processing recommended by W3C organization, moreover, many vendors

offer commercial and free XQuery engines suitable for processing XML documents in textual

form (located in memory or in a file) [@, @]. as well as stored in a data base, e.g. Microsoft

SQL Server, [], IBM DB2 [@] or Oracle [@].

Definition of XQPN nets

We will start the presentation of XQPN nets by providing their definition enumerating

components of the nets. While referring to such concepts as XML document or a query we

will not give their definitions. An XML document can be treated either as a textual form (a

sequence of tags) or as a tree-structured data model [@], whose specification is used to give a

semantics to XQuery expressions. Similarly, a query in some contexts can be treated as an

expression, whereas in other as a function that maps a particular instance of data model to a

sequence o elements resulting from the evaluation of a query expression. When speaking of

XML documents we will refer to well formed documents. It is a natural consequence of the

assumption that a document is represented by a data model.

Definition 1

XQPN net is defined as the tuple XQPN = (P; T; A; Q;W; I;G), where

 P - is a finite set of places,

 T - is a finite set of transitions, P T = ;

 A P T T P is a set of arcs,

 Q: A QN Q, is a function, assigning XQuery queries to arcs; we will denote a set of

all queries by Q; QN Q is a set of queries returning sequence of nodes,

 W: P T (N {*}) (N {*})) is a function that assigns multiplicity to input arcs

of transitions,

 I: P T {delete; read} is a function that assigns an input mode to input arcs, for

delete mode the transition linked by the arc will remove tokens from the input place, for

read mode it will only query their values and leave them intact,

 G: T QB Q is a function assigning guards to transitions (guards belonging to the set

QB are queries returning Boolean values).

Definition 2

The marking in XQPN is a function M: PM assigning XML documents from a set M to

places. By M(p) we will denote a document assigned to the place p P. For technical

reasons we assume that the name of the root of a dokument M(p) can be used as the identifier

of the place p. The names of documents roots belonging to the set M(P) must be unique.

Arcs

Arcs connect transitions with places and specify transformations of the data stored in places

surrounding an executed transition. Transitions may create, delete and read data. Similarly to

CPN nets, updating a value of an element stored in a place can be modeled as replacing it by a

new element. (Update operations are not implemented in Query 1.0 as well.)

For a given transition t T, the arcs from the set { (p, t) : (p, t) A} are called input arcs and

arcs from { (t, p) : (t, p) A} output arcs. Correspondingly, we call input and output places as

places connected with input and output arcs. A transition t may remove elements from its

input places or read them. For an input arc a P T A, the mode of operation is

determined by the I(a) arc attribute. The graphical representation of the deleting arc, for which

I(a)=delete, is an arrow, for reading arc, where I(a)=read is a line.

Arcs are assigned with additional attributes: a query expression and a multiplicity that is

applicable for input arcs only.

Expressions

Expressions assigned to input arcs (p, t) should return sequences of nodes in the source document

M(p) stored in the input place p. In particular, the expression can take the form of XPath expression or

FLWOR statement. In the later case it is required that the statement do not create new nodes in the

output sequence. The result of expression evaluation, to be useful, must be assigned to a variable that

can be referenced in other expressions, e.g. in output arcs’ expressions. The typical form of input arc

expression is, thus: let var:= expression. A variable appearing on the left hand of the

assignment will be called the arc’s input variable. Expressions appearing at input arcs of a transition

may contain references to input variables defined at other arcs. In this case a query containing a

reference to a variable var is dependent on the query defining it, i.e. the query where the variable var

is bound by an expression. It is assumed, that in a correctly specified net, queries assigned to input

arcs of a transition can be ordered according to the dependency relation.

Expressions assigned to output arcs of a transition specify sequences of nodes that will be added to

output places during its execution. They may contain references to input variables or define own

variables that are bound by expressions, e.g. iteration variables of the for statement.

Example 1

Fig. 1 presents an example of a simple transition moving nodes from its input place store to the output

place out.

store T

let $x := /*/item[./@id>12]

out

$x

mul

Rys. 1 Tranzycja przesuwająca zbiory znaczników określone przez wyrażenia

Fig. 1 Transition moving set of nodes specified by arc expressions

Let us assume, that for the current marking the place store contains the data:

<store>

 <item id='7'/>

 <item id='12'/>

 <item id='13'/>

 <item id='21'/>

 <item id='27'/>

</store>

As the transition T is fired, the input arc expression let $x := /item[./@id>12] will be

evaluated an the variable $x will be assigned with the node sequence:
(<item id='13'/> <item id='21'/> <item id='27'/>)

Then the nodes in $x will be removed from the place store and added to the place

out as specified in the output arc expression: $x.

Constants in expressions

A typical construct in colored Petri net are constants appearing as arc expressions. [Constants

at input arcs are used for removing indicated tokens or testing their presence in the connected

input place; constants at output arcs define tokens to be added.]

In the case of XQPN nets, constants correspond to sequences of XML tags conforming the

syntax of XML documents. They may appear only as output arc expressions. A constant

define then a node or several nodes that will be inserted to the document stored in the

connected output place as the transition is executed.

For input arcs (p, t) linking a place p with a transition t an expression defining a constant

would specify a node that is external to the data model of the document M(p). Such node can

not be matched to any node in M(p) on the identity basis; however, the equality of constants

and nodes in M(p) can still be checked. Instead of using constant, it is proposed to use a query

calling the function deep-equal() that compares the content of two nodes and their

descendants.

As example, for the constant <item id='7'/> the query may take form of:

for $i in //

return if (deep-equal($i, <item id='7'/>))

then $i else ()

The XQPN editor may be equipped with a handy shortcut, that writes such query for the

specified constant.

Multiplicity

Multiplicity in XQPN nets corresponds to weights of arcs in PT-nets. The parameter is used to control

the exact number of nodes that a transition will read or remove from its input places, therefore it can

be applied to input arcs only. Multiplicity is defined as a pair of two numbers (symbols) [min,

max] specifying bounds. A transition is enabled if input arc expression can be evaluated to a

sequence containing at least min tokens (nodes). If more then min tokens are available, then

the length of the resulting sequence can not exceed the max parameter (the sequence can be

arbitrary restricted if the actual length is greater then max). If min and max are equal, they can

be marked on the diagram as a single number. Apart from numbers, specification of bounds

may contain a symbol of ‘*’ corresponding to all tokens (infinity). In most cases values of ‘1’

or ‘*’ are used as multiplicity parameters.
Returning to the example presented in Fig. 1:

 Setting multiplicity parameter mul to 4 (or [4,4]) implies that for a given marking the transition is

not enabled

 For mul defined as *, the transition is enabled and will remove all matching elements

from the input place

 For mul defined as 1 ([1 1]) exactly one element will be arbitrary selected from two nodes

satisfying the predicate [./id>12]. It will be then removed from the place store and added to

the place out. Other element will remain in the input place.

The multiplicity introduces nondeterminism into the net bahavior. On the stage of preparing

of the execution of a transition an arbitrary decision is made which elements in its input

places will be actually accessed and then processed. The mechanism of selection according to

the multiplicity can be compared with nondeterministic binding of free variables in CPN nets.
In PT-nets it is possible to assign weights to output arcs. Similar solution (e.g., assigning

multiplicity for output arcs) was not introduced to XQPN nets, as output arc expressions enable the

very precise control of nodes that are added to output places (both their values and number).

Execution of XQPN nets

Execution of XQPN nets consists in subsequent executing (firing) of transitions and updating

the net state. Execution of a transition has two stages: preparatory, when a binding for input

variables is established and the stage of actual execution consisting in removing nodes (XML

tags) from input places (connected with the executed transition with deleting arcs) and adding

nodes to output places. From those two stages, the first is far much more complex, as regards

algorithmic issues.

Bindings

In CPN nets a binding is an assignment of values to free variables that appear in arc expressions or a

guard of a transition. A transition is enabled and can be fired if there exists a binding for which values

assigned to free variables match the tokens present in corresponding input places (and the guard of the

transition evaluates to the true value). Potentially, for a given net marking there may exist a number of

appropriate bindings for a transition, thus it can be executed for different values of variables and

different combinations of tokens removed form input places and inserted to output places.

The consequence of selecting XQuery language for specifying expressions is that the semantics of

binding in XQPN differs with respect to CPN nets. In XQPN variables appearing in arc expressions

are either bound in the enclosing expression, or are references to the variables defined and bound in

expressions assigned to other arcs. This in general corresponds to the interpretation of binding in CPN

nets. However, variables appearing in queries may also change value, as they are executed.

A small modification to the net from Example 1 is presented in the Fig. 2. The output arc is

assigned with a FLWOR expression containing the variable $y bound by expression in $x. During

the query execution the variable iterates over the sequence of nodes $x, thus, it is not possible to

assign to it a value remaining constant during the transition execution.

store T

let $x := /*/item[./@id>12]

out

for $y in $x

return <item><id>

{ data($y/@id) }

</id></item>

1

Fig. 2 FLWOR expression assigned to the output arc

In XQPN nets only the bindings for input variables, i.e the variables appearing as l-values in

input arcs expressions, are required. However, the algorithm of their calculation has an

intermediary step, during which bindings are first established for hidden variables related to

input arcs, further referenced as $inputnodes-i. The values of them are then used instead of

the documents stored in input places to calculate actual bindings of input variables.

Let us assume, that we want to calculate a binding for an input variable $xi appearing in the

expression let $xi := exp-i of i-th input arc of a transition.

Algorithm of binding calculation

1. Execute the query exp-i and store the result in a temporary value:

let $tmp := exp-i,

2. Calculate the sequence of nodes being the children of the document’s root node, for which the query

exp-i would return the sequence $tmp:

$inputseq-i = local:upcast($tmp)

3. If the number of elements in the sequence: count($inputseq-i) is less then mini value of the

multiplicity [mini, maxi] assigned to the i-th arc, then STOP, the binding is not enabled.

4. If maxi > count($inputseq-i), then limit the number of elements in the sequence by selecting

exactly maxi elements; in the other case, leave it unmodified. In the algorithm implementation, those

conditions are wrapped by a function returning the sequence restricted according to multiplicity

parameters. The result is then stored in the variable $inputnodes-i.

let $inputnodes-i := local: arbitray_select(inputset-i)

5. Finally, calculate the binding of $xi as:

let $xi := $inputnodes-i exp-i

If an expression attributed to the input arc is not defined as an assignment, the last step is

omitted. However, for deleting arcs the binding of the hidden variables $inputnodes-i must

be calculated, as they specify the tokens to be deleted from the input places. For expressions

without assignment attributed to reading arcs the algorithm finishes at the step 3 (arcs are used

only to establish the enabledness of a transition and neither for deleting tokens, nor for

binding variables)

The local:upcast() function is defined as follows:

declare function local:upcast ($n as node()*) as node()* {

for $i in /*/*

return if ($i intersect $n or $i//* intersect $n) then $i

else ()

};

Its effect is depicted in the Fig. 3. The node n contained in the sequence passed as the

argument is a descendent of the top-level node it2 (being a child of the root node r of a

document assigned to a place). In the step (2) of the algorithm, the node it2 will be inserted in

the $inputseq-i and will become a potential element of the sequence $inputnodes-i.

r

it
1

it
2

... it
k

n

x

Rys. 2 Działanie funkcji upcast()

Fig. 3 The upcast() function returns top-level nodes whose descendants are contained in

its argument

This somehow complicated solution can be justified as follows. XQPN nets are intended to

model systems processing XML data and places should be treated first of all as collections of

objects. e.g.: database records. In opposition to CPN nets, they are loosely typed: top level

nodes in a document assigned to a place can have different structure and represent different

types. However, when reading or deleting nodes from input places we should refer to objects

as the whole, not their attributes, as it makes no sense to delete an attribute of a single

database record. On the other hand, in XQPN nets there is no specification and control of

types (colors) and a great attention should be made while specifying output arcs expressions

to avoid insertion of not intended types of objects to output places of a transition.

Guards

Guards are logical expressions assigned to transitions. A guard of a transition may refer only

to its input variables. A transition is enabled for a given binding if the guard evaluated for the

binding returns true. Guards may be omitted in the specification; in this case they are treated

as (true) constants. Fig. 4 shows an example of application of guards to describe required

data constraints. The transition T models a process of logging in. The input place users

contains records (user) specifying user identifiers and passwords, the place form contains,

possibly multiple, data that can be entered to the logging form (formdata). As the transition

fires, user data matching those entered in the form will be inserted to the place logged.

users

form

T logged

let $users := /users/user

let $fdata :=/form/formdata
$users

$users/login = $fdata/@login and

$users/password = $fdata/@password
1

1

Rys. 3 Tranzycja modelująca logowanie użytkownika

Fig. 4 Transition modeling the process of logging in

Execution of the transition requires that first a binding for variables $users and $fdata

should be selected. According to multiplicity specification, they both must be assigned with

values being sequences containing exactly one node (of type user for $users and

correspondingly formdata for $fdata). In the current prototype implementation of XQPN

execution module an ineffective algorithm for guards checking is used: they are tested after a

candidate binding is calculated. However, in many cases the guards can be eliminated. Fig. 5

shows a modified net from Fig. 4. In this example analogous behavior was modeled without

guards. Elimination of guards was performed by introduction of a dependency between input

arc expressions causing that a binding for the variable $fdata should be selected before

calculating a binding for the variable $users.

Process of binding calculation is actually a complex recursive procedure in which query

expressions assigned to input arcs are first ordered according to the dependency relation and

then bindings for subsequent variables are fixed. Steps (4) and (5) are in fact placed in a loop,

in which calls to the arbitray_select() function return next subsequences meeting

constraints imposed by multiplicity parameters of input arcs.

users

form

T logged

let $users := /users/user

[./login=$fdata/@login and

./password=$fdata/@password]

let $fdata := /form/formdata
$users

1

1

Rys. 4 Tranzycja, w której dozór zastąpiono zależnością

Fig. 5 Rewritten transition: the guard was replaced by dependent expressions

In this point a question arises whether it is computationally feasible to find a binding or

enumerate all bindings for given multiplicity values? In a general case, the answer is no. Let

us analyze a simple example: for n top level nodes in the document assigned to an input place

linked by an arc with multiplicity [k, k], where k<n. subsequent calls to arbitray_select()

function should enumerate all n!/(n-k)! subsequences. However, for a typical situation, where

the multiplicity is set to one, or *, the k variable in the formula would have the values 1 or 0,

what gives computationally feasible numbers of possible bindings (n for the multiplicity 1 and

1 for the multiplicity *).

Firing

An enabled transition can be fired (executed). Firing of a transition consists in updating data

in its input and output places. Documents in input places connected with a transition by

deleting arcs are udated with XQuery queries using the except operator:
return <pl-i>{$/pl-i/* except $inputnodes-i}</pl-i>,

where <pl-i> is a root tag of a document assigned to i-th input place.

For output places pj an output sequence of nodes $outputnodes-j is calculated by executing the

query assigned to the output arc (t, pj). Then the place content is replaced by the sequence returned by

the query:

return <pl-j>{$/pl-j/* union $outputnodes-j}</pl-j>,

where <pl-j> is a root tag of a document assigned to j-th output place.

It should be emphasized, that assumed in XQPN operations on XML data models are based on identity

but not equality of nodes (two nodes with the same content are treated as distinguishable elements). It

is admissible that a place contains several nodes with an identical content. A transition connected with

such place with a deleting arc having the multiplicity 1 will delete the only one element appearing in

the sequence $inputnodes-i, but not all elements that can be found equal to it. From this

perspective XQPN nets preserve the very specific property of CPN nets: documents assigned to places

can be interpreted as multisets of token values, where each token value instance corresponds to a node

in an XML document.

Implementation

Two prototype modules for execution of XQPN nets were implemented and tested for several

dozens of test cases in form of small nets containing a few transitions and places. The

modules were based on free software packages offering the XQuery support: Altova XML[9]

and Saxon [8]. Chronologically, the first execution module was implemented in C# language

using Altova XML package. It was applied in experiments with systematic testing of web

applications by automatic generation of the cases based on XQPN specification [cee-set].

However, some drawback of the solution caused that we decided to compare the utility of

Altova XML and Saxon libraries for XQPN implementation, and finally chosen the Java

platform and Saxon libraries as its base. This decision also influenced the specification of

XQPN nets. The form presented in the paper is a refined version that defines the semantic of

the net in reference to XML data model that is not accessible in Altova XML library, whereas

is fully accessible in Saxon.

The Altova XML package is available as COM component for Windows. It can be used from

any .NET compliant languages, it provides also a wrapper for Java. Saxon-B is distributed as

a collection of Java packages. It provides three software interfaces: s9api, XQJ and native

interface using internal data structures. The library was also recompiled and released for .NET

platform.

We have made a test whose goal was assessment of the performance of the compared libraries

on a very simple net consisting of one transition that calculates two sequences of nodes from

input places, then makes their intersection and adds the result to an output place. The input

places were feed with randomly generated XML data that were loaded into the memory (what

is not reflected in the measured time). The result was converted to a textual form, what was

obligatory, as Altova XML component offers only textual input and output.

Test results (processor Pentium M 1.7Ghz, 1 MB RAM) are presented in Table 1.

Table 1. Execution time in seconds

Package and

interface

Number of top level nodes in the document

100 1000 10000 100000

Altova XML 0.02 0.18 1.82 19.49

Saxon s9api DOM 0.25 8.49 sec 85.2 928

Saxon XQJ 0.54 0.71 1.31 7.01

Saxon XQJ

precompiled queries

0.09 0.36 1.37 12.33

The tests have shown a greater efficiency of Altova XML component, especially for small

data sets. On the other hand, Saxon libraries have a constant overhead visible for small data

sets that vanishes for larger documents. The only exception is the execution of queries against

the DOM data model, what can be justified by the discussion on the internal solutions applied

in the Saxon package [10]. The drawback of the Altova XML component is a very narrow

COM interface, that precludes more advanced manipulations, e.g.: execution queries for

various bindings of variables declared in XQuery expressions as external variables. Actually,

the Altova XML component gives no access to the XML data model, what can be considered

essential for proper implementation of XQPN semantics.

Finally, we have decided to develop the implementation on the Java platform with use of the

offered by Saxon XQJ interface without precompiled queries. The same object of XQJ API

representing a query (XQExpression) with attached XML document encompassing the

content of input places is reused several times. During the process of binding calculation the

same queries can be executed many times. Additional tests have shown that while a single call

of to complex procedure of binding calculation consisting in execution of a few XQuery

queries has taken 0.54 sec, calling it 100 times increased the execution time to 0.87 sec, and

not to 54 sec, as it can be supposed.

Implementation of the algorithm for binding calculation is quite an interesting issue, because

its steps can be realized either in XQuery environment, or outside, in the platform language. A

possible solution is the generations of the monolithic XQuery queries returning aggregated

information about variables bindings and sequences of nodes in input places that were a base

of their calculation. The other approach may consist in multiple executions of small queries

that are controlled by an algorithm implemented outside the XQuery environment. In the

prototype implementation the second solution was selected.

Another interesting issue is rewriting of queries. The point where rewriting might occur very

useful is the automatic elimination of guards. The currently implemented algorithm of binding

calculation is inefficient for the net shown in Fig. 4, however, quite operational for the net in

Fig. 5. If the number of top-level nodes in the place form is m and in users is n, then in the

first case the number of calculated and tested bindings is n m, whereas in the second case is

up to m. We can assume that in the case of the real system model, n can range about 10000,

while m will be a relatively small number.

Conlusions

The paper presents XQPN nets,a class of colored Petri nets designed for the manipulation of XML

data stored in places. The characteristic property of XQPN nets is the use of XQuery language to

define expressions assigned to arcs and to perform operation on the data.

XQPN nets are proposed as the tool for specification, simulation and testing of the systems using

XML as internal data exchange format. The domain of application is quite large, it may include

internet applications, web services, and SOA solutions based on execution of BPEL processes.

To summarize key differences between XQPN nets and classical CPN nets:

 Marking in XQPN is an assignment of XML documents (XML data models) to places. XQPN

nets assume no constraints on the data structure. It may conform to a schema definition;

however, a schema definition is not required in the specification. In the consequence XQPN nets

do not use the notion of type assigned to a place, they can be considered as loosely typed.

 In some cases marking in XQPN can be considered as a multiset over a type; this regards the

situation, where all top-level nodes have an identical structure and possibly equal contents.

However, XML data model is more flexible then a multiset of tuples appering in the CPN

specification.

 XQPN nets provide atomic operations to access all tokens from a certain places (enough to set

an input arc multiplicity to *). We found this issue crucial for modeling data base operations, e.g

accessing all records from a table matching certain criteria. This can be expressed in CPN nets,

but with a loose of atomicity.

At present the prototype implementations of XQPN nets are relatively slow, average timing of firing a

transition is about a second or a fraction of second. This however, was not considered as a drawback

during the experiments with testing real web applications, where XQPN model was used as the

specification of test cases [cee-set].

References

[1] Reisig W.: Petri Nets – An Introduction, EATCS Monographs on Theoretical Computer Science, Volume 4. Springer.

1985, tłum. na jęz. polski: Sieci Petriego – Wprowadzenie, WNT 1988.

[2] Jensen K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Vol. I-III, Springer Verlag,

1995/96.

[3] W3C: Extensible Markup Language (XML), http://www.w3.org/XML/

[4] W3C: XQuery 1.0: An XML Query Language, http://www.w3.org/TR/xquery/

[5] W3C: XML Path Language (XPath) 2.0, http://www.w3.org/TR/xpath20/

[6] W3C: XQuery Update Facility 1.0, http://www.w3.org/TR/xquery-update-10/

[7] XQuery 1.0 and XPath 2.0 Data Model (XDM), http://www.w3.org/TR/xpath-datamodel/

[8] http://www.saxonica.com/

[9] http://www.altova.com/

[10] Kay M.: Ten ReasonsWhy Saxon XQuery is Fast, Data Engineering, December 2008 Vol. 31 No. 4

[11] Szwed P., Wadowski D., Paździora K. A framework for testing Web services based on XQPN Petri nets, in Huzar Z.,

Nawrocki J., Szpyrka M. (eds) IFIP 2009: Software Engineering Techniques in Progress. AGH University of Science and

Technology Press, Kraków 2009, 53–66.

http://www.w3.org/TR/xpath-datamodel/
http://www.saxonica.com/
http://www.altova.com/

	Piotr SZWED
	Introduction
	XQuery Language
	Definition of XQPN nets
	Arcs
	Expressions
	Multiplicity

	Execution of XQPN nets
	Bindings
	Guards
	Firing
	Implementation

	Conlusions
	References

