

BEYOND DATABASES ARCHITECTURES AND STRUCTURES 10th INTERNATIONAL CONFERENCE

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

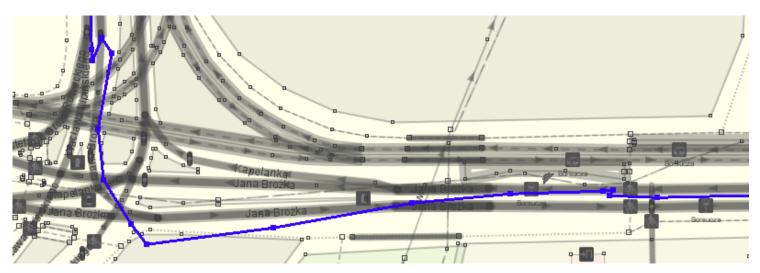
Map-matching in a real-time traffic monitoring service

Piotr Szwed and Kamil Pękala AGH University of Science and Technology Department of Applied Computer Science e-mail: pszwed@agh.edu.pl

BDAS'2014 Ustroń, Poland, May 27-30, 2014

Agenda

- 1. Motivation
- 2. Related works
- 3. Operational concept of GPS tracker (traffic monitoring system)
- 4. Hidden Markov Model set-up
- 5. Map matching algorithm
- 6. Test results
- 7. Conclusions


Motivation

- GPS tracker is a prototype implementation of real time traffic monitoring service within INSIGMA (Intelligent System for Global Monitoring Detection and Identification of Threats) project
- Traffic congestion: a serious problem in urban areas
- Intelligent Transportation Systems (ITS)
 - Concerns: safety, mobility and environemental performance
 - Services based on real-time traffic monitoring data
 - alerting,
 - navigation,
 - fleet management,
 - logistics
 - intelligent traffic control
- Data sources:
 - Sensors: inductive loops, cameras, microphone arrays
 - Crowd-sourcing: smartphone devices transimitting positioning data over cellular networks

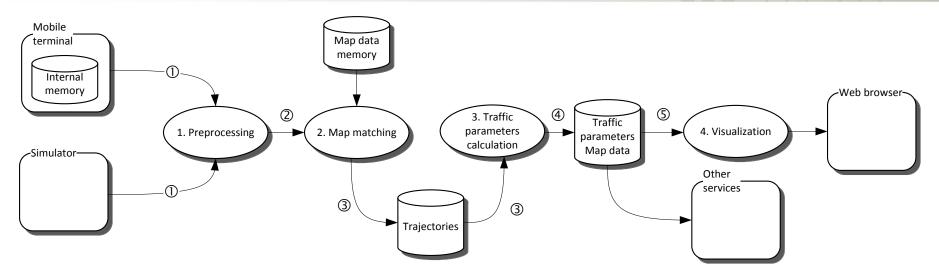
Motivation 2

- Key issue: map-matching calculation of vehicle location on a road segment
- Requirements for the map-matching algoithm
 - Should take into account roads connectivity
 - Should be *incremental*, i.e. capable of analyzing GPS trace on arrival of a new data

Related works

Map matching algorithms

- *Geometrical* (point to curve or segment to curve matching) [White, Bernstein et al. 2000; Greenfeld 2002]
- *Topological*: utilize information about connections between road segments [Quddus, Ochieng et al. 2003].
- *Probabilistic*: use information on circular or elliptic confidence region associated with position reading [Ochieng, Quddus 2009]
- *Advanced*: Kalman filter, fuzzy rules, Particle filters (both topological and probabilistic) [Fu, Li et al. 2004; Gustafsson, Gunnarson et al., 2002]
- *Incremental* algorithms using tree-like structure [Marchal, \bullet Hackney et al. 2004; Wu, Zhu et al. 2007]
- Global algorithms based on *Hidden Markov Models* [Newson, Krumm 2009; Thiagarajan, Ravindranath et al. 2009] 5



Traffic monitoring systems:

- Mobile millenium project, University of California, Berkeley, <u>http://traffic.berkeley.edu/</u>
- INRIX, <u>http://www.inrix.com/default.asp</u>
- Google: The bright side of sitting in traffic: Crowd-sourcing road congestion data. <u>http://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html</u>
- Gurtam: Commercial GPS solutions for vehicle tracking and fleet management: <u>http://gurtam.com/en/</u>

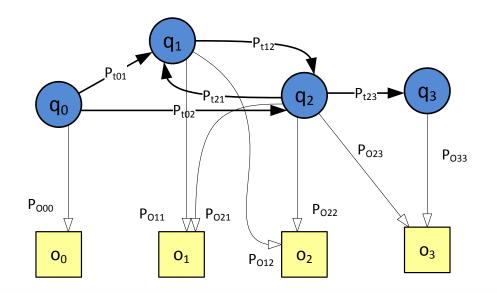
Operational concept

- 1. Preprocessing: trajectory smoothing with Kalman filter and interpolation of points between GPS readings.
- **2. Map matching**: finding a seqence of projections on map segments forming a trajectory
- 3. Traffic parameters calculation (average speed and travel time). Includes data fusion and removal of aged data.
- 4. Other services (route planning, traffic control and Visualization)

Hidden Markov Model

Hidden Markov Model: $\lambda = (Q, A, O, P_t, P_o, q_0)$

Q – set of states

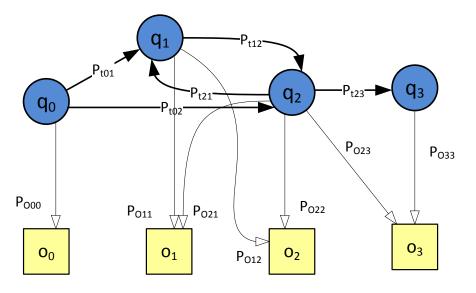

 $A \subset Q \times Q$ – set of arcs

0 - set of observations

 P_t : $A \rightarrow (0,1]$ – state transition probability

 $P_o: Q \times O \rightarrow [0,1]$ – emission probability

 q_0 - initial state



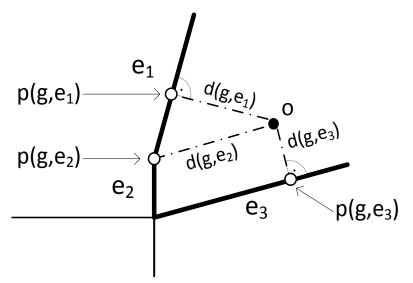
Hidden Markov Model – Decoding

Decoding problem:

- given a sequence of observations $o_{i1}, o_{i2}, ..., o_{in}$
- find the most probable sequence of hidden states $q_{i1}, q_{i2}, \dots, q_{in}$ Resolved with Viterbi algorithm

Idea of application to map-matching:

- observations: readings from a location sensor (GPS, WiFi)
- hidden states: road segments

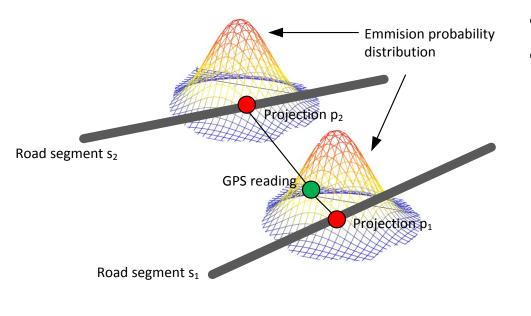

HMM model setup 1

Road network model

G = (V, E, I), where

- $V \in \mathbf{R} \times \mathbf{R}$ node (longitude, latitude)
- $E \subset V \times V$ edge (straight segment)
- $I \subset E \times E$ specify forbidden maneuvres at junctions

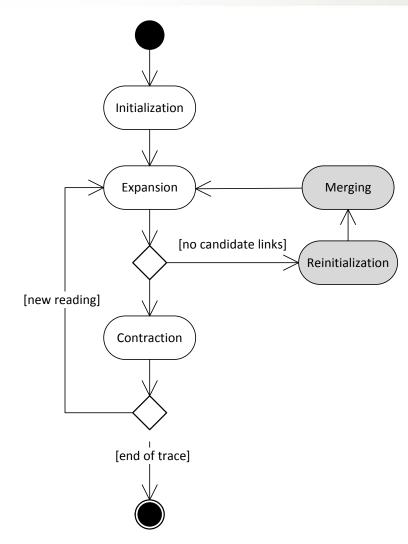
Projection of a point *g* **on a segment** $e = (v_b, v_e)$


$$p(e,g) = \arg \min_{g'=v_b+t(v_e-v_b) \land t \in [0,1]} d(g,g')$$

d(g,g') – distance (haversine formula)

HMM model setup 2

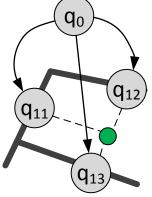
- HMM state q = (e, p, i) e- road segment, p projection point,
 i sequence number
- Transition probability $P(q_1, q_2)$ equal at junctions, low probability for forbidden meneuvres, dead recokonning on speed



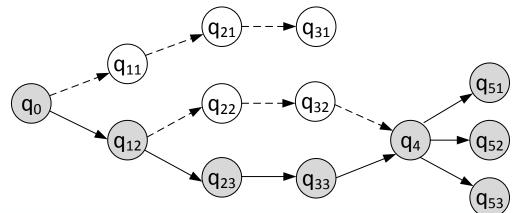
- Observation o = (lon, lat, time)
- Normal distribution for the emmision probability:

$$P(x, y) = \frac{1}{D} e^{-k((x-x_p)^2 + (y-y_p)^2)}$$

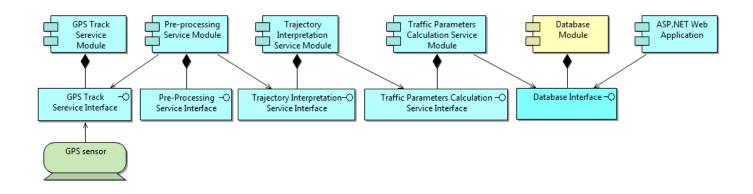
 (x_p, y_p) - projection point k - depends on a sensor $D = \iint_{-\infty}^{\infty} P(x, y) dx dy$ normalization



- Input: sequence of observations
 ω = (o_i: i = 1, n)
- Internal data: a sequence of HMMs $\Lambda = (\lambda_i : i = 1, n)$
- Output: sequence of HMM states (projections of observations on road segments)


Map matching algorithm

- **Initialization**: the first model λ_1 is built by linking an artificial state with projections of o_1 on road segments
- **Epansion**: observation o_i is projected on road segments. Then, obtained new states are linked with the last states (segments) from λ_{i-1}


• Contraction:

- orphan nodes without successors are removed
- the HMM root is moved forward and a next part of the trajectory is output.

Implementation

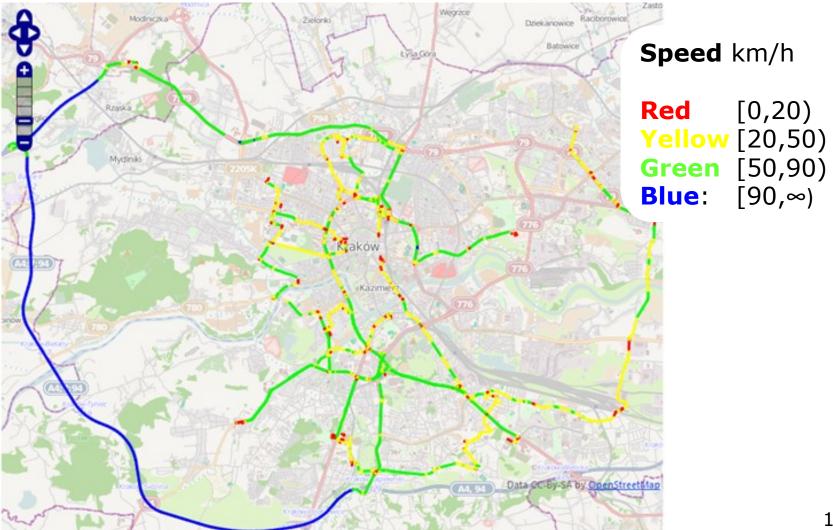
- System is implemnted in C# on .NET 4.0 platform
- Distributed into several components
- Communication via WCF web-services (SOAP and JSON)
- OpenLayers for visualization

Test results (accuracy)

- Map data source: Open Street Map (OSM)
- 20 GPS traces registered with EasyTrials GPS software on iPhone 5 (148.6km, 4482 readings)
- Criterion: number of reinitializations

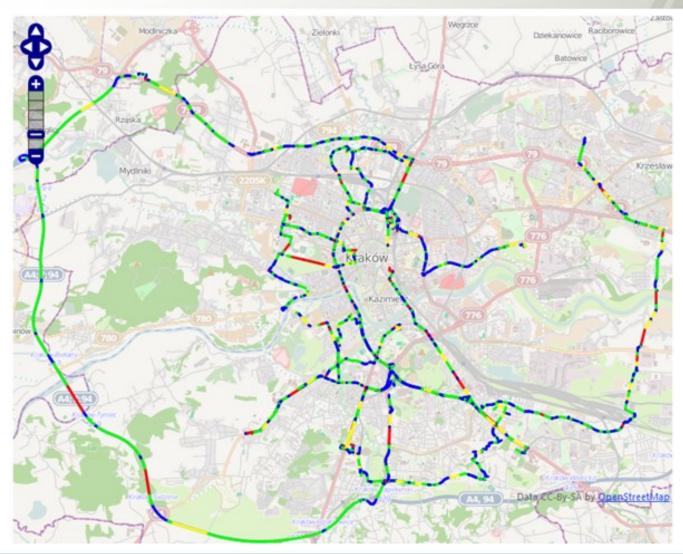
	RI - Number of reinitializations	RI/sample	Av. distance between RI
Normal	24	0.005	6.18 km
Noise (20m)	73	0.016	2.03 km
HS (Half- sampled)	23	0.005	6.44 km
HS+Noise	45	0.010	3.29 km

Test results (performance)


Sensor Simulator	a da	- C X
Simulation		
Load track files	Time factor: 1.0 4.0 Simulation time: 00:03:32	
0001_AGHD13-DomX.csv 0001_Bonarka-Kluczborska.csv	0001_AGHD13-DomX.csv	66/256
0001_CarrefourZakopianka-Dom.csv 0001_ChristoBotewa-Rydygier.csv	0001_Bonarka-Kluczborska.csv	93/248
0001_Dom-AghD13.csv 0001_Dom-ChristoBotewa.csv	0001_CarrefourZakopianka-Dom.csv	93/261
0001_Dom-Rondogrunwaldzkie.csv 0001_Dom-Ruczaj.csv	0001_ChristoBotewa-Rydygier.csv	97/267
0001_Dom-SohoOutlet.csv 0001_Dom-Solvay.csv	0001_Dom-AghD13.csv	84/233
0001_Dom-Solvay2.csv 0001_GaleriaKrakowska-Kluczborska.csv	0001_Dom-ChristoBotewa.csv	74/209
0001_Kuczborska-M1.csv 0001_Kmiet-Rynek-Kmiet.csv	0001_Dom-Rondogrunwaldzkie.csv	82/108
0001_Ruczaj-Dom.csv 0001_Rynekpodg-RondoM.csv	0001_Dom-Ruczaj.csv	107/259
0001_Solvay-Dom.csv 0001_Solvay-Dom2.csv	0001_Dom-SohoOutlet.csv	97/216
0001_Solvay-Dom3.csv 0001_Tesco-Westerplatte.csv	0001_Dom-Solvay.csv	92/248
0001_Westerplatte-Victorinox.csv	0001_Dom-Solvay2.csv	73/190
	0001_GaleriaKrakowska-Kluczborska.csv	76/118
	0001_Kluczborska-M1.csv	78/254
	0001_Kmiet-Rynek-Kmiet.csv	66/192
	0001_Ruczaj-Dom.csv	80/271
	0001_Rynekpodg-RondoM.csv	58/242
	0001_Solvay-Dom.csv	91/228
	0001_Solvay-Dom2.csv	99/298
	0001_Solvay-Dom3.csv	70/192
	0001_Tesco-Westerplatte.csv	91/283
	0001_Westerplatte-Victorinox.csv	88/188

Mock client:

- 20 simultaneous feeds
- Speed-up 50 x
- Equivalent to 1000 mobile sensors



Test results: speed map

Test results: travel time

Conclusions 1

GPS tracker

- Real-time traffic monitoring system based on GPS positioning information originating from traveling vehicles.
- Stages:
 - Kalman filtration,
 - interpolation,
 - map-matching
- Vehicle trajectories are the basis for calculation of traffic parameters

Conclusions 2

Map-matching algorithm

- Based on Hidden Markov Model
- In each iteration HMM is
 - expanded by adding new states (projections on road segments)
 - contracted to output a next part of a vehicle trajectory.
- Structure of HMM forms in most cases a tree [Wu, Zhu et al. 2007] but parallel roads are supported
- Viterbi algorithm used only, if parallel roads are encountered
- The algorithm is *incremental* (required for real-time services)

Thank you