

ICAISC Zakopane International Conference on Artificial Intelligence and Soft Computing June 1-5, 2014

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

An incremental map-matching algorithm based on Hidden Markov Model

Piotr Szwed and Kamil Pękala AGH University of Science and Technology Department of Applied Computer Science e-mail: pszwed@agh.edu.pl

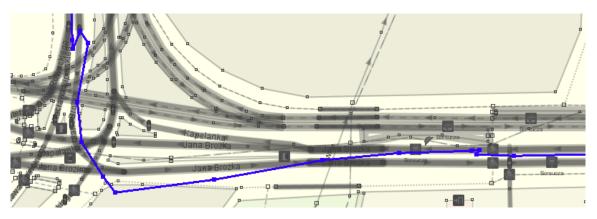
Agenda

- 1. Introduction
- 2. Related works
- 3. Processing steps
- 4. Hidden Markov Model set-up
- 5. Map matching algorithm
- 6. Experiments
- 7. Conclusions

Introduction

Map-matching aims at establishing the vehicle location on a road segment based on positioning data.

- Sensors (GPS, WiFi, cellular radios, odometers) return uncertain data.
- Current sensor reading and/or a number of past data can be used



Introduction 2

- Map-matching is used in Intelligent Transportation Systems (ITS)
 - Fleet management, vehicle tracking, navigation services
 - Traffic monitoring, congestion detection

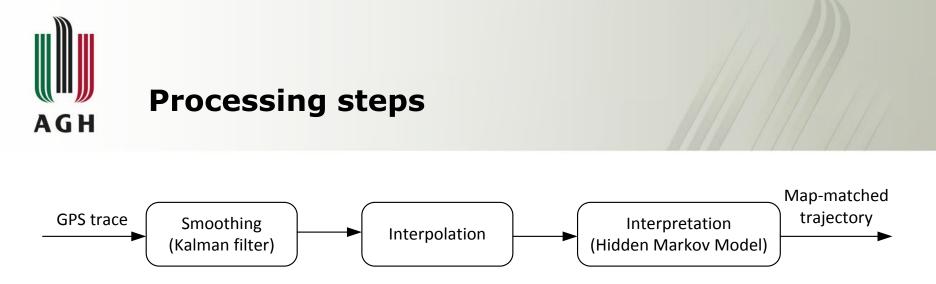
Motivation

- Algorithm that can be used for
 - Tracking on-line individual vehicles
 - Monitoring traffic by crowd-sourcing
- The algorithm should be
 - *incremental* (calculate trajectory on arrival of new data)
 - as opposed to *global* (the whole trace is map-matched)

Related works

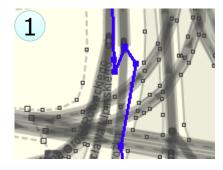
Map matching algorithms

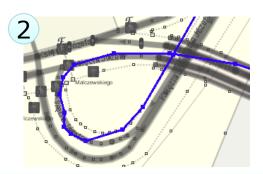
- *Geometrical* (point to curve or segment to curve matching) [White, Bernstein et al. 2000; Greenfeld 2002]
- *Topological*: utilize information about connections between road segments [Quddus, Ochieng et al. 2003].
- *Probabilistic*: use information on circular or elliptic confidence region associated with position reading [Ochieng, Quddus 2009]
- *Advanced*: Kalman filter, fuzzy rules, Particle filters (both topological and probabilistic) [Fu, Li et al. 2004; Gustafsson, Gunnarson et al., 2002]
- *Incremental* algorithms using tree-like structure [Marchal, \bullet Hackney et al. 2004; Wu, Zhu et al. 2007]
- Global algorithms based on *Hidden Markov Models* [Newson, Krumm 2009; Thiagarajan, Ravindranath et al. 2009] 5

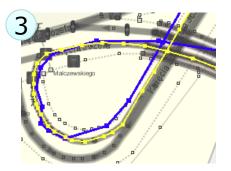


The system is organized into a **pipeline**:

- 1. Smoothing with Kalman filter (removal of outliers)
- 2. Interpolation (matching the map scale)
- 3. Interpretation (actually map-matching)







Hidden Markov Model

Hidden Markov Model: $\lambda = (Q, A, O, P_t, P_o, q_0)$

Q – set of states

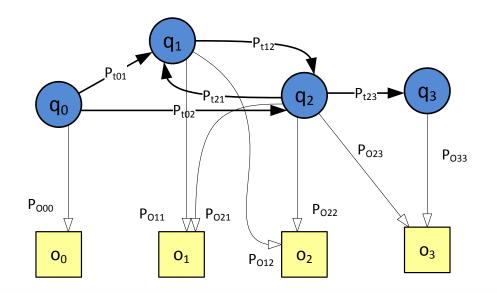
 $A \subset Q \times Q$ – set of arcs

0 - set of observations

 P_t : $A \rightarrow (0,1]$ – state transition probability

 $P_o: Q \times O \rightarrow [0,1]$ – emission probability

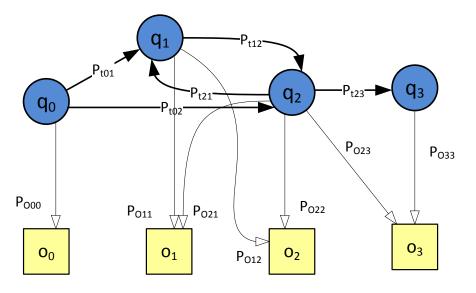
 q_0 - initial state



Hidden Markov Model – Decoding

Decoding problem:

- given a sequence of observations $o_{i1}, o_{i2}, ..., o_{in}$
- find the most probable sequence of hidden states $q_{i1}, q_{i2}, \dots, q_{in}$ Resolved with Viterbi algorithm



Idea of application to map-matching:

- observations: readings from a location sensor (GPS, WiFi)
- hidden states: road segments

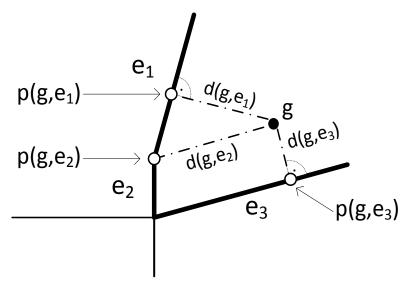
HMM model setup 1

Road network model

G = (V, E, I), where

- $V \in \mathbf{R} \times \mathbf{R}$ node (longitude, latitude)
- $E \subset V \times V$ edge (straight segment)
- $I \subset E \times E$ specify forbidden maneuvres at junctions

Projection of a point *g* **on a segment** $e = (v_b, v_e)$

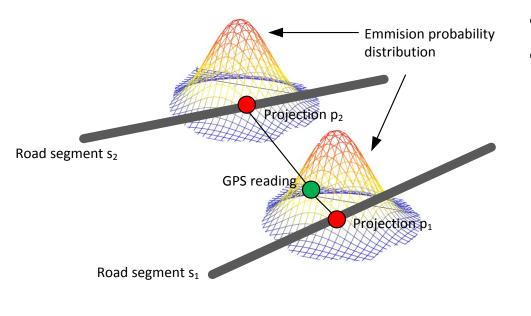


$$p(e,g) = \arg \min_{g'=v_b+t(v_e-v_b) \land t \in [0,1]} d(g,g')$$

d(g,g') – distance (haversine formula)

HMM model setup 2

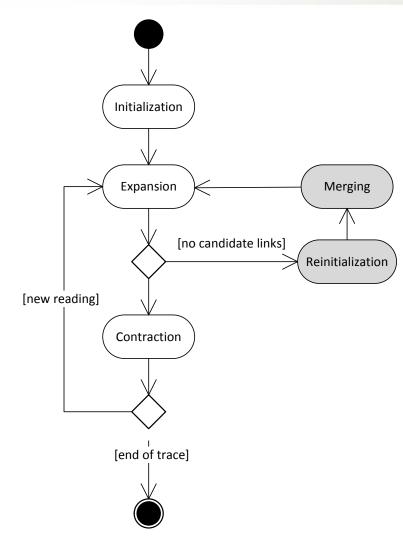
- HMM state q = (e, p, i) e- road segment, p projection point,
 i sequence number
- Transition probability $P(q_1, q_2)$ equal at junctions, low probability for forbidden meneuvres, dead recokonning on speed



- Observation o = (lon, lat, time)
- Normal distribution for the emmision probability:

$$P(x, y) = \frac{1}{D} e^{-k((x-x_p)^2 + (y-y_p)^2)}$$

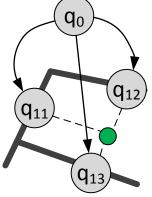
 (x_p, y_p) - projection point k - depends on a sensor $D = \iint_{-\infty}^{\infty} P(x, y) dx dy$ normalization



- Input: sequence of observations
 ω = (o_i: i = 1, n)
- Internal data: a sequence of HMMs $\Lambda = (\lambda_i : i = 1, n)$
- Output: sequence of HMM states (projection point on road segments)

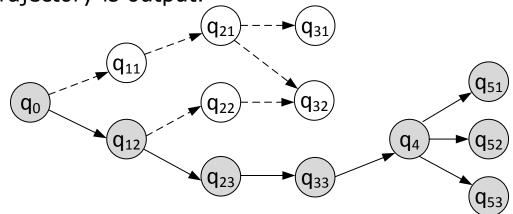
Map matching algorithm

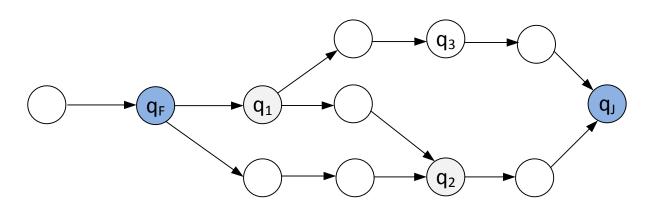
- **Initialization**: the first model λ_1 is built by linking an artificial state with projections of o_1 on road segments.
- **Epansion**: observation o_i is projected on road segments. Then, obtained new states are linked with the last states (segments) from λ_{i-1}



• Contraction:

- orphan nodes without successors are removed
- the HMM root is moved forward and a next part of the trajectory is output.

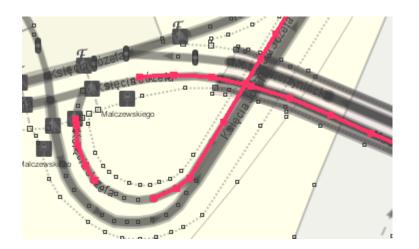




- A state q_J is a join, if it has at least two different predecessors.
- Presence of a join indicates that the vehicle positions were assigned to parallel roads that finally joined.
- If HMM contains a state (here q_F), from which all traces lead to q_J , the Viterbi algorithm is applied to the subgraph.
- States lying beyond the computed path are removed.

Handling special situations

- If no candidate segments are found in *i*-th iteration, expansion fails (reason: noise and/or map density).
- The algorithm performs reinitialization and creates new model λ_{i0}
- Depending on application, models λ_{i-1} and λ_{i0} can be:
 - merged (vehicle tracking)
 - left unconnected (traffic monitoring)



Two reinitializations for a corrupted trace: half-sampled and noised (20m)

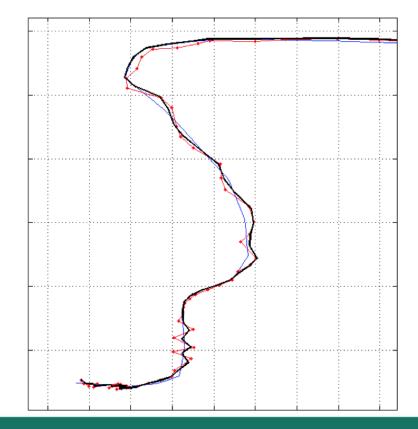
Experiments 1

Dataset

- Map of Kraków, data source: Open Street Map (OSM)
- 20 GPS traces registered with EasyTrials GPS software on iPhone 5 (148.6km, 4482 readings)

Kalman filter

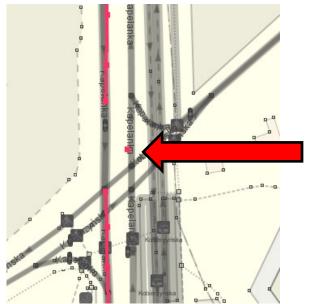
- Two distinct second order filters processing separately noise for longitude and latitude components
- State variables: position and velocity
- Initial parameters determined empirically with Matlab.

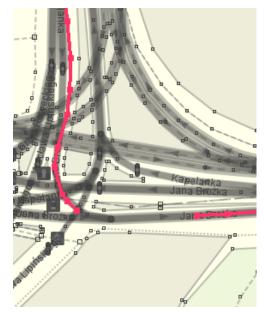


Experiments 2 (criterion)

Main criterion: number of reinitializations

- Unrecoverable errors occured in about 30% of the cases, in which the algorithm was forced to perform reinitialization.
- Reitialization usually takes more time than the normal algorithm processing step





Experiments 3 (accuracy)

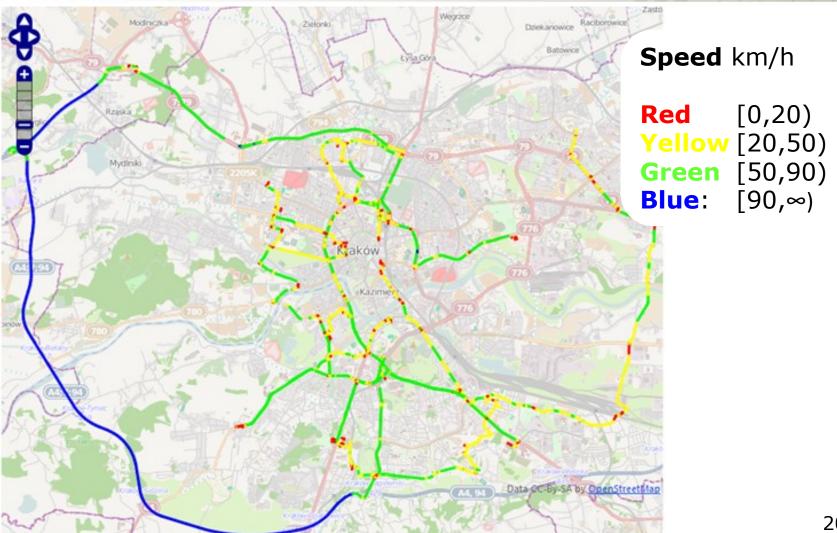
	RI - Number of reinitializations	RI/sample	Av. distance between RI
Normal	24	0.005	6.18 km
Noise (20m)	73	0.016	2.03 km
HS (Half- sampled)	23	0.005	6.44 km
HS+Noise	45	0.010	3.29 km

Experiments 4 (performance)

- Prototype system implemented in C#
- Capable of processing 20 simultaneous feeds with speed-up by 50

imulation		
	Time factor: 1.0	
Load track files	s Simulation time: 00:03:32	
001_AGHD13-DomX.csv 001_Bonarka-Kluczborska.csv	0001_AGHD13-DomX.csv	66/256
1001_CarrefourZakopianka-Dom.csv 1001_ChristoBotewa-Rydygier.csv	0001_Bonarka-Kluczborska.csv	93/248
001_Dom-AghD13.csv 001_Dom-ChristoBotewa.csv	0001_CarrefourZakopianka-Dom.csv	93/261
001_Dom-Rondogrunwaldzkie.csv 001_Dom-Ruczaj.csv	0001_Christo Botewa-Rydygier.csv	97/267
001_Dom-SohoOutlet.csv 001_Dom-Solvay.csv	0001_Dom-AghD13.csv	84/233
001_Dom-Solvay2.csv 001_GaleriaKrakowska-Kluczborska.csv	0001_Dom-ChristoBotewa.csv	74/209
001_Kluczborska-M1.csv 001_Kmiet-Rynek-Kmiet.csv	0001_Dom-Rondogrunwaldzkie.csv	82/108
001_Ruczaj-Dom.csv 001_Rynekpodg-RondoM.csv	0001_Dom-Ruczaj.csv	107/259
001_Solvay-Dom.csv 001_Solvay-Dom2.csv	0001_Dom-SohoOutlet.csv	97/216
001_Solvay-Dom3.csv 001_Tesco-Westerplatte.csv	0001_Dom-Solvay.csv	92/248
001_Westerplatte-Victorinox.csv	0001_Dom-Solvay2.csv	73/190
	0001_GaleriaKrakowska-Kluczborska.csv	76/118
	0001_Kluczborska-M1.csv	78/254
	0001_Kmiet-Rynek-Kmiet.csv	66/192
	0001_Ruczaj-Dom.csv	80/271
	0001_Rynekpodg-RondoM.csv	58/242
	0001_Solvay-Dom.csv	91/228
	0001_Solvay-Dom2.csv	99/298
	0001_Solvay-Dom3.csv	70/192
	0001_Tesco-Westerplatte.csv	91/283

Speed map



Conclusions

Map-matching algorithm

- Based on Hidden Markov Model
- In each iteration HMM is
 - expanded by adding new states (projections on road segments)
 - contracted to output a next part of a vehicle trajectory.
- Structure of HMM forms in most cases a tree [Wu, Zhu et al. 2007] but parallel roads are supported
- Viterbi algorithm used only, if parallel roads are encountered
- The algorithm is *incremental* (required for real-time services) 21

Thank you