International Conference
on Artificial Intelligence
and Soft Computing

AGH UNIVERSITY OF SCIENCE
A G H AND TECHNOLOGY

An incremental
map-matching algorithm
based on

Hidden Markov Model

Piotr Szwed and Kamil Pekala

AGH University of Science and Technology
Department of Applied Computer Science
e-mail: pszwed@agh.edu.pl

AGH Agenda

. Introduction

. Related works

. Processing steps

. Hidden Markov Model set-up
. Map matching algorithm
Experiments

. Conclusions

NO U, WNR

Introduction

Map-matching aims at establishing the
vehicle location on a road segment based on
positioning data.

e Sensors (GPS, WiFi, cellular radios,
odometers) return uncertain data.

e Current sensor reading and/or a number
of past data can be used

o

AGH

e Map-matching is used in Intelligent Transportation
Systems (ITS)

- Fleet management, vehicle tracking, navigation services
— Traffic monitoring, congestion detection

Motivation

e Algorithm that can be used for
— Tracking on-line individual vehicles
— Monitoring traffic by crowd-sourcing

e The algorithm should be
— incremental (calculate trajectory on arrival of new data)
— as opposed to global (the whole trace is map-matched)

tll

“]JJ Related works

AGH

Map matching algorithms

Geometrical (point to curve or segment to curve matching)
[White, Bernstein et al. 2000; Greenfeld 2002]

Topological: utilize information about connections between
road segments [Quddus, Ochieng et al. 2003].

Probabilistic: use information on circular or elliptic
confidence region associated with position reading [Ochieng,
Quddus 2009]

Advanced: Kalman filter, fuzzy rules, Particle filters (both
topological and probabilistic) [Fu, Li et al. 2004; Gustafsson,
Gunnarson et al., 2002]

Incremental algorithms using tree-like structure [Marchal,
Hackney et al. 2004; Wu, Zhu et al. 2007]

Global algorithms based on Hidden Markov Models [Newson,
Krumm 2009; Thiagarajan, Ravindranath et al. 2009] 5

W

AGH

Map-matched

GPS trace Smoothing Interoolation Interpretation w trajectory
(Kalman filter) P (Hidden Markov Model) J >

The system is organized into a pipeline:

1. Smoothing with Kalman filter (removal of
outliers)

2. Interpolation (matching the map scale)
3. Interpretation (actually map- matchlng)

“]JJ Hidden Markov Model

Hidden Markov Model: 1 = (Q,4,0,P,,P,,q,)

Q - set of states

Ac QxQ - set of arcs

0 - set of observations

P,: A - (0,1] - state transition probability
P,: Q X0 - [0,1] — emission probability

qo - initial state

@]]]IJJ Hidden Markov Model - Decoding

Decoding problem:

e given a sequence of observations o;4, 049, ..., 0;,,

o find the most probable sequence of hidden states q;1,q;2, -, Gin
Resolved with Viterbi algorithm

PtOl

(o)) O3

Idea of application to map-matching:
« observations: readings from a location sensor (GPS, WiFi)
« hidden states: road segments

M]JJ HMM model setup 1

AGH

Road network model

G = (V,E,I), where

e V E€RXR - node (longitude, latitude)

e EcVxV - edge (straight segment)

e | cEXE - specify forbidden maneuvres at junctions

Projection of a point g on a segment e = (v, v,)

€
p(e,g) = arg min d(g,9")

g'=vp+t(ve—vp)AtE[0,1]

d(g,g’) — distance (haversine formula)

M]JJ HMM model setup 2

AGH

e HMM state q = (e,p,i) e- road segment, p — projection point,
i — sequence number

e Transition probability P(q;,q,) — equal at junctions, low probability
for forbidden meneuvres, dead recokonning on speed

A0\ = mmision probabiity © Observation o = (lon,lat, time)

distribution e Normal distribution for the
emmision probability:

iy
geEseese

Road segment s,

1 2 2
P(x, y) = Ee_k((x_xp) +(y_yp))

TN

TALAN
.V N
IR

(xp,y,) - projection point
k — depends on a sensor

D= [[% PCx,y)dxdy -
normalization 11

Road segment s;

MWJJJ Map matching algorithm

AGH

Initialization)

e Input: segence of observations
Expansii1/< —{ Merging) w = (Oi: [= 1;n)
e Internal data: a segence of HMMs
[nocandidateIinks]\/me;‘nzmion A = (Al 1 = 1’ n)

e Qutput: sequence of HMM states
Contraction)

¥

[new reading]

(projection point on road segments)

o

>

I
[end of trace]

@<

12

MJJJ Map matching algorithm

AGH

o Initialization: the first model 1, is built by linking

an artificial state with projections of o, on road ‘

segments. @

e Epansion: observation o; is projected on road @ /
3 @

segments. Then, obtained new states are linked

with the last states (segments) from 1;_; @

e Contraction:
— orphan nodes without successors are removed

- the HMM root is moved forward and a next part of the
trajectory is output.

@!J! Handling joins

e A state g, is a join, if it has at least two different
predecessors.

e Presence of a join indicates that the vehicle positions were
assigned to parallel roads that finally joined.

e If HMM contains a state (here gr), from which all traces lead
to q;, the Viterbi algorithm is applied to the subgraph.

e States lying beyond the computed path are removed.

14

@J.JJ Handling special situations

e If no candidate segments are found in i-th iteration,
expansion fails (reason: noise and/or map density).

e The algorithm performs reinitialization and creates new
model A;,

e Depending on application, models 1,_; and 4;, can be:
— merged (vehicle tracking)
— left unconnected (traffic monitoring)

Two reinitializations for a
corrupted trace:
half-sampled and noised
(20m)

MJJJ Experiments 1

AGH

Dataset

« Map of Krakow, data source: Open Street Map (OSM)

« 20 GPS traces registered with EasyTrials GPS software on iPhone 5
(148.6km, 4482 readings)

Kalman filter

e Two distinct second order filters
processing separately noise for
longitude and latitude
components

e State variables: position and
velocity

e Initial parameters determined
empirically with Matlab.

MJJJ Experiments 2 (criterion)

AGH

Main criterion: number of reinitializations

e Unrecoverable errors occured in about 30% of the cases, in which
the algorithm was forced to perform reinitialization.

e Reitialization usually takes more time than the normal algorithm
processing step

(<

Interpretation of half-sampled path with artificial noise (20m): unrecoverable (left) and recoverable 17
(right)

M

“JJJ Experiments 3 (accuracy)

AGH
RI - Number of RI/sample Av. distance
reinitializations between RI
Normal 24 0.005 6.18 km
Noise 73 0.016 2.03 km
(20m)
HS (Half- 23 0.005 6.44 km
sampled)
HS+Noise 45 0.010 3.29 km

Experiments 4 (performance
s p (p)

e Prototype system implemented in C#

e Capable of processing 20 simultaneous feeds with
speed-up by 50

[b Sensor Smastor R
Simulation

Time factor: h.o =
Lo Simulation time: 00:03:32
0007 | Sk o3 0001_AGHD13-DomX csv ! 66/256
EE51_Eﬁ;’jfg;;’:,’:g"&”ka,'Ef‘g;-?'“ D001_Boriarka-Kluczborska.csv - = 93/248
0001 Do ChrtoBerewa.cav 0001 CanefourZakopiaric-Dom v - 93,261
ggg}:ggmigzgg‘;ggéllu\'aldzkle.csv 00071_Christo Botewa-Rydygier.csv - . 97/267
0001 Do Sotvar sty D001_Dom-AghD13 cov -_— 2 | o
D001 DT SO Y b v 0901_Dom CristoBotows co - 7209
» 1:,'?;:;'_’,3;:;1%1“‘,';?‘;5., D001_Dom-Rondogrunwaldzkie csv - oy | 82108
E..._‘I:E;:;Eggd‘j;;;l:dom.csv 0001_Dom-Ruczaj csv - 1074259
5551:22:':: Domeev 0001_Dom-SchaOutist csv - v 97218
5221:15'22::5 E')a‘oer;zi';ls;tte.csv 00071_Dom-Solvay csv - . 82/248
DO iestemplatieictonmox csv 0001_Dom-Solvay2.csv - - 73/130
0007_GaleriaKrakowska-Kluczborska csv [——y 76/118
0001 _Kluczborska-M1.csv | 78/254
D007 _Kmiet-Rynek-Kmiet .csv - . 66/192
0001_Ruczaj-Dom csv - 804271
0001 _Rynekpodg-RondoM.csv L2 | 58/242
D001 _Solvay-Dom csv - . 91/228
0001 _Sclvay-Dom2.csv - . 99/298
0001_Solvay-Dom3.csv - . 70192
0001_Tesco-Westerplatte csv - 91,283
0001 _Westerplatte-Victorinox.csv - . 88/188
19

W ...

AGH

|

Speed km/h
Red [0,20)
[20,50)
; [50,90)
5. Blue: [90,)

mmJJ Conclusions

AGH

Map-matching algorithm
e Based on Hidden Markov Model

e In each iteration HMM is
— expanded by adding new states (projections on road
segments)
— contracted to output a next part of a vehicle
trajectory.
e Structure of HMM forms in most cases a tree [Wu,
Zhu et al. 2007] but parallel roads are supported

e Viterbi algorithm used only, if parallel roads are

encountered
e The algorithm is incremental (required for real-time
services) 21

Thank you

