
Modeling and recognition of video events with
Fuzzy Semantic Petri Nets ?

Piotr Szwed

AGH University of Science and Technology
pszwed@agh.edu.pl

Abstract. This paper addresses the problem of modeling and auto-
mated recognition of complex behavior patterns in video sequences. We
introduce a new concept of Fuzzy Semantic Petri Nets (FSPN) and dis-
cuss their application to recognition of video events. FSPN are Petri nets
coupled with an underlying fuzzy ontology. The ontology stores asser-
tions (facts) concerning classification of objects and detected relations.
Fuzzy predicates querying the ontology content are used as guards of
transitions in FSPN. Tokens carry information on objects participating
in a scenario and are equipped with weights indicating likelihood of their
assignment to places. In turn, the places correspond to scenario steps.
The Petri net structure is obtained by translating a Linear Temporal
Logic formula specifying a scenario in a human-readable form. We de-
scribe a prototype detection system consisting of an FSPN interpreter,
the fuzzy ontology and a set of predicate evaluators. Initial tests yielding
promising results are reported.

Keywords: Petri nets, fuzzy ontology, event recognition, temporal logic

1 Introduction

Automatic recognition of complex behavior patterns in analyzed video sequences
is a challenging area in computer vision. Such patterns, commonly referred as
scenarios or events, can be perceived as combinations of simpler events describ-
ing interactions between objects that are either detected and tracked, or prede-
fined as components of a scene configuration. Practical implementations of event
recognition systems face two problems [13]. The first is related to methods used
for extraction of features, which are further used to recognize and discriminate
events. The methods are often delivering uncertain or noisy data. The second
problem is an approach to scenario modeling. Definitions of scenarios, to be
meaningful and manageable, should preferably be decoupled from a software
implementation and use semantic description of objects and their relations. In

? This is the draft version of the paper presented at the KICSS 2013, 8th Inter-
national Conference on Knowledge, Information and Creativity Support
Systems, November 7–9, 2013 Kraków, Poland.

particular, such semantic information should be communicated to system opera-
tors in case of intelligent video surveillance systems or used as a video metadata
when applied in automated video indexing engines.

In this paper we introduce a new concept of Fuzzy Semantic Petri Nets
(FSPN) and discuss their application to an automated analysis of video surveil-
lance scenarios. FSPN are Petri nets coupled with an underlying fuzzy ontology.
The ontology, apart from defining a terminology, i.e. names of classes and rela-
tions, stores assertions (facts) concerning classification of objects and detected
relations between them. These assertions can be queried with unary or binary
predicates returning fuzzy truth values from [0, 1]. Predicates are used in guards
of transitions in FSPN controlling in that way flows of tokens. Tokens carry
the information on objects participating in a scenario and are equipped with
fuzzy weights indicating likelihood of their assignment to places. In turn, places
correspond to scenario steps.

The conceptual layout of a proposed video surveillance system is depicted in
Fig. 1. We focus on components marked in gray: Fuzzy Ontology constituting an
intermediate abstraction layer between description of tracked objects, Scenario
Specification expressed in Linear Temporal Logic (LTL) and Fuzzy Semantic
Petri Nets, which are obtained by translating LTL formulas.

The proposed approach stems from an observation that in the domain of for-
mal software verification LTL has been successfully applied to specify and check
temporal requirements pertaining to behavior of concurrent programs. Hence,
an idea of applying LTL to the detection of video events occurrences. However,
in opposition to models of programs, whose behavior can be observed with the
100% accuracy, results of video content analysis are inherently uncertain, as they
are calculated in several steps, including background subtraction, object recog-
nition, classification and tracking. Each of them may produce small cumulating
errors. Moreover, semantic scenario specifications may introduce vagueness, by
referring to such terms as near, walking, running, which can be differently un-
derstood and defined. Fuzziness is the proposed mean to manage uncertainty
and vagueness.

Object Detection & Tracking

Fuzzy Ontology

Fuzzy Semantic Petri Nets

Visual Output

Scene
configuration

Scenario
Specification (LTL)

Input Video Sequence

Fig. 1: Conceptual model of a system for semantic video events analysis

The paper is organized as follows: the next Section 2 reports known ap-
proaches to the specification and analysis of events. Section 3 discusses appli-
cation of Linear Temporal Logic in this field. It is followed by Section 4, which
describes the fuzzy ontology. FSPN are defined in Section 5. A system imple-
menting the proposed approach is presented in Section 6 and finally Section 7
gives concluding remarks.

2 Related works

Recognition of video events has been intensively researched over last fifteen years.
A large number of methods is reported in recent surveys: [13] and [2]. Systems for
video recognition usually have a layered architecture, e.g. [8, 17], in which lower
level layers provide an abstraction of meaningful aspects of video sequences,
whereas higher level layers are related to formalisms used for event modeling
and algorithms that detect events or scenarios based on formal specifications.
The greatest diversity can be observed in approaches to event modeling .

Probabilistic state-based methods use models comprised of states and tran-
sitions, in which transitions are attributed with probability factors learned from
annotated video. During the analysis of an input video sequence a likelihood of
a situation is computed. This group include methods based on neural networks
[5], Hidden Markov Models, Dynamic Bayesian Networks [1] and stochastic Petri
nets [14].

In grammar based methods complex activities are represented by production
rules that generate strings of atomic actions. Hence, complex events can be
recognized by language parsing techniques [11]. In the review [2] a limitation
of these methods as regards concurrent activities was indicated. The criticism
seems to be founded in a case, where sequences of single actions are analyzed.
However, in a more general setting, e.g. this provided by the Kripke structure
[12], each string element is a set of low level events occurring parallelly and, in
consequence, the concurrent events can be tracked (see Section 3).

Description based approaches specify events and scenarios using high level
languages, either textual [19], or graphical as Situation Graph Trees [18, 17] and
Petri nets [10, 4, 14]. The methods falling into this category are considered se-
mantic, as specifications are prepared by experts, who give meaningful names
to events, engaged objects, actions and conditions. Descriptions are often hier-
archical: complex events can be expressed as graphs of subevents. Models also
may include constraints and knowledge about scene objects, e.g. in [17] they
are expressed as formulas of a Fuzzy Metric-Temporal Horn Logic. In some ap-
proaches events and their ingredients: types of participating objects and relations
are defined as ontologies [7, 3].

Petri Nets (PNs) are applied in the field of event detection in two modes [13].
In the first mode of object PNs tokens represent objects, places object states and
transitions events of interest. Such approach was applied to the surveillance of
traffic [10] and people [6]. In the second mode of plan PNs places correspond
to subevents building up a plan. A presence of a token in a place indicates that

a particular event assigned to the place is occurring. The latter approach was
applied in [4] to people surveillance.

3 Scenario specification with temporal logic

Temporal logic [16] is a symbolic language allowing to express temporal (unquan-
tified) relationships between events or conditions. Formulas in temporal logic are
constructed from propositions linked by classical logic operators and temporal
operators. For Linear Temporal Logic (LTL), most often used operators are: �q
(the formula q is always true starting from a certain moment in time) and ♦p
(the formula q will eventually became true in the future).

To give a simple example, the temporal formula a⇒ ♦b⇒ �c specifies, that
at the beginning a is satisfied, then b happens, and finally c becomes always true.

Semantics of LTL is defined with a model called Kripke structure [12], which
can be defined formally as a tuple K = (Props, S, T, s0, L), where Props is a
set of atomic propositions, S is a set of states, T ⊆ S × S is a flow relation,
s0 is an initial state and L : S → 2Props is a function, that assigns sets of true
propositions to states. For LTL the flow relation T together with the initial state
s0 defines a linear sequence of states (worlds): s0, s1, s2, . . . , sn,

In case of a formal verification conducted by model checking, the states rep-
resent snapshots of program memory in consecutive time moments. For the in-
tended application of LTL to specify surveillance scenarios, the sequence of states
corresponds to a video sequence or, more precisely, to the sets of objects rec-
ognized in particular frames, their properties and relations. Hence, in formal
specifications of events we replace propositions by unary and binary predicates
in Fuzzy Description Logics [15] querying those relations.

We will discuss the scenario specification on an example of graffiti painting
event shown in Fig. 2. The event develops in the following steps (subevents): (i)
init : a person appears on a scene, (ii) move: the person moves towards the wall,
(iii) front : the person is in front of the wall, (iv) appear : a graffiti appears on
the wall, (v) remain: the graffiti remains on the wall.

init move front appear remain

Fig. 2: Graffiti event steps

The scenario of the event can be formalized as LTL formula comprised of
propositions corresponding to subevents (1). It should be noted that to some

extend these lower-level events can overlap in time, e.g. when a graffiti appears
the person is probably still in front of the wall.

init ⇒ ♦move ⇒ ♦front ⇒ ♦appear ⇒ �remain (1)

In the next stage, the initial scenario specification is refined by replacing
propositions with conjunctions of unary and binary predicates. During the recog-
nition, their arguments are bound with detected objects or elements of the scene
configuration. The target scenario specification for the discussed event is given
by the formula (2).

Person(p), atBorder(p),Wall(w)
⇒ ♦(movesTowards(p, w)){3,∞}
⇒ ♦(inFrontOf(p, w)){10,∞}
⇒ ♦(newObject(g), inside(g, w), notInsideSomeWindow(g)){3,∞}
⇒ �(inside(g, w), isStill(g), notInsideSomeWindow(g)){3,∞}

(2)

The scenario references three objects: p of type Person, w of type Wall and
g, an object that is introduced i 4 th step. It is required that g appears inside
the wall w, but not inside a window. The specification relies on classification
of objects: p is a Person, their relations, e.g.: graffiti g is inside a wall w, and
a scene configuration that should provide information on shapes of walls and
windows. The later for the discussed example is given in Fig. 3. Integer numbers
in curly brackets define time intervals [tl, th]. A subevent should last at least tl
time units to be accepted as a scenario step occurrence. Then it can be reported,
but also enable the transition to a next subevent. Compound events older then
th are ignored.

Fig. 3: Scene configuration: the wall and the windows boundaries are marked

4 Fuzzy ontology

The fuzzy ontology constitute an intermediate layer between information on
tracked objects and fuzzy Petri nets. Whereas objects within the tracking model
are described with numeric values, like size, distance or speed, the ontology
provide a kind of linguistic abstractions, e.g. a person, an object is inside other
object or a person is in front of other object.

Ontologies are often described as unions of two layers: terminological: TBox,
which comprises concepts and relation types (including taxonomic relations be-
tween concepts) and assertional: ABox gathering facts about individuals and
their relations. For fuzzy ontologies and corresponding Fuzzy Description Logics
these relations are extended by adding weights being real numbers from [0, 1].
They can be used to express uncertainty, e.g. with respect to class membership
or relation occurrence. The formalization of fuzzy ontology language including
fuzzy classes, roles (object properties) and datatypes can be found in [15].

In the presented solution the TBox is limited to fuzzy concepts, like Person,
Wall, taxonomic relations and object properties: inside, notInsideSomeWindow.
The ABox is comprised of individuals including tracked objects and predefined
scene objects, fuzzy class membership relations that are represented by unary
predicates returning values from [0, 1], e.g. Person(x) and asserted fuzzy rela-
tions between individuals: inFrontOf (x, y). It should be noted that a unary pred-
icate describing property of an object, e.g. isStill(x) can be considered equivalent
to the class membership axiom: x ∈ isStill .

The ontology supports queries for objects present in ABox and their relations.
Assertions on relations in ABox are made with evaluators, functions (or more
precisely function object in an object-oriented implementation) that examine
object model and calculate fuzzy weights of predicates. In opposition to approach
proposed in [15] evaluators are external entities beyond the ontology. This allows
greater flexibility in their construction. In many cases they have a form of fuzzy
membership functions described by line segments, similar to these discussed in
[18], but they can be also based on other features, as Jaccard metrics applied to
object areas.

The predicate newObject(g) references temporal information stored in the
underlying frame sequence model. Its evaluator shown in Fig. 4a. uses a mem-
bership function that takes as the argument the difference between current frame
number and the frame, in which the object g appeared.

The predicate inside(x, s) (Fig. 4b.) divides the object x into a grid of cells
and calculates how many of them overlaps with a scene object s. It is used
internally by the predicate notInsideSomeWindow(x), which denotes a class of
objects satisfying the axiom ¬∃w ·Window(w)u inside(x,w). The condition was
introduced to prevent from classifying as objects left on the wall visual changes
occurring inside the windows, e.g. reflections on the glass, window opening, peo-
ple moving behind. In this case the predicate value is calculated by the imple-
mented reasoner according to the formula: 1−max{w ∈Window : inside(x,w).
For the example in the Fig. 4b. the evaluator notInsideSomeWindow(g) yields
the value 22/25 = 0.88.

5 10 15 20 30

1

weight

frameDiff

newObject

0

a. b.

Fig. 4: Examples of evaluators: (a) newObject(x) (b) inside(x,s)

5 Fuzzy Semantic Petri Nets

Classical method of verification, whether a sequence of worlds satisfy an LTL
formula, consists in converting it into more manageable representation, namely
a Büchi automaton [9]. Such automaton accepts infinite sequence of symbols,
which can be considered as subsets of logical propositions having true value in
the subsequent worlds forming a semantic model.

In the presented approach we use Fuzzy Semantic Petri Nets as a tool for
scenario analysis. The nets have a typical structure of Büchi automata, however,
they can process multiple tokens. This feature is particularly important, because
it allows to reason about overlapping scenario occurrences, in which participate
various combinations of objects.

To manage uncertainty of an input data and vagueness of specifications, fuzzy
predicates returning values from [0, 1] are used as transition guards. These values
are then combined with the weights of tokens flowing through a net. Tokens, in
turn, represent scenario occurrences. This enables monitoring the scenario steps
and reasoning about their likelihood. Moreover, sequences of accepted states
strictly defined with LTL formulas can be to some extent interleaved with states
not satisfying the specified conditions. In such case, the weight of a token ex-
pressing the scenario likelihood gradually decrease and, after passing a certain
threshold, the token can be removed.

Formal definition of FSPN comprises three concepts: Petri net structure, a
binding and fuzzy marking. We start with some auxiliary definitions. Unary
predicate is defined as a pair (n, vs) where, n is a predicate name and vs is a
variable name referring to a subject of the predicate. Binary predicate is a triple
(n, vs, vo); the variable vo is a predicate object. Set of all unary and binary pred-
icates is denoted by Preds. By V ars(p) we denote a set of variables appearing
in the predicate p. Analogously, for a set C ⊆ Preds we define V ars(C), as⋃

p∈C V ars(p).

Definition 1 (Petri net structure).
Petri net PN is a tuple (P, T, F, Preds,G, L,H), where P is a set of places,
T is a set of transitions, P and T are satisfying P ∩ T = ∅ and P ∪ T 6= ∅.
F ⊆ P × T ∪ T × P is a set of arcs (flow relation), and Preds is a set of unary

and binary predicates. G : T → 2Preds is a guard function that assigns sets of
predicates to transitions. L : P → N∪{0} is a function assigning lower bound to
a place; this value defines how long a token should stay in a place to be allowed
to leave it. H : P → N ∪ {ω} assigns upper bound to a place. The symbol ω
represents infinity.

The set of input places for a transition t ∈ T is denoted as •t = {p ∈
P : (p, t) ∈ F} and the set of output places as t• = {p ∈ P : (t, p) ∈ F}

Definition 2 (Binding). Let V be set of variables and I a set of objects. Bind-
ing b is defined as a partial function from V to I. A variable v is bound for a
binding b, iff v ∈ dom b. A set of all bindings is denoted by B.

Let p ∈ Preds a predicate and b ∈ B be a binding. Predicate value for
a binding val : Preds × B → [0, 1] is a function that assigns value from the
interval [0, 1] to a pair (p, b). If V ars(p) \ dom b 6= ∅, then val(p, b) = 0.

Definition 3 (Fuzzy marking). A set of fuzzy tokens FT is defined as FT =
B×R× (N∪{0})× (N∪{0}). Components of a token tuple (b, w, c, τ) ∈ FT are
the following: b ∈ B denotes a binding, w ∈ [0, 1] is a fuzzy weight, c ≥ 0 is a
counter storing information, how long the token rests in a place and τ is a time
stamp. For a Petri net PN = (P, T, F, Preds,G) fuzzy marking FM : P → 2FT

is defined as a function that assigns sets of fuzzy tokens to places of the net.

The definition of FSPN is too general with respect to the structure that is
required to represent a scenario expressed with an LTL formula. In fact, we use
state machines, i.e. Petri nets satisfying | • t| ≤ 1 and |t • | = 1 for each t ∈ T .

Fig. 5 gives an example of a net representing the formula (2). Logical con-
ditions appearing in subformulas become guards for two transitions: the first
leading to a place and a self-loop (a transition, for which •t = t• holds). The
net in Fig. 5 represents a particular simple case. Translation of more complex
formulas, e.g. containing disjunctions, may result in multiple transitions linking
places or forks.

Person(p),
atBorder(p),

Wall(w)

init

Person(p),
atBorder(p),

Wall(w)

mov
{3,∞}

front
{10,∞}

appear
{3,∞}

movesTowards(p,w)

movesTowards(p,w)

inFrontOf(p,w)

inFrontOf(p,w)

newObject(g),
inside(g,w),

notInsideSomeWindow(g)

newObject(g),
inside(g,w),

notInsideSomeWindow(g)

remain
{10,∞}

isStill(g),
inside(g,w),

notInsideSomeWindow(g)

isStill(g),
inside(g,w),

notInsideSomeWindow(g)

Fig. 5: Fuzzy Semantic Petri Net representing the graffiti painting event

The behavior of FSPNs defined in previous section differs from the standard
semantics for Petri nets, as they are not intended analyze such issues as concur-
rency or conflicts, but to perform a kind of fuzzy reasoning and classification of
sequences of events. A single step of FSPN execution is comprised of three basic
stages:

1. Firing enabled non-initial transitions and generating new tokens. During this
stage for each pair consisting of a transition t an a token ft in its input place,
the transition guard is evaluated, then aggregated with the token weight and
assigned to a new token ft ′ introduced to the transition’s output place. The
new token obtains a timestamp equal to the iteration number. There are,
however, some variations to the above procedure: new tokens must have
weight above a certain threshold (we used 0.25 in experiments); in the case,
where the transition guard contains a free variable, it must be bound to an
object in the ontology.

2. Removing old tokens. It is assumed, that creation of a new token ft ′ from ft
consumes a portion of its weight. If this value falls below a certain threshold,
the token ft is removed. Also in this step, multiple tokens sharing the same
binding and assigned to the same place are aggregated.

3. Firing initial transitions. Finally, new tokens are introduced into the net,
by firing initial transitions (i.e. satisfying •t = ∅). For each initial transition
variables appearing in its guard are bound to objects, then the guard value
is calculated and used as a weight of new tokens. A threshold (0.2) prevent-
ing from creation of tokens with a small weight is used, as well as there is
implemented a mechanism, which does not allow introducing tokens with a
binding already present in the net.

The semantics of Petri nets proposed in this paper is close to referenced in
Section 2 plan PNs, as tokens represent combination of objects participating in
scenarios. There are, however, some salient differences. 1) In probabilistic PNs
discussed in [4] in case of a conflict (e.g. two enabled transitions sharing input
place with a single token) only one transition with a higher learned probability
would fire, whereas in our model they both can be executed and produce two
tokens.This allows to reason concurrently about scenario alternatives. Moreover,
a weak initial likelihood of a scenario branch can be amplified by future events.
2) In our approach all enabled transitions are executed in a single parallel step.
3) Petri nets modeling scenarios are actually state machines. Their structure is
sufficient to construct the Büchi automaton [9] representing an LTL formula.

6 Event detection system and initial experiments

In this section we describe a prototype system allowing to test defined events.
The system takes at input an annotated video sequence defining tracking infor-
mation. For each frame a list of segments and identified objects is provided. The
data does not represent ground truth, but real output from experimental track-
ing algorithms developed within a project SIMPOZ 1 aiming at implementation
of an automated video surveillance system.

The architecture of the system is presented in Fig. 6. Main components are:
the Fuzzy ontology, a set of Evaluators, i.e. functions calculating fuzzy values
of predicates from low-level features of tracked objects, and the Fuzzy Semantic
1 http://www.simpoz.pl

Petri Net. The system is also equipped with a GUI providing visual output shown
in Fig. 7.

Person(x)

SmallObject(x)

isClose(x,y)

approaches(x,y)
Scene sequence &

Tracked objects

...

Predicate Evaluators

Fuzzy ontology
Fuzzy Semantic

Petri Net

�

�

� individuals

�

�

�

Step

Output

Fig. 6: Architecture of the scenario recognition system

Fig. 7: Visual scenario tester

The system is entirely written in Java. Its performance is quite good: for
three concurrently analyzed scenarios and a scene with a few tracked objects, a
single reasoning iteration, during which the ontology is updated, evaluators are
called and multiple transitions in Petri nets are fired, is executed within 0.1ms
to 1.6ms (average 0.45 ms).

To facilitate the evaluation of a FSPN at the design time, the framework
collects analytic information related to weights of tokens and their flows. This
information helps to evaluate the recognition capabilities of defined FSPN and
implemented evaluators. We will discuss this an example given by the formula
(2) and corresponding Petri net in Fig. 5.

Fig. 8 presents in form of a Gannt chart weights of tokens assigned to net
places at consecutive frames. For the purpose of presentation their values were
shifted by adding 2, 4, 6 and 8 for tokens in move, front, appear and remain.
Hence, each elevation above a baseline represents a subevent occurrence. The
expected and successfully recognized event occurrence is accomplished within

the frames 286–316. It can be observed that compound subevents partly over-
lap, moreover, multiple transitions (marked with gray arrows) occur. Subevents
init, front, appear and remain are stable, both as regards duration and ampli-
tude. The presented time series exhibit interesting property related to reusing of
ontology and predicate evaluators. The movesTowards evaluator that was used
in specification of move event (see formula 2) was actually prepared for other
experiment, during which people violating an artificial zone on a floor were de-
tected (c.f. Fig. 7). As it can be noticed, the evaluator is inappropriate in the case
of interactions with vertical objects, because it can not produce stable events.
In the further development, it was replaced by a new corrected implementation:
movesTowardsVerticalObject.

0

1

2

3

4

5

6

7

8

9

10

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

2
1
6

2
2
1

2
2
6

2
3
1

2
3
6

2
4
1

2
4
6

2
5
1

2
5
6

2
6
1

2
6
6

2
7
1

2
7
6

2
8
1

2
8
6

2
9
1

2
9
6

3
0
1

3
0
6

3
1
1

3
1
6

init (a person is a border)

move (a person is moving towards the wall)

front (a person is in front of the wall)

appear (a new object is detected on the wall)

remain (the object is still and remains on the wall)

... ...

... ...

Fig. 8: Weights of tokens assigned to places at consecutive frames

Analogous experiments were conducted for several event recognition tasks
including abandoned luggage and detecting violation of a surveillance zone. Tests
for the abandoned luggage and graffiti painting events yielded 100% correct
results (true positives). For a zone violation the recognition ratio was about
76%. Detailed analysis revealed that in this case the lower performance was
caused by tracking problems (lost of identity in case of occlusion and in some
cases invalid segmentation).

7 Conclusions

In this paper we address the problem of modeling and recognition of video events.
To summarize our contribution: firstly, we propose to apply a temporal logic
formalism to specify event scenarios and further to translate them to Petri net
structures; secondly, we introduce Fuzzy Semantic Petri Nets; finally, we de-
scribe a proof of concept prototype system that interprets a data resulting from
a tracking algorithm, represents it as a content of a fuzzy ontology and detects
event occurrences with a FSPN interpreter. An advantage of FSPN is their ca-

pability of detecting concurrently occurring events, in which participate various
combinations of objects, analyze scenario alternatives and their likelihoods.

References

1. Aggarwal, J., Park, S.: Human motion: modeling and recognition of actions and in-
teractions. In: 3D Data Processing, Visualization and Transmission, 2004. 3DPVT
2004. Proceedings. 2nd International Symposium on. pp. 640–647 (Sept 2004)

2. Aggarwal, J., Ryoo, M.S.: Human activity analysis: A review. ACM Computing
Surveys (CSUR) 43(3), 16 (2011)

3. Akdemir, U., Turaga, P., Chellappa, R.: An ontology based approach for activity
recognition from video. In: Proceedings of the 16th ACM international conference
on Multimedia. pp. 709–712. ACM (2008)

4. Albanese, M., Chellappa, R., Moscato, V., Picariello, A., Subrahmanian, V.S.,
Turaga, P., Udrea, O.: A constrained probabilistic Petri net framework for human
activity detection in video. Multimedia, IEEE Transactions on 10(8), 1429–1443
(Dec 2008)

5. Barnard, M., Odobez, J.M., Bengio, S.: Multi-modal audio-visual event recognition
for football analysis. In: Neural Networks for Signal Processing, 2003. NNSP’03.
2003 IEEE 13th Workshop on. pp. 469–478 (Sept 2003)

6. Borzin, A., Rivlin, E., Rudzsky, M.: Surveillance event interpretation using gener-
alized stochastic Petri nets. In: Image Analysis for Multimedia Interactive Services,
2007. WIAMIS’07. Eighth International Workshop on. pp. 4–4. IEEE (2007)

7. Bremond, F., Maillot, N., Thonnat, M., Vu, V.T., et al.: Ontologies for video events.
Research report number 51895. Tech. rep., INRIA Sophia-Antipolis (2004)

8. Brémond, F., Thonnat, M., Zúniga, M.: Video-understanding framework for auto-
matic behavior recognition. Behavior Research Methods 38(3), 416–426 (2006)

9. Büchi, J.R.: On a Decision Method in Restricted Second-Order Arithmetic. In:
International Congress on Logic, Methodology, and Philosophy of Science. pp. 1–
11. Stanford University Press (1962)

10. Ghanem, N., DeMenthon, D., Doermann, D., Davis, L.: Representation and recog-
nition of events in surveillance video using Petri nets. In: Computer Vision and
Pattern Recognition Workshop, 2004. CVPRW ’04. Conference on. pp. 112–112
(June 2004)

11. Joo, S.W., Chellappa, R.: Attribute grammar-based event recognition and anomaly
detection. In: Computer Vision and Pattern Recognition Workshop, 2006. CVPRW
’06. Conference on. pp. 107–107 (June 2006)

12. Kripke, S.: Semantical considerations on modal logic. Acta philosophica fennica
16(1963), 83–94 (1963)

13. Lavee, G., Rivlin, E., Rudzsky, M.: Understanding video events: A survey of meth-
ods for automatic interpretation of semantic occurrences in video. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 39(5),
489–504 (Sept 2009)

14. Lavee, G., Rudzsky, M., Rivlin, E., Borzin, A.: Video event modeling and recogni-
tion in generalized stochastic Petri nets. Circuits and Systems for Video Technol-
ogy, IEEE Transactions on 20(1), 102–118 (Jan 2010)

15. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the Semantic Web. Web Semantics Science Services and Agents on the
World Wide Web 6(4), 291–308 (2008)

16. Manna, Z., Pnueli, A.: Temporal logic. In: The Temporal Logic of Reactive and
Concurrent Systems, pp. 179–273. Springer New York (1992)

17. Munch, D., Jsselmuiden, J., Arens, M., Stiefelhagen, R.: High-level situation recog-
nition using fuzzy metric temporal logic, case studies in surveillance and smart
environments. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on. pp. 882–889 (Nov 2011)

18. Nagel, H.H.: Steps toward a cognitive vision system. AI Magazine 25(2), 31 (2004)
19. Vu, V.T., Bremond, F., Thonnat, M.: Automatic video interpretation: A novel

algorithm for temporal scenario recognition. In: International Joint Conference on
Artificial Intelligence. vol. 18, pp. 1295–1302. Lawrence Erlbaum Associates Ltd
(2003)

