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Abstract—In this paper we address two problems. The first
pertains to implementation of medical guidelines in an e-health
system supporting self-management of chronic diseases. The
system allows patients to enter observed symptoms and measured
parameters, then makes assessment of disease state and informs
about necessary actions. We propose to formalize guidelines
as sets of fuzzy rules. Fuzziness is introduced to cope with
uncertainty resulting from self-observations bias, low quality
of sensors and limited patients skills. The second problem is
more general. It concerns the reuse of knowledge gathered in
ontologies and an application of Semantic Web technologies to
perform fuzzy inference. We show that, despite the fact that
commonly used ontology languages and supporting tools are
not intended to handle vagueness and uncertainty, they can be
successfully integrated to represent and execute a set of fuzzy
rules. The proposed method consists in refactoring a domain
ontology, then introducing additional relations expressing fuzzy
properties, encoding Mamdani fuzzy rules in SWRL language
and executing them with use of Pellet OWL reasoner. We describe
a fuzzy reasoning engine applying this approach and discuss
translation of fuzzy rules to SWRL constructs taking as example
a complete set of rules formalizing a medical guideline for asthma
control assessment.

Index Terms—ontology, fuzzy reasoning, medical guidelines,
e-health systems

I. INTRODUCTION

In this paper we describe an implementation of a fuzzy
reasoning engine based on tools and technologies related to on-
tologies and the Semantic Web. The presented approach con-
sists in refactoring a domain ontology, introducing additional
relations expressing fuzzy properties, encoding Mamdani rules
in SWRL language and preforming crisp reasoning with use of
Pellet OWL reasoner. Fuzzification and aggregation operations
indispensable in a complete fuzzy framework are implemented
in Java utilizing Jena library for OWL manipulation.

The solution stems from a practical problem of building a
component responsible for making assessments and medical
decisions in an e-health system supporting chronic care. The
main goal of the SWOP system (SWOP is an acronym of the
Polish name System Wspomagania Opieki Przewlekłej ) is to
help patients in self-management of chronic disease through
monitoring of symptoms, self-assessment and informing about
necessary actions, when symptoms levels indicate a problem.

This work is supported by the National Centre for Research and Develop-
ment (NCBiR) under Grant No. NR13-0093-10.

Piotr Szwed is with AGH University of Science and Technology, Mick-
iewicza Av. 30, 30-059 Kraków, Poland pszwed@agh.edu.pl

Nowadays, implementation of decision support in health
care systems is based on guidelines developed in line with
Evidence-Based Medicine (EBM) paradigm. A medical guide-
line usually gathers knowledge about a single disease and
take form of narrative recommendations formulated on the
basis of available evidence resulting from clinical trials and
observations.

In the last decade many ongoing research projects aiming
at formalization of guidelines were initiated. They resulted in
proposals of languages for guidelines specification (Formal
Guideline Representations – FGRs) that can be processed
and validated by software tools. Moreover, in many cases
such formal representations were transformed into executable
languages that can be interpreted by a computer (Computer
Interpretable Guideline – CIG).

We discuss the problem of integrating various Semantic Web
tools to perform fuzzy reasoning on an example of manage-
ment of bronchial asthma, as customization of the developed
e-health system to support this disease was selected as one
of proof-of-concepts. Presented here fuzzy rules formalize
narrative guidelines related to assessment of asthma control,
and in that regard can be considered as an executable FGR.

The paper is organized as follows: the next Section II gives
motivation for implementing medical guidelines in form of
fuzzy rules and discusses works aiming at introduction of
fuzziness into ontologies and Description Logics. It is followed
by a short introduction to Mamdani inference framework.
Section IV gives brief description of SWOP e-health system.
A rule based representation of a guideline related to asthma
control assessment is described in Section V. Subsequent Sec-
tion VI discusses main contributions of the work: refactoring
of domain model to incorporate fuzziness, architecture of the
solution and SWRL based implementation of fuzzy rules.
Conclusions and observations are given in Section VII.

II. DISCUSSION AND RELATED WORKS

Various competing Formal Guidelines Represenation (FGR)
languages were developed over last ten years. Apart from the
oldest, ArdenSyntax [11], which is rule based, almost every of
them, e.g. GLIF [4], SAGE [24], PROforma [22], Asbru [19]
and EON [23] attempts to express guidelines in a process like
notation. Basic elements of computer interpretable guidelines
were summarized in [17].
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Interestingly, the majority of FGRs attempt to include into
guideline representations medical terminology, in opposition
to process notations, e.g. BPMN, that are agnostic to domain
descriptions.

There are several factors that limits application of process
oriented FGRs for telemonitoring purposes (due to limited
capacity we list the most important results of conducted
analysis):
• FGRs were developed keeping in mind that primary

human interaction will undergo between medical profes-
sionals and an IT system, whereas in e-health a patient
plays the central role.

• It is difficult or even undesirable to orchestrate actions
in the system by a centralized process, as the nature of
interactions is event-driven.

• The system should cope with data deviations introduced
by patients in subjective self-observations, sensors of
lower quality than used in clinical practice and limited
patients skills. This can be achieved by externalization
and adaptation of guidelines parameters.

• Several constructs appearing in FGRs are superfluous in
reference to the system goals and too costly to implement.

The listed above drivers led us to the decision to represent
executable guidelines within the SWOP system as a set of
fuzzy rules. Such approach satisfies all requirements elicited
during the analysis: it is much simpler then process-oriented
FGRs, allows adaptation at the level of fuzzy membership
functions and is well aligned with the nature of guidelines,
which recommend decisions and make assessments based
mainly on statistical trials.

There are a few publications on how guidelines were
represented in telemonitoring systems. Usually they employ
rules [8] or decision trees [16]. Fuzzy based approach seems
to be rare in this particular field, although there is a large
literature on application of various forms of fuzzy reasoning
as a support for diagnosis and making decisions related to
therapy plans, e.g. [2], [13], [20]. Such large interest is due to
the nature of the medical knowledge collected in guidelines
(based on statistically interpreted trials) and the language used
to express it (see discussion on decidability and executability
in [13]).

In the last decade many researches were attracted by an idea
of introducing vagueness and uncertainty into ontologies and
Description Logics (DLs), e.g. [6], [14]. Their works aimed
at building strong theoretical foundations for fuzzy reasoning
by defining both syntax and semantics of Fuzzy Description
Logics. This resulted in extending crisp ingredients present
in ontology languages by defining fuzzy classes, fuzzy roles
(object properties), fuzzy datatype properties and proposals of
appropriate OWL extensions.

Advances in theory were followed by emerging software
tools allowing to perform reasoning in Fuzzy Description
Logics: FiRE reasoning engine [21] and publicly available
fuzzyDL [3], which applies tableau algorithm to perform
reasoning in a logic covering fuzzy concepts, fuzzy relations
and various types of trapezoidal membership functions that

can be used to specify a complete set of Mamdani rules.
Both implementations, however, do not integrate with widely
recognized Semantic Web specifications and technologies, as
OWL or SWRL. On the other hand, there are continuous
research aiming at extending or integrating existing technolo-
gies. Examples are [25], which describe SWRL-F, a fuzzy
logic extension to the Semantic Web Rule Language (SWRL),
or [5] presenting a system combining fuzzyDL, Drools, Pellet
and Jena to perform fuzzy reasoning in order to recommend
tourist offers based on clients’ profile. Many others are listed
in [14].

A deep discussion of theoretical aspects of Fuzzy Descrip-
tion Logics is out of the scope of this paper, however, it
should be noticed, that common practice of incorporating
into their syntax membership functions goes beyond DLs,
which in general are limited to unary and binary predicates.
Another remark refers to fuzzification of ontologies. It seems,
that building a well founded fuzzy domain model may occur
a really hard problem; in particular, to our knowledge, no
model described with fuzzy DL is anchored in a foundational
ontology like SUMO or Dolce. Actually, the presented ontolo-
gies often contain foundations, e.g. [25], but thy are rather
metamodels defining fuzzy sets, membership functions and
linguistic variables, but not philosophical categories.

III. FUZZY RULES AND FUZZY REASONING

Fuzzy rules are proven to be an efficient decision support
mechanism in many areas. [18] control, home appliances,
cameras, embedded systems, etc. They enable implementing
even very sophisticated control mechanism with use of small
sets of rules. Rules in the form proposed by Mamdani [15]
are simple conditional instructions:

IF var1 = value11 AND var2 = value21 . . . THEN varout = out

The terms varx appearing in rules are so called linguistic
variables, and valuex and out are fuzzy sets. Fuzzy sets are
described by a membership function defining the confidence
factor belonging to the interval [0,1] that a particular element
is a member of the set.

An inference with Mamdani rules encompasses the follow-
ing stages:

1) Fuzzification: values of the parameters are mapped to the
fuzzy sets according to defined membership functions.
Then, fuzzy sets are assigned to linguistic variables.

2) Inference: consisting in applying defined rules and as-
signing values to output variables (results of multiple
rules execution are stored in output linguistic variables).
Before further processing the contents of output vari-
ables is aggregated using different metrics, typically
based on maximal on average membership value.

3) The last step consists in defuzzification, i.e. converting
fuzzy values to crisp (actual output). Defuzzification is
particularly important in control applications that should
produce analog output. In the scope of the SWOP system
it is rather expected to obtain a single discrete value



on the output of the decision module, e,g, assessment
of the patient state or a set of discrete values, e.g.
possible decisions with assigned priority based on the
membership values.

IV. SWOP - A TELEMEDICINE SYSTEM SUPPORTING
CHRONIC CARE

SWOP is an e-health system dedicated to patients suffering
from chronic conditions providing such services, as monitoring
of symptoms, informing about disease state, as well as interac-
tions with health care professionals. The operational concept
of the system is shown in Fig. 1. On a regular basis patients
manually or automatically send results of self-observations or
self-measurements specific for their chronic disease. A set of
implemented communication modules provide a great flexibil-
ity at configuring the parameters, operational modes of sensors
and communication channels (WiFi, WAN, GPRS). Entered
data are stored in a data base and automatically analyzed to
determine patients status, trends in disease course and the
risk of symptoms exacerbation. Then, patients are provided
with results of the assessment, which may have a form of
messages transmitted from the system to a terminal used
by specific patient, e.g. personal computer or a smartphone
(as SMS notifications). The system offers also capabilities
of asynchronous communication between patients and the
personnel providing support to them (virtual carers, leading
physicians or other health professionals). Moreover, it will
offer an option of transferring patients data from an external
HL7-compliant health information systems (not marked in the
figure).

The decision support component plays a crucial role in the
described interaction scenarios. In particular, it is responsible
for analysis of new data entered to the system, assessment
of the disease state and triggering alarms or notifications.
Decision support can be also extended to other users, involving
medical team members or informal carers, if needed.

During the system design five goals of guidelines imple-
mentation were identified:

1) Assessment of the disease state based on available
information (including current values of monitoring pa-
rameters, subjective symptoms, historical data and a care
plan).

Consultant

Physician
Patient

Virtual Carer

Patients 
Data

HL7 Compliant 
Interfaces

Data Analysis

Communication 
Modules

Chronic care e-health system (SWOP)

Fig. 1. The operational concept of the SWOP system

2) Assessment of the possibility of exacerbations occur-
rence.

3) Informing a patient (or patients family) about disease
state, including alerting in case of exacerbations. Inform-
ing is not visible in traditional guidelines representa-
tions, as they assume direct interaction between medical
staff and a patient, however, it is an important issue in
telemonitoring systems.

4) Recommendations concerning educational materials re-
lated to patients disease.

5) Optionally, recommendations concerning changes in pa-
tients’ care plans (including changes of medications,
their dosage and additional examinations). They are
visible only for medical staff. Patients can receive in-
formation about suggested visit to a doctors office.

V. RULE BASED SPECIFICATION OF ASTHMA CONTROL
GUIDELINE

In this section we present a guideline model aimed at
assessment of asthma control adopting a fuzzy rules approach.
The model is based on Global Initiative for Asthma (GINA)
guideline as of 2011 [9]. According to the recommenda-
tion, assessments of asthma control should be performed on
a weekly basis taking into account the following clinical
manifestations: presence of daytime or nocturnal symptoms
(including awakening), disruption of daily activities, need for
reliever treatment and evaluation of lung function (based on
PEV measurement). Asthma is considered controlled if all
aforementioned features remain at safe level expressed as a
number of occurrences per week or percentage values. If
any of the features exceeds its defined level, the disease is
considered as partly controlled. In the case, where there are
three or more indications of partial control, the asthma is
classified as uncontrolled. The same applies, if an exacerbation
occur in the analyzed period.

Fuzzy rules expressing the guideline are presented in
Fig. 2 a-c. The diagrams can be interpreted as a colored Petri
nets [12], where places correspond to linguistic variables, arc
expressions to fuzzy sets and transition to rules. A value in
the parentheses following a rule name denote its priority. For
clarity, we omit elements, which are indispensable in a full
specification: definition of membership functions or methods
of rules activation and results aggregation. Although rules are
here presented in a graphical form, the constructs used to
define them can be considered as equivalent to those appearing
in textual Fuzzy Control Language (FCL) defined in the norm
IEC 61131-7 [10].

Fig. 2.a shows the rule R1 assessing the controlled state that
can be expressed in FCL as:

IF DaytimeSymptoms IS rare AND NighttimeSymptoms IS rare AND

ActivityDisruptions IS rare AND UseOfQuickReliefMedication IS rare AND

PEVLevel IS normal THEN AsthmaControl IS controlled

Rules (R2 – R6) shown in Fig. 2.b make partly controlled
assessment based on the presence of an asthma manifestation.

According to GINA recommendation, asthma is considered
as uncontrolled if there are “three or more features of partly



controlled asthma”. This statement can be transformed into a
set of rules in a fuzzy logic setting either by:
• assigning a dedicated rule to each triple among five input

variables or
• defining a second layer of inference, i.e. applying an

aggregation function that counts elements and then a
membership function yielding the value 1.0 for fuzzy set
uncontrolled, if number of elements is greater than or
equal 3.

As we decided to take the first approach,
(5

3

)
= 10 rules were

introduced (see Fig. 2.c. rules R7 - R16) An additional rule R17
is activated in case of exacerbation occurrence.

Rules presented in Fig. 2.d are not a part of a guide-
line, but are related to its implementation in an execution
environment. They select a notification to be send as the
result of disease state assessment: good state notification,
acceptable state notification, visit recomendation and alert.
These rules are assigned with the priority 2, i.e. they are to
be executed after all rules enabled related to assessment are
done.

VI. DESCRIPTION OF THE SOLUTION

The presented decision module combining Semantic Web
technologies and fuzzy rules approach encompasses three
elements:

1) a model of domain knowledge formalized in OWL lan-
guage supporting extensions required to perform fuzzy
reasoning,

2) a set of SWRL rules enabling fuzzy reasoning according
to the guideline model described in Section V,

3) a software responsible for fuzzification, aggregation of
results and coordination of the whole process.

A. OWL model for fuzzy reasoning

Taking into account assumed application and technologies
used we identified three key requirements for the model:
• it should gather a domain knowledge: a disease, its

symptoms and assessment; preferably, the model should
directly import domain ontologies,

• it should augment it by introducing terms required to
implement Mamdani fuzzy rules: linguistic variables,
fuzzy sets and membership levels,

• it should be consistent with an intended use of SWRL
enabled reasoner.

The first problem to be solved is a possible reuse of existing
domain ontologies. Within the SWOP project there were
developed several domain ontologies defining concepts related
to chronic care, diseases, subjective and objective symptoms,
medications, etc. They, however, were not built with an idea to
use them as a part of fuzzy reasoning framework. Such appli-
cation requires extensions to the domain ontology, moreover,
it may require some rearrangements.

The problem can be discussed on a small example in
Fig. 3 being an excerpt from the project domain ontology.
White ovals: Patient, MeasuredPEV and PEVLevel represent

concepts (OWL classes) in the domain ontology. Dark gray
rectangles constitute a part of the ontology ABox. The patient
(individual John) has current PEV (individual pev1) with the
value 0.75; the measurement is classified as having low level
(by linking it by object property level with the individual low
of PEVLevel type).

Shapes filled with light blue represent elements introduced
to provide support for fuzzy reasoning. The mambership
datatype property with the range of type double is used to
express value of fuzzy set membership function. The defini-
tion of FuzzyProperty class asserts that it has a membership
attribute with maximum cardinality equal to 1. This restriction
applies to all its subclasses, including MeasuredPEV.

Another consequence of fuzzification of domain ontology
in the discussed example, is that the patient is linked by
currentPEV relation with two measurements: pev1 classified
as low with membership equal to 0.625 and pev2 classified
as normal with membership value 0.375. Presence of such
assertion is usually required to perform fuzzy reasoning;
however, this can be inconsistent with restrictions defined in
ontology TBox. (In the definition of Patient class, may appear
quite natural restriction that its individual has at most one value
of current PEV measure.) This example shows that reusing
an ontology in a fuzzy reasoning setting may require several
rearrangements, in particular relaxing restrictions that seem to
be obvious in a crisp world.

Assumed use of SWRL as a rule language has a large
impact on the structure of the model. To make a reasoning pro-
cess decidable, OWL reasoners, e.g. Pellet are DL-safe. This
property is achieved by restricting the possibility of creating
individuals during reasoning. In consequence, all individuals,
whose properties are to be inferred, must be present in the
model before a reasoner is launched. For example, DL-safe
reasoner can not create individuals pev1 and pev2, although,
it can make inferences about membership and level relations.

The ontology eventually used for fuzzy reasoning was
strongly reduced in rapport to that, which is shown in Fig. 3.
As it is not needed to reason simultaneously about a set of
patients, the class Patient and its individual can be safely
removed from the ontology. MeasuredPEV is a typical Role (in
terms of ontological theories) or an associative class (in object
oriented modeling). After disappearance of its subject (Patient)
it become superfluous. The whole model is refactored by
removing the MeasuredPEV class and asserting membership
to be a property of PEVLevel. A part of the reduced ontology
is presented in Fig. 4).

Two datatype properties are used to express fuzzy weights.
The first one, already mentioned, membership relation is in-
tended for making assertions and can be used only in premises
of SWRL rules. The second – imembership is to be inferred,
thus, it appears only in consequents.

The classes PEVLevel, UseOfQuickReliefMedication, Asth-
maControl shown in Fig. 4 have a common ancestor: FuzzySet,
whose specification asserts that it members have at most
one membership attribute and can have several imembership
property values. In this model, a linguistic variable as a
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Fig. 2. Rules for asthma assessment yielding: (a) controlled (b) partly controlled and (c) uncontrolled states; (d) rules inferring actions
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Fig. 3. Full OWL model supporting fuzzy reasoning

collection of fuzzy sets corresponds to a subclass of FuzzySet.
In fact, while writing rules references to a linguistic variable
are omitted.

B. Architecture of the reasoning engine
Architecture of the reasoning engine is presented in Fig. 5.

The system is written in Java and uses Jena [1] library to

access OWL models and Pellet [7] to perform reasoning. Its
main functional blocks are Fuzzifier, Reasoner, Aggregator
and DataCollector.

Fuzzifier converts input data into values in the range [0,1.0]
using ramp shaped functions or a mapping from a finite
set of values. Results are asserted in OWL model using the
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membership datatype property. It should be mentioned, that
patient questionnaires aimed at collecting subjective observa-
tions, even querying for numerical data, e.g. a number of daily
activity limitations, provide also such answers, as: “Not sure”,
“Probably one” or “I have observed limitations, however, I am
not sure if they are related to asthma”. Such answers are also
mapped to membership values.

Reasoner is provided by the Pellet library. It executes
SWRL rules to process assertions defined in input model
and stores inferences (values assigned to fuzzy sets through
imembership property) in Inferred OWL model. Fig. 4 shows
sample reasoning results: inferred relations for the individual
partly controlled marked with dashed line.

Aggregator collects arguments of imembership statements
for an individual and calculates an aggregated value: maxi-
mum, minimum or a mean. (We decided to apply an aggre-
gation based on maximum values, although, other approaches
are possible). Then, it asserts it back as membership property
in the OWL model. The reasoning and aggregation steps
can repeat a number of times. The model stores also the
current iteration number, after each cycle it is incremented.
The number is used in premises of rules to control the order
of their execution.

Finally at the end of reasoning, DataCollector is responsible
for reading the values asserted by Aggregator and setting
output variables.

In the production environment the presented components
are wrapped by a simple synchronous web service that accepts
and returns a list of key–value pairs. Keys, and in many cases
values, are defined in the domain ontologies.

C. SWRL based implementation of fuzzy rules

The crucial part of the guideline representation is the set of
rules encoded in SWRL language and stored as a separate
OWL module importing the basic model. Table I presents
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Fig. 5. Architecture of the reasoning engine

sample rules responsible for assessment of asthma control and
producing notifications. Each rule is constructed in a similar
manner:

• the premise hasValue(Step.current, number) activates a
rule at a certain iteration,

• binary predicates membership map property values to
variables,

• multiple lessThanOrEqual predicates referencing built-in
SWRL function are used to calculate a rule activation
level,

• conclusions assign imembership values to target individ-
uals.

The main limit of SWRL language is that it does not provide
appropriate built-in functions to calculate minimum, maximum
or a product of values stored in a list. To set appropriate values
of rules’ activation levels, we were obliged to rewrite some
rules to cover all the cases, where a given variable, e.g ?mi is a
lower bound of a set of all variables {?m1, ...,?mn}. Therefore,
the rule R1(1) was encoded as 5 SWRL rules, 10 rules R7(1)
– R16 yielded 30 SWRL rules and the rule R19 was encoded
as two rules in SWRL.



The described multiplication of rules does not introduce
errors into inference results. Event if five variations of the rule
R1 are fired for equal values of variables ?m1 =?m2 =?m3 =
?m4 =?m5 = a, the reasoner infers only one value a for the
imembership property assigned to AsthmaControl.controlled
individual.

Rules for asthma controlled
Rule R1(1)[a− e] hasValue(Step.current, 1),

membership(DaytimeAsthmaSymptom.rare, ?m1),
membership(NightimeAsthmaSymptom.rare, ?m2),
membership(ActivityDisruption.rare, ?m3),
membership(UseOfQuickReliefMedication.rare, ?m4),
membership(PEVLevel.normal, ?m5),
lessThanOrEqual(?m1, ?m2), lessThanOrEqual(?m1, ?m3),
lessThanOrEqual(?m1, ?m4), lessThanOrEqual(?m1, ?m5)
→ imembership(AsthmaControl.controlled, ?m1)

Rules for asthma partly controlled
Rule R2(1) hasValue(Step.current, 1),

membership(DaytimeAsthmaSymptom.frequent, ?m)
→ imembership(AsthmaControl.partly controlled, ?m)

Rule R4(1) hasValue(Step.current, 1),
membership(ActivityDisruption.frequent, ?m)
→ imembership(AsthmaControl.partly controlled, ?m)

Rule R6(1) hasValue(Step.current, 1),
membership(PEVLevel.low, ?m)
→ imembership(AsthmaControl.partly controlled, ?m)

Rules for asthma uncontrolled
Rule R7(1)[a− c] hasValue(Step.current, 1),

membership(DaytimeAsthmaSymptom.frequent, ?m1),
membership(NightimeAsthmaSymptom.frequent,?m2),
membership (ActivityDisruption.frequent, ?m3),
lessThanOrEqual(?m1, ?m2), lessThanOrEqual(?m1, ?m3)
→ imembership(AsthmaControl.uncontrolled, ?m1)

Rule R17(1) hasValue(Step.current, 1),
membership(AsthmaExacerbation.occurred, ?m)
→ imembership(AsthmaControl.uncontrolled, ?m)

Rules for actions
Rule R18(2) hasValue(Step.current, 2),

membership(AsthmaControl.controlled, ?m)
→ imembership(Action.good state notification, ?m)

Rule R19(2)[a−b] hasValue(Step.current, 2),
membership(AsthmaControl.controlled, ?m1),
membership(AsthmaControl.partly controlled, ?m2),
lessThanOrEqual(?m2, ?m1)
→ imembership(Action.acceptable state notification, ?m2)

Rule R20(2) hasValue(Step.current, 2),
membership(AsthmaControl.partly controlled, ?m)
→ imembership(Action.visit recommendation, ?m)

Rule R21(2) hasValue(Step.current, 2),
membership(AsthmaControl.uncontrolled, ?m)
→ imembership(Action.alert, ?m)

TABLE I
SELECTED SWRL RULES FOR ASSESSMENT OF ASTHMA CONTROL AND

SELECTING ACTIONS. RANGES IN SQUARE BRACKETS FOLLOWING A RULE
NAME, E.G. R7(1)[a− c], INDICATE, THAT THE RULE IS REPEATED A
NUMBER OF TIMES WITH ALTERING lessThanOrEqual EXPRESSIONS.

D. Discussion

1) Aggregation issues: In the literature on application of
fuzzy rules, there can be found several aggregation or defuzzi-
fication functions that consist in calculating mean values over
a set o weights. Such functions are not compatible with the

presented solution. To give an example: if nine rules yield
0 and one 1.0, its mean is 0.1. However, in OWL it is not
possible to assign 0 value to a datatype property multiple
times. The inference would produce just two results 0 and 1.0
giving the mean value 0.5. Theoretically, a reasoner may give
nine explanations to obtained 0 result, but the whole process
of calculating explanations seems to be too time-consuming
to be applied in production environment.

A question that can be posed is, whether it is possible to
perform aggregation at the level of SWRL rules. The SWRL
language is open and it is possible to extend it with user
defined built-ins. The following example can be a justification
for rejecting such approach. Let us analyze the rule:

imembership(AsthmaControl.partly controlled, ?m1),

imembership(AsthmaControl.partly controlled, ?m2),

maxOfTwo(?max,?m1,?m2) → membership(AsthmaControl.partly controlled,?max)

It uses a hypothetic built-in predicate
maxO f Two(?max,?m1,?m2) that would return true value,
if the following conditions were satisfied: ?max ≥?m1
and ?max ≥?m2. For a model presented in Fig. 4
the rule would have been executed for four bindings
(?m1/0.7,?m2/0.7), (?m1/0.7,?m2/0.6), (?m1/0.7,?m2/0.6)
and (m1?/0.6,?m2/0.6) giving two membership values and
violating the consistence of the model.

2) Special case – negation: The definition of Fuzzy
Control Language [10] allows to use negation in premises
of rules. There are at least two approaches (both based
on Łukasiewicz negation) to express such kind of rules in
SWRL. Let us take as an example the following rule: IF A
IS NOT a AND B IS b THEN C is c. It can be rewritten in
SWRL using substract built-in as:

membership(a, ?p),subtract(?m1, 1.0,?p),

membership(b, ?m2), lessThanOrEqual(?m1,?m2) → imembership(c, ?m1)

Another approach may consist in defining a complement
property not membership, that is to be asserted by a fuzzifier
or an aggregator with a value 1− m simultaneously with
making membership assertion of m, allowing the following
rule specification:

not membership(a, ?m1),

membership(b, ?m2), lessThanOrEqual(?m1,?m2) → imembership(c, ?m1)

VII. CONCLUSIONS

The main contribution of this paper is the description fully
functional executable implementation of a medical guideline
for an e-health system based on contemporary Semantic Web
technologies: OWL, Jena, Pellet and SWRL.

Although still not deployed in a production environment,
the system was thoroughly tested for various combination of
input parameters. It should be mentioned, that with assumed
granularity of inputs, there are over million test cases. As
an average time to perform reasoning is about 300 ms, we
preferred to run random tests consisting of 2000 test cases,



then manually analyze the correctness of results gathered in a
spreadsheet, introduce required changes (corrections in rules,
shapes of fuzzification functions) and rerun tests. This process
has been continued until no anomaly was detected.

An important reason to focus on technologies related to
the Semantic Web was the need to share and reuse a domain
knowledge. The general medical knowledge and information
related to patients are expressed with a medical terminology,
which can be ambiguous and may contain many implicit
assumptions. On the other hand, medical information to be
processed by IT systems must refer to terminology gathered
in vocabularies, preferably ontologies. The SWOP project
included tasks aiming at development of domain ontologies
covering such topics, as diseases, their subjective and objective
symptoms, measured parameters and medications. Hence, an
idea to use already gathered and formalized knowledge in
guidelines implementation.

The decision to represent medical guidelines in SWOP e-
health system in the form of fuzzy rules was preceded by
an analysis of formal guidelines representation languages, e.g.
GLIF and PROforma. Long lasting discussions between the
medical professionals and representatives of the IT world
indicated, that there is a substantial gap between, how guide-
lines are perceived by both parties. IT people expect, that a
knowledge collected in guidelines can be easy transformed into
algorithms or strict rules, whereas the other party emphasizes
the fact that recommendations collected on guidelines are often
very general, present several alternatives, and dependent on
many vague factors. An approach based on fuzzy rules seems
to be a rational compromise in this area. Moreover, it provides
a framework allowing personalized adaptation that can be done
independently based on statistical analysis of collected data
without changes in the structure of rules.
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