

Verification of relative correctness of Petri nets
Piotr Szwed

Katedra Automatyki, Akademia Górniczo-Hutnicza, al. Mickiewicza 30, 30-059 Kraków
pszwed@ia.agh.edu.pl

Abstract. The paper describes a new method of
requirements specification for concurrent systems
modeled as Petri nets. The proposed correctness
problem consists of three objects: the checked Petri
net, a criterion net specifying requirements and an
observation function that maps transitions in the
checked model into transitions of the criterion net.
The partial and the total correctness are defined and
the method of their verification is proposed.
1. Introduction. This paper presents a new method
of requirements specification for concurrent systems
modeled as Petri nets.
The proposed correctness problem consists of three
objects: the verified Petri net modeling the examined
concurrent system, the criterion net specifying the
requirements and an observation function serving as
the map between the verified and the criterion net.
The results described in this paper are the
continuation of former works [1,2] on application of
observation functions in specification and
verification of concurrent systems. We use the places
and transitions Petri net (PT-net) as models
describing both a concurrent system and its
requirements. This choice is can be justified by the
similarities between matrix representation of Petri
nets and linear equation models used in former
papers, as well as the semantic equality between PT-
nets and colored Petri nets [3], allowing to extend the
range of the method application for high-level Petri
nets.
We define the relative correctness problem using the
linear observation function. The function maps
selected transitions in verified system into sets of
transitions of the criterion net. The result of the
function is somehow similar to the results of
application of restriction and remapping operators of
CCS i CSP algebras [4, 5].
The paper is organized as follows. Chapter 2
summarizes the basic definitions concerning place
and transitions Petri nets. Chapter 3 defines the linear
observation function and introduces the notions of
partial and total correctness for concurrent systems
modeled as PT-nets. Chapter 4 describes the methods
of relative correctness verification, Chapter 5

presents an example of a system implementing the
alternating bit protocol and discusses the results of its
verification.

2. Petri nets. Petri nets is a widely used formal tool
for modeling concurrent systems due to their
expression power allowing to specify easily such
properties as concurrency, nondeterminism, choice,
synchronization and mutual exclusion.
A Petri net is a bipartite directed graph whose
vertices belong to two disjoint sets: places and
transitions. A marking is an assignment of non-
negative values (tokens) to places.
Definition 1. A Petri net is a tuple PN =
(P, T, F, W, M0), where: P is a finite set of places, T
is a finite set of transitions, F ⊂ (P × T) ∪ (T × P)
is a finite set of arcs, W : F → N is a function
assigning weights to arcs, M0 : P → N ∪ {0} is an
initial marking.
A marking represents a net state. If all incoming
places {pi} for a transition t have at least W(pi,t)
tokens, the transition t is enabled and can be
executed (fired). Firing a transition moves tokens
from its input places to output places changing the
net state (marking). Numbers of subtracted and added
tokens are determined by arc weights. Subsequently
executed transitions form a firing sequence
ρ = 〈 t1, t2,…, tn〉. A marking Mn is reachable from M0
if there exist a firing sequence leading M0 to Mn. The
net is bounded if all markings reachable from the
initial marking are bounded.
Transitions t1 and t2 are called concurrent for a
marking M if both are enabled and for all their
common input places the condition
M(pi) ≥ W(pi, t1) + W(pi, t2) holds.
In this paper we use matrix representation of Petri
nets [6, 7]. The incidence matrix A of a Petri net has
| P | rows and | T | columns. Its elements A(p , t)
specify how many tokens are removed or added to a
place p as the result from firing a transition t. A firing
sequence ρ leading from the marking M0 to Mn can
be described as a vector xn ∈ R|T| whose i—th
element specify how many times a transition ti fired
in the sequence ρ. As a consequence we obtain the

state equation of a Petri net: Mn = M0 + A x , where
x ∈ X = R|T| . L(i, j) =



 ∈

caseother in 0
)(' if 1 ji tpt π

3. The correctness problem. The idea of how
relative correctness requirements are specified and
verified can be explained taking a position of an
observer who tests and debugs a system. He traces
step by step executed actions (as calling a procedure,
sending a message or capturing an external event).
He ignores some of them, but for selected ones
checks whether they are executed in an order agreed
with a more abstract requirements specification. The
model of requirements differs from the checked
system only in the abstraction level. It can be also
submitted a correctness verification in relation to a
more abstract specification layer.

Solution x’ satisfying x’ = π (x) is defined as:
x’ = L x.
The Fig. 1. shows an example of the relative
correctness problem. Transitions t1, t2, t3 and t4 of the
verified net PN are non-observable. The criterion net
PN’ specifies requirements concerning the sequence
of transitions, eg. transition a’ must precede c1’. The
requirements specification allows concurrent
execution of transitions, eg. {a’ , b’} or {c1’, c2’, d’}.
In the presented example, the verified net implements
the required transitions in the sequential manner.

We model both verified and criterion specifications
as Petri nets with arc weights equal to 1. The
behavior of a net is represented by nondecreasing
sequences of vectors s = 〈 x1, x2,..., xj, xj+1,...,xn,...〉
called solutions Sequences of solutions represent a
net behavior in more general form then firing
sequences, because they allow to model
instantaneous execution of a number of concurrent
transitions in one step. We allow also multiple
repetitions of the same element in a sequence. For
generality, we assume, that all sequences are infinite;
finite sequences can be transformed into infinite by
repeating their last element.

a

t1

b

c

t2

t3

a'

c1'

b'

c2'

t4

d

Verified Petri net

Criterion Petri net

d'

a t1 t2 t3 b c d t4
a' 1 0 0 0 0 0 0 0
b' 0 0 0 0 1 0 0 0
c1' 0 0 0 0 0 1 0 0
c2' 0 0 0 0 0 1 0 0
d' 0 0 0 0 0 0 1 0

Matrix of linear observation function

F

F1 F2 F3

P1

P2

P3

P6

P4

P5

P7

P1'

P2' P5'P4'

P3'

The observation function maps sequences of
solutions representing an execution of a verified net
into sequences of vectors belonging to the domain of
solutions of a criterion net.
The examined sequence of solutions describing a
behavior of a verified net is correct relatively to a
specification (meets the requirements) if its image in
the observation function is a correct sequence of
solutions representing transitions of the criterion net.

Fig. 1 Example of a relative correctness problem
3.2. Partial correctness. Let s = 〈 x1, x2,..., xi,
xi+1,...,xn,...〉 be a sequence of solutions representing a
behavior of Petri net PN characterized by the state
equation M = M0 + A x , x ∈ X. A vector vi = xi+1 – xi
is called a step if:

3.1 Linear observation function. Let us examine
two Petri nets: PN = (P, T, F, W, M0) and
PN’ = (P’, T’, F’, W’, M0’). with state equations
M = M0 + A x , where x ∈ X = R|T| and M’ = M0’ + A’
x’ , where x’ ∈ X’ = R|T’|. The first will be called a
verified net and second a criterion net.

• vi is equal to 0, what means that no observable
transition occurred in the i-th step,

• there exists exactly one k, that vi(k) = 1, what
means that k–th transition was enabled at the
marking M0 + A xi and was executed

We define the function pπ : T→ 2T’. It maps
transitions in the verified net into sets of transitions
of the criterion net. We can notice, that the image of
a given transition can be an empty set (the transition
is non-observable), a set containing exactly one
element or a set containing a number of transitions
that should be executed concurrently.

• there exist a set of indices K, that vi(k) = 1 and
all transitions tk, for k ∈ K were enabled at the
marking M0 + A xi and were concurrently
executed.

We define the predicate step(xi, xj, PN) that
evaluates to true if xj - xi is a step at the marking
M0 + A xi.

Linear observation function π: X → X’ is described
by the matrix L of size n×n’, where n = | T | and
n’ = | T’ |. The matrix elements has values: Let us define a predicate dead(x, PN), that evaluates

to true, if the marking M = M0 + A x is dead. We use
additional information on how the net models

underlying system to distinguish markings, that can
be identified as correctly reached final states. We
define a predicate final(x, PN) that is true if the
marking M = M0 + A x is dead and only selected
elements of the vector M has non-zero values. For
example, for the nets in Fig. 1. the presence of a
token in the place F and the absence of tokens in
other places may be identified as reaching a final
state; for the net PN’ final state will correspond to
marking having tokens in places F1, F2 and F3.
Definition 2. Let PN be a verified net and PN’ be a
criterion net that are described by corresponding state
equations M = M0 + A x , where x ∈ X and M’ = M0’
+ A’ x’, where x ∈ X’. A sequence of solutions
s = 〈 x0, x1, x2,…, xi, xi+1, …〉 is correct, what we
denote by a predicate correct(s, π, PN’) if:
1. s is a sequence of steps for PN, i.e. the

condition∀ i ≥ 0 . step(xi, xi+1, PN) holds.
2. There is no such element xi in the sequence that

dead(xi, PN) ∧¬ final(xi, PN)
3. Subsequent elements of the sequence s’ = 〈

x0’, x1’, x2’,…, xi’, xi+1’, …〉, where xi’ = π(xi)
satisfy the predicate step(xi’, xi+1’,PN’) for all i ≥
0.

4. ∀ j ≥ 0 . final(xj, PN) ⇒ final(π(xj), PN’)
A correct sequence of solutions should meet
requirements defined by a pair (π, PN’). The
condition states that the correct sequence is free of
deadlock, is mapped by the observation function into
a sequence of steps and reaching a final marking in a
verified net should be accompanied by reaching a
final marking in the criterion net.

Definition 3. Let us denote by S(PN) the set of all
sequences of steps of the net PN. The net PN is
partially correct relatively to PN’ if the following
condition holds:

∀ s ∈ S(PN) . correct(s, π, PN’)
Partial relative correctness of a net is defined as the
correctness of all its sequences of steps. Such
formulation refers to classical definitions of partial
correctness (or more generally definitions of
safeness) [8, 9]. Informally, this property can be
express as “nothing bad can happen”. In this case a
bad event is making a step violating the criterion
specification.
3.3 Divergence. Correctness conditions allow
repeating values in the observed sequence
〈 π(x0), π(x1), π(x2),…〉. The partial correctness
property formulation is invariant under stuttering
[10]. Models that are invariant under stuttering bring
more difficulties during the verification of liveness
properties (thus also the total correctness). The
liveness properties are usually formulated as
assertions, that if a certain precondition is satisfied,

then after executing a final number of steps a desired
event occurs, e.g. successful program termination,
gaining access to a resource or activation of a
component process. When we observe repeating
states of a system (a sequence of identical solutions
imply that the system does not change its state) we
can not tell if the sequence is finite or not. Such
infinite sequence can happen if the verified net
executes a loop and no transition in the loop is
observable.
A similar effect in CSP algebra [4] was denoted by
the term divergence. The source of divergences is the
application of restriction operator “/” that removes a
set of symbols from the alphabet of a process,
making transitions marked with removed actions
non-observable.
The correctness problem in Fig. 1. has a divergence.
It is caused by the pair of non-observable transitions
t2 and t3, that after reaching the input place of the
transition t2 can be executed infinitely many times.
From the observer’s point a presence of a divergence
can be considered as the lack of fairness. For a
divergent system, there exist an infinite observation,
for which a set of criterion net transitions is
continuously enabled (in the case in Fig. 1 the
enabled set contains the transition c1’), but none of
them is executed.
Definition 4. Let s = 〈 x0, x1, …, xi, xi+1, …〉 be a
sequence of solutions of the net PN described by the
state equation M = M0 + A x , and π any observation
function. Observation of the sequence s has a
divergence, if there is a subsequence sdiv(xdiv 1, xdiv n)
satisfying:

1. M0 + A xdiv 1 = M0 + A xdiv n
2. ∀ i : div1 ≤ i ≤ divn . π(xi) = π(xdiv 1)

We define a predicate divergent(s, PN, π), which is
true, if for a given observation function π the
observation of the sequence of solutions s of the net
PN has divergence.
3.4. Total correctness. The total correctness
property imposes additional conditions on a verified
net. It is required, that all transitions of the criterion
net could be observed and that all observed
sequences of solutions are free from divergences.

Definition 5. Let PN and PN’ be Petri nets defined as
in Definition 2. and π be an observation unction. The
net PN is totally correct in relation to PN’ if:
1. It is partially correct: ∀ s ∈ S(PN) . correct(s, π,

PN’)
2. The observation of its behavior covers the whole

space X’:
∀ i ≤ dim X’ . (∃ s ∈ S(PN) . ∃ xk ∈s. x’ = π(xk)
∧ x’(i) > 0), where dim X’ denotes the size of the
space X’ .

3. There is no divergence: ∀ s ∈ S(PN) .
¬ divergent(s, PN, π)

4. Correctness verification. Automatic correctness
verification is based on the construction of the graph
of coupled net execution G describing synchronous
execution of both verified and criterion nets [1,2].
Informally, a graph G is a finite directed acyclic
graph whose vertices are marked with coupled net
states (M,M’) and edges with pairs (v,π(v)), where
v ∈ X. For an edge (v,π(v)) linking vertices (Mi,Mi’)
and (Mj,Mj’) the equations Mj = Mi+A v and
Mj’ = Mi’+A’ π(v) hold. The transition along an edge
is correct, if v is a step in the verified net and π(v) is a
step in the criterion net.
The algorithm of correctness verification constructs a
partial graph of coupled execution checking the
correctness of its transitions. It can be considered as a
recursive procedure realizing in-depth graph
exploration. We denote by Next(M) a set of
transitions enabled in a marking M. Let e(ti) be a
vector in X corresponding to a transition ti; i-th
element of the vector e(ti) has the value1, the other 0.
Set S is a set of encountered coupled net states
(M,M’).

depthCheck (S, M, M’, x){
 foreach(t ∈ Next(M)){

Calculate x=x+e(t); M2 = M + A⋅e(t) and
M2’ =M’ + A’⋅π(e(t));
if(∃ i. M2’(i) < 0)report error; /*
sequence of solutions is not correct */
add a vertex marked with (M2,M2’) to the
graph G ;
add to an edge from (M,M’) to (M2,M2’))
marked with (e(t), π(e(t)));
if((M2,M2’) ∈ S) return;
/* do not check the descendants of vertex
that has been encountered earlier */
Assign: S = S ∪ {(M2,M2’))} ;
depthSearch(S, M2, M2’, x);

 }
}
The verification process starts with assignment S=∅;
M=M0; M’=M0’, x=0 and the call to
depthCheck(S, M, M’, x).
We have implemented the prototype software for
relative correctness verification. Actually, the tool
does not realize the presented algorithm in a
recursive manner, because checking the divergence
conditions requires the access to the stack of
parameters. We also do not construct the full graph
of coupled nets execution. The set of examined
vertices and the stack of parameters of the

depthCheck procedure provide enough
information for checking the correctness conditions.
The input for the software tool is a textual
specification of the verification problem. The
specifications are more decorated then plain Petri net
models. They contain tables of symbols assigned to
transitions and places what ensures better readability
of the specifications and results of their analysis. The
tool produces a report on the verification process. It
describes details of transitions, reached markings,
sets of enabled transitions, etc.
In the case of an error, as deadlock or incorrect
transition, a sequence of transitions leading to the
erroneous situation is reported. It serves as the
counterexample. At the termination, the tool prints
the summary of verification process (number of
transitions, incorrect transitions, loops, divergences).
In course of a verification a set S of reached vertices
of graph G is kept in memory, as well as the current
sequence of solutions starting from the initial
marking. It should be remarked, that only sparse
representation of vectors and matrices is used.

5. Example. As the application example we present
the verification of the alternating bit protocol [5]. The
parties of the protocol are two processes Sender and
Receiver connected by two asynchronous
communication channels Trans and Ack. The
channels may represent a computer network transport
mechanism.
An idea of the protocol is showed in Fig. 2. The
following scenario realizes the information exchange.
Sender after obtaining a request to transfer a message
(accept) sends it to the channel Trans appending a
token, being an agreed bit value (e.g. 0). Receiver
gets the packet and if it contains the expected bit
value, then delivers the message (deliver) and sends
the acknowledgement bit to the channel Ack. Sender
receives the acknowledgment bit; if its value matches
the bit sent in a recent package, it is ready to accept
and send the message, which will be attributed with
the alternated bit value. If the acknowledgement
message ack is lost or does not reach the Sender
before the timeout period elapse. then the sender
repeats last transmission. Acknowledgement bits are
used to protect against the duplication or loss of send
packets.

Sender

Trans

Ack

Receiver

send trans

replyack

deliveraccept

Fig. 2. Alternating bit protocol
A formal proof then the system behaves as a buffer
of the capacity 1, i.e. it executes the sequence of

accept and deliver operations (Fig. 3.) can be found
in [5]. In our case, the net modeling the buffer will
serve as the criterion specification.

The verification proved partial correctness of the
problem. The system is not totally correct because of
the presence of divergences. The results of
verification are summarized in the table Tab 1.
Partial correctness justifies that the checked protocol
model meets the requirements concerning sequence
of operations (Fig. 3).

Empty

Full

accept' deliver'

However, the presence of divergences indicates that
there is no guarantee that a message after being
entered (accept) will be output (deliver) or that the
system in a finite time will be ready to get and send a
new message. Divergences are caused by losing
communication channels and transitions timeout(0)
and timeout(1) of the subnet Sender. Revealing the

divergences can be a valuable hint for a system
designer. To assure the total correctness he should for
example limit the number of sent packets in case of
missing acknowledgements to a predefined number
n. After sending n packets with identical content
without acknowledgement, the process Sender should
terminate the transmission due to communication
error. Corresponding transition should be added to
the criterion net defining the requirements for the
protocol implementation.

Fig. 3 Criterion Petri net specifying the requirements.

Fig. 4. shows nets modeling the processes Sender and
Receiver and communication channels. For more
readability we adopt the convention that transitions
with the same name in different subnets (e.g..:

send(0) in the subnet Sender and send(0) in the
subnet Trans) refer to the same transition. It should
be noticed that implicit state member of subnets
Sender and Receiver are local binary variables. Their
values are used to index distinguishable transitions
and places (e.g..: send(0) and send(1)). The examined
specification assumed that packets can be lost in
communication channels (transitions loss in subnets
Trans and Ack).

AckInit

trans(1)B

trans(0)A

Waiting(0)

Deliver(0)

deliver(0)

trans(0)B Waiting(1)

reply(0)

trans(1)A

Deliver(1)

deliver(1)

reply(1)

Reply(0)

Reply(1)

TransInit

Trans(0)

Trans(1)

send(0)

trans(1)Btrans(1)A

trans(0)Btrans(0)A lossT(0)

lossT(1)

accept(0)

send(0)timeout(0)

ack(1)B

ack(0)A

Accept(0)

Send(0)

Sending(0)

Accept(1)

accept(1)

send(1)timeout(1)

ack(0)B

ack(1)A

Send(1)

Sending(1)

Ack(0)

Ack(1)

reply(0)

reply(1)

ack(1)Back(1)A

ack(0)Back(0)A

Sender ReceiverAck

Trans

lossA(1)

lossA(0)

send(1)

Fig. 4 Verified Petri net modeling alternating bit protocol

The observation function maps transitions in verified
net accept(0) and accept(1) onto criterion net
transition accept (Fig. 3) and transitions deliver(1)
and deliver(0) onto delive

Tab. 1 Results of verification of the net modeling the
alternating bit protocol

Number of transitions 282
Number of erroneous transitions 0
Number of vertices of coupled execution
graph

116

Number of sequences of solutions leading
to the branching states

71

Number of sequences of solutions with
divergences

63

Number of sequences of solutions lading
to deadlock markings

0

6. Conclusions. The paper describes a relative
correctness problem for linear observation function.
We model a concurrent system as a PT Petri net. The
same formalism is used to describe the system
requirements. Using the matrix representation of
Petri nets we define the partial correctness as the
correctness of all sequences of its steps. The
satisfaction of total correctness requires additionally
the lack of divergences in observations and covering
all transitions in the criterion net specifying the
requirements.
The example of alternating bit protocol shows a
small size specification that can be effectively
checked with the software tool implementing the
algorithm of relative correctness verification. We
have also successfully verified much more complex
cases with thousands of transitions and reached
states. In case of large size problems it is possible to
apply partial search algorithms.
One of the most interesting candidate is supertrace
[11]. In the supertrace algorithm the explored
statespace is not represented explicitly. We represent
explicitly states in the set S in depthCheck procedure
in Chapter 4. The representation is compact, as we
use sparse vectors, sets are implemented as trees, etc.
However, the efficiency of the verification process
decrease with growing number of states in the set S.
In the supertrace algorithm states in the set are
represented by bit values in a large bit vector
addressed by a hash function. In this way it is
possible to construct a set having millions of states.
Moreover, checking if the state was encountered
earlier in the search process is very fast.
The paper was supported by the KBN grant
Nr 4T11C 035 24 Zastosowanie metod formalnych do
wspomagania wytwarzania poprawnego oprogramo-
wania systemów czasu rzeczywistego.

References
[1] Szwed, P.: Analiza poprawności oprogramo-

wania współbieżnego z wykorzystaniem funkcji

obserwacji, praca doktorska, Wydział
Elektrotechniki, Automatyki, Informatyki i
Elektroniki AGH, Kraków 1999

[2] Szwed, P.: Zastosowanie liniowej funkcji
obserwacji do analizy poprawności
oprogramowania współbieżnego, Materiały VII
Konferencji Systemy Czasu Rzeczywistego,
Kraków 2000,Katedra Automatyki Akademii
Górniczo-Hutniczej, 99–108

[3] Jensen K.: Coloured Petri Nets. Basic
Concepts, Analysis Methods and Practical Use,
Vol. I-III, Springer Verlag, 1995/96

[4] Hoare, C. A. R.: Communicating Sequential
Processes, Prentice-Hall International,
Englewood Cliffs, 1985

[5] Milner, R.: Communication and Concurrency.
Prentice Hall, Englewood Cliffs, 1989

[6] Murata T.: Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE, Vol.77,
No 4, April 1989

[7] Reisig W.: Petri Nets – An Introduction,
EATCS Monographs on Theoretical Computer
Science, Volume 4. Springer. 1985

[8] Manna, Z., Pnueli, A.: Verification of
concurrent programs: The temproral framework
– w BAYER. R.S., MOORE J.S. (red) The
Correctness Problem in Computer Science –
International Lecture Series in Computer
Science, Academic Press, 1981, 215–272

[9] Szmuc, T.: Poprawność współbieżnych
systemów oprogramowania, Zeszyty Naukowe
AGH, Automatyka, vol. 46, 1989

[10] Lamport, L.: What good is temporal logic?,
Information Processing 83: Proc. of the 9th
IFIP World Computer Congress. Ed. R.E.A.
Mason, Elsevier Publ., September 1983, 657–
668

[11] Holzmann, G.J., An improved reachability
analysis technique, Software Practice and
Experience, Vol. 18, No. 2, 1988, 137–161

