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Abstract. The paper describes a new method of 
requirements specification for concurrent systems 
modeled as Petri nets. The proposed correctness 
problem consists of three objects: the checked Petri 
net, a criterion net specifying requirements and an 
observation function that maps transitions in the 
checked model into transitions of the criterion net. 
The partial and the total correctness are defined and 
the method of their verification is proposed. 
1. Introduction. This paper presents a new method 
of requirements specification for concurrent systems 
modeled as Petri nets. 
The proposed correctness problem consists of three 
objects: the verified Petri net modeling the examined 
concurrent system, the criterion net specifying the 
requirements and an observation function serving as 
the map between the verified and the criterion net. 
The results described in this paper are the 
continuation of former works [1,2] on application of 
observation functions in specification and 
verification of concurrent systems. We use the places 
and transitions Petri net (PT-net) as models 
describing both a concurrent system and its 
requirements. This choice is can be justified by the 
similarities between matrix representation of Petri 
nets and linear equation models used in former 
papers, as well as the semantic equality between PT-
nets and colored Petri nets [3], allowing to extend the 
range of the method application for high-level Petri 
nets. 
We define the relative correctness problem using the 
linear observation function. The function maps 
selected transitions in verified system into sets of 
transitions of the criterion net. The result of the 
function is somehow similar to the results of 
application of restriction and remapping operators of 
CCS i CSP algebras [4, 5].  
The paper is organized as follows. Chapter 2 
summarizes the basic definitions concerning place 
and transitions Petri nets. Chapter 3 defines the linear 
observation function and introduces the notions of 
partial and total correctness for concurrent systems 
modeled as PT-nets. Chapter 4 describes the methods 
of relative correctness verification, Chapter 5 

presents an example of a system implementing the 
alternating bit protocol and discusses the results of its 
verification. 

2. Petri nets. Petri nets is a widely used formal tool 
for modeling concurrent systems due to their 
expression power allowing to specify easily such 
properties as concurrency, nondeterminism, choice, 
synchronization and mutual exclusion. 
A Petri net is a bipartite directed graph whose 
vertices belong to two disjoint sets: places and 
transitions. A marking is an assignment of non-
negative values (tokens) to places.  
Definition 1. A Petri net is a tuple PN = 
( P, T, F, W, M0), where: P is a finite set of places, T 
is a finite set of transitions, F ⊂ ( P × T ) ∪ ( T × P ) 
is a finite set of arcs, W : F → N  is a function 
assigning weights to arcs, M0 : P → N ∪ {0} is an 
initial marking.  
A marking represents a net state. If all incoming 
places {pi} for a transition t have at least W(pi,t) 
tokens, the transition t is enabled and can be 
executed (fired). Firing a transition moves tokens 
from its input places to output places changing the 
net state (marking). Numbers of subtracted and added 
tokens are determined by arc weights. Subsequently 
executed transitions form a firing sequence 
ρ = 〈 t1, t2,…, tn〉. A marking Mn is reachable from M0 
if there exist a firing sequence leading M0 to Mn. The 
net is bounded if all markings reachable from the 
initial marking are bounded. 
Transitions t1 and t2 are called concurrent for a 
marking M if both are enabled and for all their 
common input places the condition 
M(pi) ≥ W( pi, t1 ) + W( pi, t2 ) holds. 
In this paper we use matrix representation of Petri 
nets [6, 7]. The incidence matrix A of a Petri net has 
| P | rows and | T | columns. Its elements A(p , t) 
specify how many tokens are removed or added to a 
place p as the result from firing a transition t. A firing 
sequence ρ leading from the marking M0 to Mn can 
be described as a vector xn ∈ R|T| whose i—th 
element specify how many times a transition ti fired 
in the sequence ρ. As a consequence we obtain the 



state equation of a Petri net: Mn = M0 + A x , where 
x ∈ X = R|T| . L( i, j ) =  
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3. The correctness problem. The idea of how 
relative correctness requirements are specified and 
verified can be explained taking a position of an 
observer who tests and debugs a system. He traces 
step by step executed actions (as calling a procedure, 
sending a message or capturing an external event). 
He ignores some of them, but for selected ones 
checks whether they are executed in an order agreed 
with a more abstract requirements specification. The 
model of requirements differs from the checked 
system only in the abstraction level. It can be also 
submitted a correctness verification in relation to a 
more abstract specification layer. 

Solution x’ satisfying x’ = π ( x ) is defined as: 
x’ = L x.  
The Fig. 1. shows an example of the relative 
correctness problem. Transitions t1, t2, t3 and t4 of the 
verified net PN are non-observable. The criterion net 
PN’ specifies requirements concerning the sequence 
of transitions, eg. transition a’ must precede c1’. The 
requirements specification allows concurrent 
execution of transitions, eg. {a’ , b’} or {c1’, c2’, d’}. 
In the presented example, the verified net implements 
the required transitions in the sequential manner. 
 

We model both verified and criterion specifications 
as Petri nets with arc weights equal to 1. The 
behavior of a net is represented by nondecreasing 
sequences of vectors s = 〈 x1, x2,..., xj, xj+1,...,xn,...〉 
called solutions  Sequences of solutions represent a 
net behavior in more general form then firing 
sequences, because they allow to model 
instantaneous execution of a number of concurrent 
transitions in one step. We allow also multiple 
repetitions of the same element in a sequence. For 
generality, we assume, that all sequences are infinite; 
finite sequences can be transformed into infinite by 
repeating their last element. 
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The observation function maps sequences of 
solutions representing an execution of a verified net 
into sequences of vectors belonging to the domain of 
solutions of a criterion net. 
The examined sequence of solutions describing a 
behavior of a verified net is correct relatively to a 
specification (meets the requirements) if its image in 
the observation function is a correct sequence of 
solutions representing transitions of the criterion net.  

Fig. 1 Example of a relative correctness problem 
3.2. Partial correctness. Let s = 〈 x1, x2,..., xi, 
xi+1,...,xn,...〉 be a sequence of solutions representing a 
behavior of Petri net PN characterized by the state 
equation M = M0 + A x , x ∈ X. A vector vi = xi+1 – xi 
is called a step if: 

3.1 Linear observation function. Let us examine 
two Petri nets: PN = ( P, T, F, W, M0) and 
PN’ = ( P’, T’, F’, W’, M0’). with state equations 
M = M0 + A x , where x ∈ X = R|T| and M’ = M0’ + A’ 
x’ , where x’ ∈ X’ = R|T’|. The first will be called a 
verified net and second a criterion net.  

• vi is equal to 0, what means that no observable 
transition occurred in the i-th step,  

• there exists exactly one k, that vi(k) = 1, what 
means that k–th transition was enabled at the 
marking M0 + A xi and was executed  

We define the function pπ : T→ 2T’. It maps 
transitions in the verified net into sets of transitions 
of the criterion net. We can notice, that the image of 
a given transition can be an empty set (the transition 
is non-observable), a set containing exactly one 
element or a set containing a number of transitions 
that should be executed concurrently. 

• there exist a set of indices K, that vi(k) = 1 and 
all transitions tk, for k ∈ K were enabled at the 
marking M0 + A xi and were concurrently 
executed.  

We define the predicate step(xi,  xj, PN) that 
evaluates to true if xj - xi is a step at the marking 
M0 + A xi. 

Linear observation function π: X → X’ is described 
by the matrix L of size n×n’, where n = | T | and 
n’ = | T’ |. The matrix elements has values: Let us define a predicate dead(x, PN), that evaluates 

to true, if the marking M = M0 + A x is dead. We use 
additional information on how the net models 



underlying system to distinguish markings, that can 
be identified as correctly reached final states. We 
define a predicate final(x, PN) that is true if the 
marking M = M0 + A x  is dead and only selected 
elements of the vector M has non-zero values. For 
example, for the nets in Fig. 1. the presence of a 
token in the place F and the absence of tokens in 
other places may be identified as reaching a final 
state; for the net PN’ final state will correspond to 
marking having tokens in places F1, F2 and F3. 
Definition 2. Let PN be a verified net and PN’ be a 
criterion net that are described by corresponding state 
equations M = M0 + A x , where x ∈ X and  M’ = M0’ 
+ A’ x’, where x ∈ X’. A sequence of solutions 
s = 〈 x0, x1, x2,…, xi,  xi+1,  …〉 is correct, what we 
denote by a predicate correct(s, π, PN’ ) if: 
1. s is a sequence of steps for PN, i.e. the 

condition∀ i ≥ 0 . step(xi,  xi+1, PN) holds. 
2. There is no such element xi in the sequence that  

dead(xi, PN) ∧¬ final(xi, PN) 
3. Subsequent elements of the sequence s’ = 〈 

x0’, x1’, x2’,…, xi’,  xi+1’,  …〉, where xi’ = π(xi) 
satisfy the predicate step(xi’, xi+1’,PN’) for  all i ≥ 
0. 

4. ∀ j ≥ 0 .  final(xj, PN) ⇒ final(π(xj), PN’)  
A correct sequence of solutions should meet 
requirements defined by a pair (π, PN’). The 
condition states that the correct sequence is free of 
deadlock, is mapped by the observation function into 
a sequence of steps and reaching a final marking in a 
verified net should be accompanied by reaching a 
final marking in the criterion net. 

Definition 3. Let us denote by S(PN) the set of all 
sequences of steps of the net PN. The net PN is 
partially correct relatively to PN’ if the following 
condition holds:  

∀ s ∈ S(PN) . correct(s, π, PN’ )   
Partial relative correctness of a net is defined as the 
correctness of all its sequences of steps. Such 
formulation refers to classical definitions of partial 
correctness (or more generally definitions of 
safeness) [8, 9]. Informally, this property can be 
express as “nothing bad can happen”. In this case a 
bad event is making a step violating the criterion 
specification. 
3.3 Divergence. Correctness conditions allow 
repeating values in the observed sequence 
〈 π(x0), π(x1), π(x2),…〉. The partial correctness 
property formulation is invariant under stuttering 
[10]. Models that are invariant under stuttering bring 
more difficulties during the verification of liveness 
properties (thus also the total correctness). The 
liveness properties are usually formulated as 
assertions, that if a certain precondition is satisfied, 

then after executing a final number of steps a desired 
event occurs, e.g. successful program termination, 
gaining access to a resource or activation of a 
component process. When we observe repeating 
states of a system (a sequence of identical solutions 
imply that the system does not change its state) we 
can not tell if the sequence is finite or not. Such 
infinite sequence can happen if the verified net 
executes a loop and no transition in the loop is 
observable.  
A similar effect in CSP algebra [4] was denoted by 
the term divergence. The source of divergences is the 
application of restriction operator “/” that removes a 
set of symbols from the alphabet of a process, 
making transitions marked with removed actions 
non-observable. 
The correctness problem in Fig. 1. has a divergence. 
It is caused by the pair of non-observable transitions 
t2 and t3, that after reaching the input place of the 
transition t2 can be executed infinitely many times. 
From the observer’s point a presence of a divergence 
can be considered as the lack of fairness. For a 
divergent system, there exist an infinite observation, 
for which a set of criterion net transitions is 
continuously enabled (in the case in Fig. 1 the 
enabled set contains the transition c1’), but none of 
them is executed. 
Definition 4. Let s = 〈 x0, x1, …, xi, xi+1, …〉 be a 
sequence of solutions of the net PN described by the 
state equation M = M0 + A x , and π any observation 
function. Observation of the sequence s has a 
divergence, if there is a subsequence sdiv(xdiv 1, xdiv n ) 
satisfying: 

1. M0 + A xdiv 1 = M0 + A xdiv n 
2. ∀ i : div1 ≤ i ≤ divn . π(xi) = π( xdiv 1)  

We define a predicate divergent(s, PN, π), which is 
true, if for a given observation function π the 
observation of the sequence of solutions s of the net 
PN has divergence. 
3.4. Total correctness. The total correctness 
property imposes additional conditions on a verified 
net. It is required, that all transitions of the criterion 
net could be observed and that all observed 
sequences of solutions are free from divergences. 

Definition 5. Let PN and PN’ be Petri nets defined as 
in Definition 2. and π be an observation unction. The 
net PN is totally correct in relation to PN’ if: 
1. It is partially correct: ∀ s ∈ S(PN) . correct(s, π, 

PN’ ) 
2. The observation of its behavior covers the whole 

space X’:  
∀ i ≤ dim X’ . ( ∃ s ∈ S(PN) . ∃ xk ∈s. x’ = π( xk) 
∧ x’(i) > 0), where dim X’ denotes the size of the 
space X’ . 



3. There is no divergence: ∀ s ∈ S(PN) . 
¬ divergent( s, PN, π )  

4. Correctness verification. Automatic correctness 
verification is based on the construction of the graph 
of coupled net execution G describing synchronous 
execution of both verified and criterion nets [1,2]. 
Informally, a graph G is a finite directed acyclic 
graph whose vertices are marked with coupled net 
states (M,M’) and edges with pairs (v,π(v)), where 
v ∈ X. For an edge (v,π(v)) linking vertices (Mi,Mi’) 
and (Mj,Mj’) the equations Mj = Mi+A v and 
Mj’ = Mi’+A’ π(v) hold. The transition along an edge 
is correct, if v is a step in the verified net and π(v) is a 
step in the criterion net.  
The algorithm of correctness verification constructs a 
partial graph of coupled execution checking the 
correctness of its transitions. It can be considered as a 
recursive procedure realizing in-depth graph 
exploration. We denote by Next(M) a set of 
transitions enabled in a marking M. Let e(ti) be a 
vector in X corresponding to a transition ti; i-th 
element of the vector e(ti) has the value1, the other 0. 
Set S is a set of encountered coupled net states 
(M,M’). 
 
depthCheck (S, M, M’, x){ 
 foreach( t ∈ Next(M) ){ 

Calculate x=x+e(t); M2 = M + A⋅e(t) and 
M2’ =M’ + A’⋅π(e(t)); 
if(  ∃ i. M2’(i) < 0 )report error; /* 
sequence of solutions is not correct */ 
add a vertex marked with (M2,M2’) to the 
graph G ; 
add to an edge from (M,M’) to (M2,M2’) ) 
marked with ( e(t), π(e(t)) ); 
if( (M2,M2’) ∈ S ) return;  
/* do not check the descendants of vertex 
that has been encountered earlier */  
Assign: S = S ∪ {(M2,M2’))} ; 
depthSearch(S, M2, M2’, x); 

 } 
} 
The verification process starts with assignment S=∅; 
M=M0; M’=M0’, x=0 and the call to 
depthCheck(S, M, M’, x). 
We have implemented the prototype software for 
relative correctness verification. Actually, the tool 
does not realize the presented algorithm in a 
recursive manner, because checking the divergence 
conditions requires the access to the stack of 
parameters. We also do not construct the full graph 
of coupled nets execution. The set of examined 
vertices and the stack of parameters of the 

depthCheck procedure provide enough 
information for checking the correctness conditions. 
The input for the software tool is a textual 
specification of the verification problem. The 
specifications are more decorated then plain Petri net 
models. They contain tables of symbols assigned to 
transitions and places what ensures better readability 
of the specifications and results of their analysis. The 
tool produces a report on the verification process. It 
describes details of transitions, reached markings, 
sets of enabled transitions, etc. 
In the case of an error, as deadlock or incorrect 
transition, a sequence of transitions leading to the 
erroneous situation is reported. It serves as the 
counterexample. At the termination, the tool prints 
the summary of verification process (number of 
transitions, incorrect transitions, loops, divergences). 
In course of a verification a set S of reached vertices 
of graph G is kept in memory, as well as the current 
sequence of solutions starting from the initial 
marking. It should be remarked, that only sparse 
representation of vectors and matrices is used.  

5. Example. As the application example we present 
the verification of the alternating bit protocol [5]. The 
parties of the protocol are two processes Sender and 
Receiver connected by two asynchronous 
communication channels Trans and Ack. The 
channels may represent a computer network transport 
mechanism.  
An idea of the protocol is showed in Fig. 2. The 
following scenario realizes the information exchange. 
Sender after obtaining a request to transfer a message 
(accept) sends it to the channel Trans appending a 
token, being an agreed bit value (e.g. 0). Receiver 
gets the packet and if it contains the expected bit 
value, then delivers the message (deliver) and sends 
the acknowledgement bit to the channel Ack. Sender 
receives the acknowledgment bit; if its value matches 
the bit sent in a recent package, it is ready to accept 
and send the message, which will be attributed with 
the alternated bit value. If the acknowledgement 
message ack is lost or does not reach the Sender 
before the timeout period elapse. then the sender 
repeats last transmission. Acknowledgement bits are 
used to protect against the duplication or loss of send 
packets. 

Sender

Trans

Ack

Receiver

send trans

replyack

deliveraccept

 

Fig. 2. Alternating bit protocol 
A formal proof then the system behaves as a buffer 
of the capacity 1, i.e. it executes the sequence of 



accept and deliver operations (Fig. 3.) can be found 
in [5]. In our case, the net modeling the buffer will 
serve as the criterion specification.  

The verification proved partial correctness of the 
problem. The system is not totally correct because of 
the presence of divergences. The results of 
verification are summarized in the table Tab 1. 
Partial correctness justifies that the checked protocol 
model meets the requirements concerning sequence 
of operations (Fig. 3).  

Empty
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However, the presence of divergences indicates that 
there is no guarantee that a message after being 
entered (accept) will be output (deliver) or that the 
system in a finite time will be ready to get and send a 
new message. Divergences are caused by losing 
communication channels and transitions timeout(0) 
and timeout(1) of the subnet Sender. Revealing the 

divergences can be a valuable hint for a system 
designer. To assure the total correctness he should for 
example limit the number of sent packets in case of 
missing acknowledgements to a predefined number 
n. After sending n packets with identical content 
without acknowledgement, the process Sender should 
terminate the transmission due to communication 
error. Corresponding transition should be added to 
the criterion net defining the requirements for the 
protocol implementation. 

Fig. 3 Criterion Petri net specifying the requirements. 

Fig. 4. shows nets modeling the processes Sender and 
Receiver and communication channels. For more 
readability we adopt the convention that transitions 
with the same name in different subnets (e.g..: 

send(0) in the subnet Sender and send(0) in the 
subnet Trans) refer to the same transition. It should 
be noticed that implicit state member of subnets 
Sender and Receiver are local binary variables. Their 
values are used to index distinguishable transitions 
and places (e.g..: send(0) and send(1)). The examined 
specification assumed that packets can be lost in 
communication channels (transitions loss in subnets 
Trans and Ack). 
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Fig. 4 Verified Petri net modeling alternating bit protocol 

The observation function maps transitions in verified 
net accept(0) and accept(1) onto criterion net 
transition accept (Fig. 3) and transitions deliver(1) 
and deliver(0) onto delive 

 



Tab. 1 Results of verification of the net modeling the 
alternating bit protocol 

Number of transitions 282 
Number of erroneous transitions 0 
Number of vertices of coupled execution 
graph 

116 

Number of sequences of solutions leading 
to the branching states 

71 

Number of sequences of solutions with 
divergences 

63 

Number of sequences of solutions lading 
to deadlock markings 

0 

 

6. Conclusions. The paper describes a relative 
correctness problem for linear observation function. 
We model a concurrent system as a PT Petri net. The 
same formalism is used to describe the system 
requirements. Using the matrix representation of 
Petri nets we define the partial correctness as the 
correctness of all sequences of its steps. The 
satisfaction of total correctness requires additionally 
the lack of divergences in observations and covering 
all transitions in the criterion net specifying the 
requirements. 
The example of alternating bit protocol shows a 
small size specification that can be effectively 
checked with the software tool implementing the 
algorithm of relative correctness verification. We 
have also successfully verified much more complex 
cases with thousands of transitions and reached 
states. In case of large size problems it is possible to 
apply partial search algorithms.  
One of the most interesting candidate is supertrace 
[11]. In the supertrace algorithm the explored 
statespace is not represented explicitly. We represent 
explicitly states in the set S in depthCheck procedure 
in Chapter 4. The representation is compact, as we 
use sparse vectors, sets are implemented as trees, etc. 
However, the efficiency of the verification process 
decrease with growing number of states in the set S. 
In the supertrace algorithm states in the set are 
represented by bit values in a large bit vector 
addressed by a hash function. In this way it is 
possible to construct a set having millions of states. 
Moreover, checking if the state was encountered 
earlier in the search process is very fast. 
The paper was supported by the KBN grant 
Nr 4T11C 035 24 Zastosowanie metod formalnych do 
wspomagania wytwarzania poprawnego oprogramo-
wania systemów czasu rzeczywistego. 
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