
OpenCL implementation of PSO algorithm for
the Quadratic Assignment Problem ?

Piotr Szwed and Wojciech Chmiel and Piotr Kad luczka

AGH University of Science and Technology
{pszwed,wch,pkad}@agh.edu.pl

Abstract. This paper presents a Particle Swarm Optimization (PSO)
algorithm for the Quadratic Assignment Problem (QAP) implemented
on OpenCL platform. Motivations to our work were twofold: firstly we
wanted to develop a dedicated algorithm to solve the QAP showing both
time and optimization performance, secondly we planned to check, if
the capabilities offered by popular GPUs can be exploited to accelerate
hard optimization tasks requiring high computational power. We were
specifically targeting low-cost popular devices, with limited capabilities.
The paper discusses the algorithm and its parallel implementation, as
well as reports results of tests.

Keywords: QAP, PSO, OpenCL, GPU calculation, particle swarm op-
timization, discrete optimization

1 Introduction

Quadratic Assignment Problem (QAP) is considered one of the most fundamen-
tal optimization problems, as it generalizes a large number of theoretical issues,
including graph partitioning, finding maximal clique or linear arrangement. The
QAP can be used to model several practical problems, such as balancing of jet
turbines, less-than-truckload (LTL), very-large-scale integration (VLSI), back-
board wiring problem and molecular fitting.

The basic QAP formulation is the following: given a set of n facilities and
n locations, the goal is to find an assignment of facilities to locations that mini-
mizes the goal function, which is calculated as a sum of flows between facilities
multiplied by distances between locations. A there are n! possible assignments,
the QAP is one of the most difficult combinatorial problems belonging to the
NP-hard class. Therefore, only approximation algorithms can be used for the
case, where the n is bigger than 30 ([1], [2], [3]).

Particle Swarm Optimization (PSO) is an optimization method inspired by
an observation of social behavior. It attempts to find an optimal problem so-
lution by moving a population of particles in a search space. Each particle is

? This is a draft version of the paper submited to Artificial Intelligence and
Soft Computing - 13th International Conference, ICAISC 2014, Zakopane,
Poland, June 14-18, 2014. http://icaisc.eu/

2

characterized by two features its position and velocity. Depending on a method
variation, particles may exchange information on their positions and reached
values of goal functions [4]. PSO is a metaheuristics, that can be mapped on
various domains. Although the method was intended for continuous domains,
its applications to discrete problems, including the Traveling Salesman Problem
(TSP) and the QAP were discussed in [5–7].

In this paper we present an implementation of PSO algorithm for the QAP
problem on OpenCL platform. OpenCL is a solution allowing developers to ac-
celerate applications by using computational power of multicore graphic cards
and processors. OpenCL enabled devices are quite widespread, even if often their
users don’t fully realize it. They include popular components (graphic cards and
CPUs) from AMD, Nvidia and Intel companies.

A motivation to our work was to check, if the capabilities offered by popular
GPUs can be exploited to accelerate hard optimization tasks requiring high
computational power. In this paper we make the following two contributions:
firstly we present a developed PSO algorithm for the QAP problem, secondly we
discuss its parallel implementation on OpenCL platform.

The paper is organized as follows: next Section 2 gives the definition of QAP.
It is followed by Section 3, which discusses the application of PSO to the QAP,
as well as its parallel implementation with OpenCL. Experiments performed and
their results are presented in Section 4. Section 5 provides concluding remarks.

2 Quadratic AssignmentProblem

Quadratic Assignment Problem was introduced by Koopmans and Beckman in
1957 as a mathematical model of assigning a set of economic activities to a set
of locations.

For the given set N = {1, ..., n} we define two n × n non-negative matrices
F = [fi,k] , D = [dj,l]. In the terminology of facilities-location the set N is a set of
facilities indexes and π(i) ∈ N, i = 1, ..., n defines locations, to which the facilities
are assigned. Matrix D defines distances between locations, whereas matrix F
defines flows between pairs of facilities. Matrix B describes a linear part of the
assignment cost and in most cases is omitted. A solution of QAP (also denoted
as QAP (F,D)) can be defined as a permutation π = (π(1), ..., π(n)) from the
set of n facilities. In the Koopman-Beckman’s [8] model the goal is to find the
permutation π∗ which minimizes the objective function:

f(π∗) = minπ∈Π

n∑
i=1

n∑
j=1

fijdπ(i),π(j) +

n∑
i=1

bi,π(i) (1)

The objective function f(π), π ∈ Π describes the global cost of system real-
ization and exploitation. Π is a set of permutations of the set of natural numbers
1, . . . , n. In most cases matrix D and F are symmetric: distances di,j and dj,i
between two locations i and j are equal, the same applies to flows: fi,j and fj,i.

QAP models found application in various areas including transportation [9],
scheduling, electronics (wiring problem), distributed computing, statistical data

3

analysis (reconstruction of destroyed soundtracks), balancing of turbine running
[10], chemistry [11], genetics [12], creating the control panels and manufactur-
ing [13].

In 1976 Sahni and Gonzalez proved that the QAP is strongly NP-hard [14,
15], by showing that a hypothetical existence of a polynomial time algorithm for
solving the QAP would imply an existence of a polynomial time algorithm for
an NP-complete decision problem - the Hamiltonian cycle.

In many cases finding an optimal solution for the QAP by applying local
search is very hard. The neighborhood definition often used in algorithms solving
the QAP is the structure 2-opt (based on a pair exchange in a permutation).
Fig. 1 shows an example of landscape for the problem instance Lipa60b. As it
could be seen, this landscape (QAP, 2-opt) is multimodal. The neighborhood
solutions are characterized by weak autocorrelation, hence, this instance of QAP
(and many others) is difficult to optimize. Several approximation algorithms
for the QAP use procedures based on local search, but on the basis the above
considerations, it can be proven that in a general case this approach does not
guarantee finding a good solution.

Fig. 1. An example of the landscape for the QAP problem (Lipa60) for 2-opt neigh-
borhood structure.

3 Methods

The classical PSO algorithm [4] is an optimization method defined for continuous
domain. During the optimization process a number of particles move through
a search space and update their states and values of goal function at discrete
time steps t = 1, 2, 3, . . . Each particle is characterized by its position x(t) and
velocity v(t). A particle remembers its best position reached so far pL(t), as well
as it can use information about the best solution found by the swarm pG(t).

The state equation for a particle is given by formula (2). Coefficients c1, c2, c3 ∈
[0, 1] are called respectively inertia, cognition (or self recognition) and social fac-
tors.

4

v(t+ 1) = c1 · v(t) + c2 · (pL(t)− x(t)) + c3 · (pG(t)− x(t))

x(t+ 1) = x(t) + v(t)

}
(2)

An adaptation of the PSO method to a discrete domain necessities in giving
interpretation to the velocity concept, as well as defining equivalents of scalar
multiplication, subtraction and addition for arguments being solutions and ve-
locities. Examples of such interpretations can be found in [5] for the TSP and
[6] for the QAP.

In the rest of this section we describe an adaptation of the Particle Swarm
Optimization (PSO) method to the QAP problem. Some solutions, especially
the interpretation of the velocity, are based ideas presented in [7].

3.1 PSO adaptation for the QAP problem

A state of a particle is a pair (X,V). For the QAP problem both are n× n ma-
trices, where n is the problem size. The matrix X = [xij] encodes an assignment
of facilities to locations. Its elements xij are equal to 1, if j-th facility is assigned
to i-th location, and take value 0 otherwise.

A particle moves in the solution space following the direction given by the
velocity V . Elements vij have the following interpretation: if vij has high positive
value, then a procedure determining the next solution should favor an assignment
xij = 1. On the other hand, if vij ≤ 0, then xij = 0 should be preferred.

The state of a particle reached in t-th iteration will be denoted by (X(t), V (t)).
In each iteration a state of a particle is updated according to formulas (3) and
(4).

V (t+1) = Sv(c1 ·V (t)+c2 ·r2(t) ·(PL(t)−X(t))+c2 ·r3(t) ·(PG(t)−X(t))) (3)

X(t+ 1) = Sx(X(t) + V (t)) (4)

Coefficients r2 and r3 are random numbers from [0, 1] generated for each
particle and iteration. They are introduced to model a random choice between
movements in the previous direction (according to c1 – inertia), the best local
solution (self recognition) or the global best solution (social behavior).

All operators appearing in (3) and (4) are standard operators from linear
algebra. Instead of redefining them for a particular problem, see e.g. [5], we
propose to use aggregation functions Sv and Sx that allow to adapt the algorithm
to particular needs of a discrete problem.

The function Sv is used to assure that particle velocity have reasonable val-
ues. Initially, we thought that unconstrained growth of velocity can be a problem,
therefore we have implemented a function, which restricts the elements of V to an
interval [−vmax, vmax]. This function is referred as raw in Table 2. However, the
experiments conducted shown, that in case of small inertia factor, e.g. c1 = 0.5,

5

after a few iterations all velocities tend to 0 and in consequence all particles con-
verge to the best solution encountered earlier by the swarm. To avoid such effect
another function was applied, which additionally performs column normaliza-
tion. For each column j a sum of absolute values of the elements nj =

∑n
i=1 |vij |

is calculated and then the following assignment is made: vij ← vij/nj .
According to formula (4) a new particle position X(t + 1) is obtained by

aggregating the previous state components: X(t) and V (t). As elements of a
matrix X(t) + V (t) may take values from [−vmax, vmax + 1], the Sx function is
responsible for converting it into a valid assignment matrix having exactly one
1 in each row and column. Actually, Sv is rather a procedure, than a function,
as it incorporates some elements of random choice.

Three variants of Sx procedures were implemented:

1. GlobalMax(X) – iteratively searches for xrc, a maximum element in a matrix
X, sets it to 1 and clears other elements in the row r and c.

2. PickColumn(X) – picks a column c from X, selects a maximum element
xrc, replaces it by 1 and clears other elements in r and c.

3. SecondTarget(X) – similar to GlobalMax(X), discussed in detail in section
3.2.

Due to limited space we present only the algorithm for GlobalMax (Algo-
rithm 1). In a while loop, executed exactly n times, it calculates M , the set
of maximum elements in the input matrix X(t) + V (t), whose row and column
indices belong to the sets R and C respectively. Then, it picks an element xrc
from M (if it has more then one elements), clears elements in the row r and
the column c and sets xrc to 1. Hence, the selected assignment represents the
best choice, considering previous decisions (which in some cases can be random).
Initially, R and C contain all indices 1, . . . , n. In each iteration exactly one (r or
c) is removed from both sets, hence the procedure stops after n iterations.

3.2 Second target aggregation procedure

In several experiments, where which GlobalMax aggregation procedure was
used, particles seemed to get stuck, even if their velocities were far from zero.
We reproduce this effect on a small 3× 3 example:

X =

1 0 0
0 0 1
0 1 0

V =

7 1 3
0 4 5
2 3 2

 X + V =

8 1 3
0 4 6
2 4 2

 Sx(X + V) =

1 0 0
0 0 1
0 1 0


For the described case in subsequent iterations it will hold X(t+ 1) = X(t),

until another particle is capable of changing (PG(t)−X(t))) component of for-
mula (3) for velocity calculation. A solution for this problem can be to move a
particle to a secondary direction, by ignoring k < n elements that are in the
solution X(t) already set to 1. This, depending on k, gives an opportunity to
reach other solutions with a smaller goal function value (see Fig. 2). If they are
maximum elements in the remaining matrix denoted here as X �k V , they are

6

Algorithm 1 Aggregation procedure GlobalMax)

1: procedure GlobalMax(X)
2: R← {1, . . . , n}
3: C ← {1, . . . , n}
4: while R 6= ∅ ∧ C 6= ∅ do
5: M ← {(r, c) : ∀i∈R,j∈C(xrc ≥ xij)} . Calculate set of maximum elements
6: Randomly select (r, c) from M
7: R← R \ {r} . Update the sets R and C
8: C ← C \ {c}
9: for i in [1, n] do

10: xri ← 0 . Clear r-th row
11: xic ← 0 . Clear c-th column
12: end for
13: xrc ← 1 . Assign for 1 for a maximum value
14: end while
15: return X
16: end procedure

still reasonable movement directions. Formula (5) shows X�kV matrix for k = 3
in the discussed example. Elements of a new solution are marked with circles.

X �k=3 V =

 0 1 3©
0 4© 0
2© 0 2

 (5)

Sx(X+V)

Sx(X+V,1) Sx(X+V,2)

X

V

Fig. 2. An idea of the second target aggregation function

3.3 OpenCL platform

OpenCL [16] is a standard providing a common language, programming inter-
faces and hardware abstraction for heterogeneous platforms including GPU, mul-

7

ticore CPU, DSP and FPGA [17]. It allows to accelerate computations by de-
composing them into a set of parallel tasks (work items) operating on separate
data.

A program on OpenCL platform is decomposed into two parts: sequential
executed by the CPU host and parallel executed by multicore devices. Functions
executed on devices are called kernels. They are written in a language being a
variant of C with some restrictions related to keywords and datatypes. When
first time loaded, the kernels are automatically translated into a target device
instruction set. The whole process takes about 500ms.

OpenCL supports 1D, 2D or 3D organization of data (arrays, matrices and
volumes). Each data element is identified by 1 to 3 indices, e.g. d[i][j] for two-
dimensional arrays. A work item is a scheduled kernel instance, which obtain a
combination of data indices within the data range. To give an example, a 2D
array of data of n×m size should be processed by n ·m kernel instances, which
are assigned with a pair of indices (i, j), i < n and j < m. Those indices are
used to identify data items assigned to kernels.

Additionally, kernels can be organized into workgroups, e.g. corresponding
to parts of a matrix, and synchronize their operations within a group using so
called local barrier mechanism. However, workgroups suffer from several platform
restrictions related to number of work items and amount of accessible memory.

OpenCL uses three types of memory: global (that is exchanged between the
host and the device), local for a work group and private for a work item.

3.4 OpenCL algorithm implementation

In our implementation we used aparapi platform [18] that allows to write OpenCL
programs directly in Java language. The platform comprises two parts: an API
and a runtime capable of converting Java bytecodes into OpenCL workloads.
Hence, the host part of the program is executed on a Java virtual machine, and
originally written in Java kernels are executed on an OpenCL enabled device.

The basic functional blocks of the algorithm are presented in Fig. 3. Imple-
mented kernels are marked with gray color. The code responsible for generation
of random particles is executed by the host. We have also decided to leave the
code for updating best solutions at the host side. Actually, it comprises a number
of native System.arraycopy() calls.

Each particle is represented by a number of matrices (see Fig. 4): X and
Xnew – solutions, PL – local best particle solution and V – velocity. Moreover,
particles share read-only global best solution – PG and generated by the host
arrays of random numbers (there is no rand() equivalent on OpenCL platform).
The amount of the memory used can be high. It can be estimated, that for the
biggest test case reported in Table 1: 10000 particles using 60× 60 matrices, the
global memory GPU consumption ranged at 550MB.

An important decision related to OpenCL program design is related to data
ranges selection. The memory layout in Fig. 4 suggests 3D range, whose dimen-
sions are: row, column and particle number. This can be applied for relatively
simple velocity or goal function calculation. However, the proposed algorithms

8

Generate particles

Apply Sx

Calculate goal function

Update best solutions

Generate velocities

STOP

Apply Sx

Calculate goal function

Update best solutions

Update velocities and apply Sv

YES

NO

Fig. 3. Functional blocks of OpenCL based algorithm implementation.

for Sx, see Algorithm 1, are far too complicated to be implemented as a simple
parallel work item. In consequence, we decided to use only one dimension rep-
resenting a particle number, what implicates that parallel work items process
whole particles. To give an example, X components being 60 × 60 matrices of
all 100 particles are represented by a single array of 360000 floats with a range
i = 0, . . . , 99.

X V PL Xnew PG

rands

goal function
values

Fig. 4. Global variables used in the algorithm implementation

4 Experiments and results

We have conducted two types of experiments. The first aimed at evaluating
the time performance of GPU based implementation for various setups of PSO

9

algoritms (varying numbers of particles and numbers of iterations). The goal
of the second group of test cases was to establish the influence of parameters
controlling the implemented PSO algorithm on its optimization efficiency. All
tests were performed on instances defined in QAPLIB problem library [19].

4.1 Time performance

The OpencCL implementation was tested on two platforms, referred as laptop
(AMD Radeon HD 6750M card, i7-2657QM, 2.2Ghz processor, Windows 7) and
workstation (NVIDIA GeForce GT 430, i7-4860HQ processor, 3.60GHz, Win-
dows 7)). In both cases Java 8 runtime was used for host operations.

Fig. 5 gives the average times spent in one iteration for various numbers of
particles. It should be noted, that at the workstation platform it was not possible
to run tests for the problem size 100.

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
·104

Problem size

It
er

at
io

n
ti

m
e

[m
s] L20

L100
L256
L1000
W20
W100

Fig. 5. Time spent in one iteration for various problem sizes. L20, L100, L256 and
L1000: 20, 100, 256 and 1000 particles (laptop), W20 and W100: 20 and 100 particles
(workstation)

Detailed results of tests related to execution time are given in Table 1. It can
be observed, that the tested parallel implementation is inferior to the sequen-
tial, if the number of particles is relatively small. For 20 or even 100 particles
the overhead related to data transfer between the host and the GPU prevails
potential benefits.

A real speedup can be observed for 200 or more particles being simultaneously
processed. This is visible in last eight table rows giving results for 1000 and 10000
particles. The results suggest quite different algorithm design, e.g. to exploit
the platform capabilities sequential algorithm runs for 20 particles should be
transformed into independent 500 parallel runs.

10

It should be noted, however, that all tests were not performed on a dedicated
GPU hardware, but on popular graphic cards installed in mid-range laptops or
workstations.

Table 1. Comparison of iteration times for parallel and sequential implementations.
All times (PAR and SEQ) expressed in ms.

Problem size Particles Iterations Time
PAR
[ms]

Sx Goal Best Velocity Time
SEQ
[ms]

Gain:
SEQ
PAR

12 20 100 1.42 63.53% 17.40% 0.19% 18.89% 0.07 0.05
26 20 100 4.75 69.98% 19.62% 0.47% 9.93% 0.55 0.12
50 20 100 25.40 76.90% 19.57% 0.31% 3.23% 3.61 0.14
60 20 100 43.46 76.37% 21.10% 0.06% 2.46% 5.16 0.12
64 20 100 56.80 57.70% 38.33% 0.02% 3.94% 5.57 0.10
72 20 100 73.35 76.23% 21.60% 0.20% 1.97% 6.21 0.08
100 20 100 189.29 75.92% 22.60% 0.16% 1.32% 9.84 0.05
12 100 100 0.38 63.53% 17.40% 0.19% 18.89% 0.11 0.30
26 100 100 1.38 69.98% 19.62% 0.47% 9.93% 0.79 0.57
50 100 100 8.15 76.90% 19.57% 0.31% 3.23% 4.69 0.58
60 100 100 13.59 76.37% 21.10% 0.06% 2.46% 6.76 0.50
64 100 100 24.08 57.70% 38.33% 0.02% 3.94% 9.64 0.40
72 100 100 21.54 76.23% 21.60% 0.20% 1.97% 8.15 0.38
100 100 100 57.06 75.92% 22.60% 0.16% 1.32% 12.96 0.23
12 1000 10 0.07 47.42% 23.90% 0.44% 28.24% 0.15 2.12
26 1000 10 0.23 53.33% 27.41% 2.76% 16.50% 1.04 4.56
50 1000 10 1.27 53.75% 37.92% 1.51% 6.82% 6.71 5.29
60 1000 10 3.31 72.54% 23.12% 0.56% 3.78% 7.12 2.15
64 1000 10 4.56 44.95% 41.54% 0.30% 13.20% 12.38 2.72
72 1000 10 3.39 57.58% 36.68% 1.02% 4.72% 10.79 3.18
100 1000 10 9.19 56.17% 40.36% 0.38% 3.09% 17.51 1.91
60 10000 100 1.61 42.38% 47.74% 0.02% 9.86% 12.18 7.56

4.2 Optimization performance

The second group of tests aimed at establishing the optimization performance
of the algorithm for various combinations of parameters (including kernels used).
The tests were performed a randomly generated problem Tai60b from the QAPLIB
collection [19]. The best known goal function value (608215054) for Tai60b was
established with a robust Tabu search algorithm [20]. We consider it a reference
in the comparisons.

Table 2 gives selected results of tests, which yielded the bests, average and
the worst results. It can be observed that the best solutions were obtained for
large numbers of iterations (the reference value for Tai60b was also obtained
the number of iterations in order of 100000 [20]). In most cases raw Sv function
(without normalization) returned worse results than Norm. For Sx aggregation
function, results of applying global maximum (GMax) and pick column (PCol)
are comparable. The kernel implementing the second target (STarget) gave the
best results. Good results were reported for equal values of c1, c2 and c3 coef-
ficients. It may be stated that c2 (self recognition) should not dominate other
factors, whereas high inertia c1 is acceptable.

11

Table 2. Results of multiple tests for Tai60b (problem size: 60)

P
a
rt
ic
le
s

It
e
ra

ti
o
n
s

In
e
rt
ia
c
1

S
e
lf

re
c
o
g
n
it
io
n
c
2

S
o
c
ia
l
fa
c
to

r
c
3

V
e
lo
c
it
y
k
e
rn

e
l

S
x
k
e
rn

e
l

S
T
a
rg

d
e
p
th

F
ir
st

g
o
a
l

R
e
a
ch

e
d

g
o
a
l

G
a
in

It
e
ra

ti
o
n

G
a
p

100 3000 0.5 0.5 0.5 Norm STarg 0.25 903886656 659155648 27.08% 2840 7.73%
100 6000 0.5 0.5 0.5 Raw STarg 0.25 903886656 661662080 26.80% 5852 8.08%
100 3000 0.9 0.3 0.3 Norm STarg 0.75 903886656 664190656 26.52% 2715 8.43%
50 1000 0.5 0.5 0.5 Raw STarg 0.25 932608128 666681280 28.51% 904 8.77%

1000 6000 0.5 0.5 0.5 Norm STarg 0.25 899822016 669809536 25.56% 5755 9.20%
500 100 0.5 0.5 0.5 Raw STarg 0.5 901977728 719012736 20.28% 50 15.41%
200 250 0.9 0.3 0.3 Raw STarg 0.5 903886656 731279680 19.10% 176 16.83%
500 100 0.3 0.9 0.3 Raw STarg 0.75 901977728 734171136 18.60% 99 17.16%
200 250 0.9 0.3 0.3 Raw PCol N/A 902798080 736113152 18.46% 67 17.37%
500 100 0.5 0.5 0.5 Raw STarg 0.5 901977728 741909632 17.75% 100 18.02%
50 1000 0.5 0.5 0.5 Raw GMx N/A 902798080 858625408 4.89% 11 29.16%
500 100 0.9 0.3 0.3 Raw GMx N/A 901977728 871849536 3.34% 72 30.24%
500 100 0.5 0.5 0.5 Raw GMx N/A 901977728 877890624 2.67% 83 30.72%
500 100 0.3 0.9 0.3 Raw PCol N/A 890460224 879615744 1.22% 3 30.85%
50 1000 0.3 0.9 0.3 Raw PCol N/A 902798080 902798080 0.00% 0 32.63%
200 250 0.3 0.9 0.3 Raw PCol N/A 902798080 902798080 0.00% 0 32.63%

5 Conclusions

In this paper we describe a PSO algorithm designed for solving the QAP prob-
lem, as well as its parallel implementation on the OpenCL platform. Several
mechanisms applied in the algorithm were inspired by Liu at al. work [7], how-
ever, they were refined to provide better performance.

Another contribution of this work is a parallel implementation of the dis-
cussed algorithm on the OpenCL platform. We developed a Java program that
uses aparapi library to deliver computational tasks to an OpenCL enabled de-
vice. We were specifically targeting low-cost popular devices, e.g. 200$ graphics
cards, with limited capabilities.

We report results of tests aiming at evaluating the implementation in terms
of execution times and optimization capability. The tests targeting time per-
formance revealed that benefits of GPU calculations can be observed, if the
number of particles processed in parallel is big. The optimization performance,
here presented on a selected large QAP instance (n = 60), showed that the algo-
rithm behaves differently, depending on values of control parameters. However,
the proposed second target method for updating particle position yielded better
results, than the others.

References

1. Burkard, R., Karisch, S., Rendl, F.: Qaplib-a quadratic assignment problem library.
Journal of Global Optimization 10(4) (1997) 391–403

12

2. Chmiel, W.: Evolution Algorithms for optimisation of task assignment problem
with quadratic cost function. PhD thesis, AGH Technology University, Poland
(2004)

3. Chmiel, W., Kad luczka, P., Packanik, G.: Performance of swarm algorithms for
permutation problems. Automatyka 15(2) (2009) 117–126

4. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In:
Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth
International Symposium on. (Oct 1995) 39–43

5. Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling sales-
man problem. In: New optimization techniques in engineering. Springer (2004)
219–239

6. Onwubolu, G.C., Sharma, A.: Particle swarm optimization for the assignment of
facilities to locations. In: New Optimization Techniques in Engineering. Springer
(2004) 567–584

7. Liu, H., Abraham, A., Zhang, J.: A particle swarm approach to quadratic assign-
ment problems. In Saad, A., Dahal, K., Sarfraz, M., Roy, R., eds.: Soft Computing
in Industrial Applications. Volume 39 of Advances in Soft Computing. Springer
Berlin Heidelberg (2007) 213–222

8. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of eco-
nomic activities. Econometrica 25 (1957) 53–76

9. Bermudez, R., Cole, M.H.: A genetic algorithm approach to door assignments in
breakbulk terminals. Technical Report MBTC-1102, Mack-Blackwell Transporta-
tion Center, University of Arkansas, Fayetteville, Arkansas (2001)

10. Mason, A., Rönnqvist, M.: Solution methods for the balancing of jet turbines.
Computers & OR 24(2) (1997) 153–167

11. Ugi, I., Bauer, J., Brandt, J., Friedrich, J., Gasteiger, J., Jochum, C., Schubert,
W.: Neue anwendungsgebiete fur computer in der chemie. Angewandte Chemie
91(2) (1979) 99–111

12. Phillips, A.T., Rosen, J.B.: A quadratic assignment formulation of the molecular
conformation problem. JOURNAL OF GLOBAL OPTIMIZATION 4 (1994) 229–
241

13. Grötschel, M.: Discrete mathematics in manufacturing. In Malley, R.E.O., ed.:
ICIAM 1991: Proceedings of the Second International Conference on Industrial
and Applied Mathematics, SIAM (1991) 119–145

14. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23(3) (1976)
555–565

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

16. Howes, L., Munshi, A.: The OpenCL specification.
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf Online: last accessed:
Jan 2015.

17. Stone, J.E., Gohara, D., Shi, G.: Opencl: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering 12(3)
(2010) 66

18. Howes, L., Munshi, A.: Aparapi - AMD. http://developer.amd.com/tools-and-
sdks/opencl-zone/aparapi/ Online: last accessed: Jan 2015.

19. Burkard, R., Karisch, S., Rendl, F.: QAPLIB a Quadratic Assignment Problem
library. Journal of Global Optimization 10(4) (1997) 391–403

20. Taillard, E.D.: Comparison of iterative searches for the quadratic assignment prob-
lem. Location Science 3(2) (1995) 87 – 105

