
1

OCL – The Object Constraint

Language in UML

OCL website:
http://www.omg.org/uml/

Textbook: “The Objection Constraint Language: Precise
Modeling with UML” , by Jos Warmer and Anneke Kleppe

This presentation includes some slides by: Yong He, Tevfik
Bultan, Brian Lings, Lieber.

2

History

� First developed in 1995 as IBEL by IBM’s
Insurance division for business modelling

� IBM proposed it to the OMG’s call for an
object-oriented analysis and design standard.
OCL was then merged into UML 1.1.

� OCL was used to define UML 1.2 itself.

3

Companies behind OCL

� Rational Software, Microsoft, Hewlett-
Packard, Oracle, Sterling Software, MCI
Systemhouse, Unisys, ICON Computing,
IntelliCorp, i-Logix, IBM, ObjecTime, Platinum
Technology, Ptech, Taskon, Reich
Technologies, Softeam

4

UML Diagrams are NOT Enough!

� We need a language to help with the spec.
� We look for some “add-on” instead of a brand

new language with full specification capability.
� Why not first order logic? – Not OO.
� OCL is used to specify constraints on OO

systems.
� OCL is not the only one.
� But OCL is the only one that is standardized.

5

OCL – fills the missing gap:

� Formal specification language � implementable.

� Supports object concepts.

� “Intuitive” syntax – reminds OO programming languages.

� But – OCL is not a programming language:
� No control flow.
� No side-effects.

6

Advantages of Formal Constraints

� Better documentation
� Constraints add information about the model elements and their

relationships to the visual models used in UML
� It is way of documenting the model

� More precision
� OCL constraints have formal semantics, hence, can be used to

reduce the ambiguity in the UML models

� Communication without misunderstanding
� UML models are used to communicate between developers, Using

OCL constraints modelers can communicate unambiguously

7

Where to use OCL?

� Specify invariants for classes and types
� Specify pre- and post-conditions for methods
� As a navigation language
� To specify constraints on operations
� Test requirements and specifications

8

Example: A Mortgage System

1. A person may have a mortgage only on a house

he/she owns.

The start date of a mortgage is before its end date.

9

OCL specification of the constraints:

1. context Mortgage context Mortgage

invariant: self.security.owner = self.borrower invariant: security.owner = borrower

2. context Mortgage context Mortgage

invariant: self.startDate < self.endDate invariant: startDate < endDate

10

More Constraints Examples

� All players must be over 18.

� The number of guests in each room doesn’t exceed
the number of beds in the room.

context Player invariant:
self.age >=18

context Room invariant:
guests -> size <= numberOfBeds

Room room guest Guest

numberOfBeds: Integer
*

Player

age: Integer

11

Constraints (invariants), Contexts and Self

� A constraint (invariant) is a boolean OCL expression –
evaluates to true/false.

� Every constraint is bound to a specific type (class,
association class, interface) in the UML model – its
context.

� The context objects may be denoted within the expression
using the keyword ‘self’.

� The context can be specified by:
� Context <context name>
� A dashed note line connecting to the context figure in the UML

models

� A constraint might have a name following the keyword
invariant.

12

Example of a static UML Model

Problem story:
A company handles loyalty programs (class LoyaltyProgram) for companies (class

ProgramPartner) that offer their customers various kinds of bonuses. Often, the
extras take the form of bonus points or air miles, but other bonuses are
possible. Anything a company is willing to offer can be a service (class Service)
rendered in a loyalty program. Every customer can enter the loyalty program by
obtaining a membership card (class CustomerCard). The objects of class
Customer represent the persons who have entered the program. A membership
card is issued to one person, but can be used for an entire family or business.
Loyalty programs can allow customers to save bonus points (class
loyaltyAccount) , with which they can “buy” services from program partners. A
loyalty account is issued per customer membership in a loyalty program
(association class Membership). Transactions (class Transaction) on loyalty
accounts involve various services provided by the program partners and are
performed per single card. There are two kinds of transactions: Earning and
burning. Membership durations determine various levels of services (class
serviceLevel).

13

LoyaltyProgram

enroll(c:Customer)

Service

condition: Boolean
pointsEarned: Integer
pointsBurned: Integer
description: String

0..*deliveredServices

Membership

LoyaltyAccount

points: Integer

earn(i: Integer)
burn(i: Integer)
isEmpty(): Boolean

Customer

name: String
title:String
isMale: Boolean
dateOfBirth: Date

CustomerCard

valid: Boolean
validForm: Date
goodThru: Date
color: enum{silver,

gold}
printedName: String

0..*0..*

age(): Integer

program

owner

card0..*
card

ProgramPartner

numberOfCustomers: Integer

partners

1..*

1..*

ServiceLevel

name: String

availableServices

0..*

{ordered} 1..*
0..1

0..*

actualLevel

Transaction

points: Integer
date:Date

program(): LoyaltyProgram

0..*transactions

card

transactions
0..*transactions

0..*

Burning Earning

Date

now: Date

isBefore(t:Date): Boolean
isAfter(t:Date): Boolean
=(t:Date): Boolean

1

1

1

1

1

1

1

1

1

level

generatedBy

partner 1

account

14

Using OCL in Class Diagrams

LoyaltyAccount

points: Integer

earn(i: Integer)

burn(i: Integer)

isEmpty(): Boolean

{ points >= 0 }

<<postcondition>>
points = points@pre - i

class invariant

postcondition for burn operation
<<postcondition>>
result = (points=0)

<<precondition>>
points >= i and i >= 0

precondition for burn operation

<<postcondition>>
points = points@pre + i

<<precondition>>
i >= 0

15

Invariants on Attributes
� Invariants on attributes:

context Customer
invariant agerestriction: age >= 18

context CustomerCard
invariant correctDates: validFrom.isBefore(goodThru)

The type of validFrom and goodThru is Date.
isBefore(Date): Boolean is a Date operation.

� The class on which the invariant must be put is the invariant
context.

� For the above example, this means that the expression is an
invariant of the Customer class.

16

Invariants using Navigation over

Association Ends – Roles (1)

Navigation over associations is used to refer to associated
objects, starting from the context object:

context CustomerCard
invariant: owner.age >= 18

owner � a Customer instance.
owner.age � an Integer.
Note: This is not the “right” context for this constraint!

If the role name is missing – use the class name at the other
end of the association, starting with a lowercase letter.
Preferred: Always give role names.

17

Invariants using Navigation over

Association Ends – Roles (2)

context CustomerCard
invariant printedName:
printedName =
owner.title.concat(‘ ‘). concat(owner.name)

printedName � a String.
owner � a Customer instance.
owner.title � a String.
owner.name � a String.
String is a recognized OCL type.
concat is a String operation, with the

signature concat(String): String.

18

Invariants using Navigation from

Association Classes

Navigation from an association class can use the classes at the
association class end, or the role names. The context object is
the association class instance – a tuple.

“The owner of the card of a membership must be the customer
in the membership”:

context Membership
invariant correctCard : card.owner = customer

19

Invariants using Navigation through

Association Classes

Navigation from a class through an association class uses the
association class name to obtain all tuples of an object:

“The cards of the memberships of a customer are only the
customer’s cards”:
context Customer
invariant correctCard :

cards->includesAll(Membership.card)

This is exactly the same as the previous constraint:

“The owner of the card of a membership must be the customer
in the membership”:
context Membership
invariant correctCard : card.owner = customer

The Membership correctCard constrain is better!

20

Invariants using Navigation through

Associations with “Many” Multiplicity

Navigation over associations roles with multiplicity greater than
1 yields a Collection type. Operations on collections are
accessed using an arrow ->, followed by the operation name.

“A customer card belongs only to a membership of its owner”:
context CustomerCard
invariant correctCard :

owner.Membership->includes(membership)

owner � a Customer instance.
owner.Membership � a set of Membership instances.
membership � a Membership instance.
includes is an operation of the OCL Collection type.

21

Navigating to collections

Customer Account Transaction

context Customer
account produces a set of Accounts

context Customer
account.transaction produces a bag of transactions

If we want to use this as a set we have to do the following

account.transaction -> asSet

0..* 0..*

22

Navigation to Collections

“The partners of a loyalty program have at least one delivered service”:
context LoyaltyProgram
invariant minServices :

partners.deliveredservices->size() >= 1

“The number of a customer’s programs is equal to that of his/her valid
cards”:
context Customer
invariant sizesAgree :

Programs->size() = cards->select(valid=true)-> size()

23

Navigation to Collections

“When a loyalty program does not offer the possibility to earn or burn
points, the members of the loyalty program do not have loyalty accounts.
That is, the loyalty accounts associated with the Memberships must be
empty”:
context LoyaltyProgram
invariant noAccounts :

partners.deliveredservices->
forAll(pointsEarned = 0 and pointsBurned = 0)

implies Membership.account->isEmpty()

and, or, not, implies, xor are logical connectives.

24

The OCL Collection types

� Collection is a predefined OCL type
� Operations are defined for collections
� They never change the original

� Three different collections:
� Set (no duplicates)
� Bag (duplicates allowed)
� Sequence (ordered Bag)

� With collections type, an OCL
expression either states a fact about
all objects in the collection or states
a fact about the collection itself, e.g.
the size of the collection.

� Syntax:
� collection->operation

25

Collection Operations

<collection> → size
→ isEmpty
→ notEmpty
→ sum ()
→ count (object)
→ includes (object)
→ includesAll (collection)

26

Collections cont.

<collection> → select (e:T | <b.e.>)
→ reject (e:T | <b.e.>)
→ collect (e:T | <v.e.>)
→ forAll (e:T* | <b.e.>)
→ exists (e:T | <b.e.>)
→ iterate (e:T1; r:T2 = <v.e.> | <v.e.>)

b.e. stands for: boolean expression
v.e. stands for: value expression

27

context StoreCard
invariant: printName = owner.title.concat(owner.name)

context Customer
cards → forAll (

printName = owner.title.concat(owner.name))

Changing the context

Customer

printName:String
points: Integer

1..*
owner cards

StoreCard

name:String
title: String
golduser: Boolean

age():Integer

earn(p:Integer)

Note switch of context!

28

takestaken_by

Example UML diagram

Student Module

Assessment

Exam Coursework

0..* 1..*

1..*

1..*

0..*

for_module

set_work

submits

submitted_by

name: String code: String
credit: Integer

weight: Integer

hours: Integer date: String

29

Constraints

a) Modules can be taken iff they have more than seven
students registered

b) The assessments for a module must total 100%
c) Students must register for 120 credits each year
d) Students must take at least 90 credits of CS

modules each year
e) All modules must have at least one assessment

worth over 50%
f) Students can only have assessments for modules

which they are taking

30

Constraint (a)

a) Modules can be taken iff they have more
than seven students registered
Note: when should such a constraint be
imposed?

context Module

invariant: taken_by→size > 7

31

Constraint (b)

b) The assessments for a module must total
100%

context Module
invariant:

set_work.weight→sum() = 100

32

Constraint (c)

c) Students must register for 120 credits each
year

context Student

invariant: takes.credit→sum() = 120

33

Constraint (d)

d) Students must take at least 90 credits of CS
modules each year

context Student
invariant:
takes →

select(code.substring(1,2) = ‘CS’).credit→sum() >= 90

34

Constraint (e)

e) All modules must have at least one
assessment worth over 50%

context Module

invariant: set_work→exists(weight > 50)

35

Constraint (f)

f) Students can only have assessments for
modules which they are taking

context Student
invariant:

takes→includesAll(submits.for_module)

36

Invariants using Navigation through

Cyclic Association Classes

� Navigation through association classes that are

cyclic requires use of roles to distinguish between

association ends:
object.associationClass[role]

� The accumulated score of an employee is positive:
context Person
invariant:
employeeRanking[bosses]. score->sum()> 0

� Every boss must give at least one 10 score:
context Person
invariant:
employeeRanking[employees] ->exists(score = 10)

Person

EmploymentRanking

*

*employees
bosses

score

37

Classes and Subclasses

� Consider the following constraint
context LoyaltyProgram

invariant:

partners.deliveredServices.transaction.points->sum() < 10,000

� If the constraint applies only to the Burning subclass, we can use the
operation oclType of OCL:

context LoyaltyProgram

invariant:

partners.deliveredServices.transaction

-> select(oclType = Burning).points->sum() < 10,000

38

Classes and Subclasses

“The target of a dependency is not its source”
context Dependency

invariant: self.source <> self

Is ambiguous :

Dependency is both

a ModelElement and an Association class.

context Dependency

invariant: self.oclAsType(Dependency).source <> self

invariant:

self.oclAsType(ModelElement).source -> isEmpty()

ModelElement

Note Dependency

*

*
target

source

39

OCL Constraints
� A constraint is a restriction on one or more

values of (part of) an object model/system.
� Constraints come in different forms:

� invariant
� constraint on a class or type that must always hold

� pre-condition
� constraint that must hold before the execution of an op.

� post-condition
� constraint that must hold after the execution of an op.

� guard
� constraint on the transition from one state to another.

We study only class constraints (invariants).

40

OCL Expressions and Constraints

� Each OCL expression has a type.
� Every OCL expression indicates a value or

object within the system.
� 1+3 is a valid OCL expression of type Integer,

which represents the integer value 4.

� An OCL expression is valid if it is written
according to the rules (formal grammar) of
OCL.

� A constraint is a valid OCL expression of type
Boolean.

41

Combining UML and OCL

� Without OCL expressions, the model would
be severely underspecified;

� Without the UML diagrams, the OCL
expressions would refer to non-existing
model elements,
� there is no way in OCL to specify classes and

associations.

� Only when we combine the diagrams and the
constraints can we completely specify the
model.

42

Elements of an OCL expression that is

associated with a UML model

� basic types: String, Boolean, Integer, Real.
� classes from the UML model and their

attributes.
� enumeration types from the UML model.
� associations from the UML model.

43

What is OCL Anyway?

� A textual specification language
� A expression language
� Is side-effect-free language
� Standard query language
� Is a strongly typed language

� so expressions can be precise
� Is a formal language
� Is part of UML
� Is used to define UML
� Is Not a programming language
� The OCL is declarative rather than imperative
� Mathematical foundation, but no mathematical symbols

� based on set theory and predicate logic
� has a formal mathematical semantics

44

What did People Say?

� OCL is too implementation-oriented and therefore not
well-suited for conceptual modelling. Moreover, it is at
times unnecessarily verbose, far from natural language.
� Alloy modelling language

� The use of operations in constraints appears to be
problematic
� An operation may go into an infinite loop or be undefined.

� Not stand alone language
� OCL is a local expression. (Mandana and Daniel)
� I would rather use plain English (Martin Fowler)

45

References

� The Amsterdam Manifesto on OCL
� In Object Modeling with the OCL (LNCS2263) p115-149

� The Object Constraint Language, Precise Modeling with UML, Addison-
Wesley, 1999.

� The Object Constraint Language, Precise Modeling with UML 2nd
� Response to the UML 2.0 OCL RfP (ad/2000-09-03) Revised Submission,

Version 1.6 January 6, 2003
� Some Shortcomings of OCL, the Object Constraint Language of UML

� Mandana Vaziri and Daniel Jackson,1999
� http://www.klasse.nl/english/uml/ UML CENTER
� Informal formality? The Object Constraint Language and its application in

the UML metamodel
� Anneke Kleppe, Jos Warmer, Steve Cook

� A Pratical Application of the Object Constraint Language OCL
� Kjetil M°age

� The UML's Object Constraint Language: OCL Specifying Components,
JAOO Tutorial – September 2000
� Jos Warmer & Anneke Kleppe

