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Abstract

We look at continuous functions with pathological properties, in particular, two ex-
amples of continuous functions that are nowhere differentiable. The first example was
discovered by K. W. T. Weierstrass in 1872 and the second by B. L. Van der Waerden
in 1930. We also present an example of a continuous strictly monotonic function with a
vanishing derivative almost everywhere, discovered by Zaanen and Luxemburg in 1963.
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CHAPTER 1

Introduction

The aim of this project is to investigate pathological counterexamples of continuous
functions, that is, functions whose behaviour is atypical and counterintuitive. Theorems
and concepts from real analysis are used in the construction of these pathological func-
tions.

Continuity and differentiability are two related concepts in real analysis. A well-known
theorem states that if a function is differentiable at a point, then it must be continuous
there as well. The converse of this statement, however, is false, as shown by the absolute
value function at zero. This notion of a function being continuous yet not differentiable
can be extended to the entire real line. However, these functions are not as simple as the
absolute value function. In fact, up to the early nineteenth century, most mathematicians
believed that every continuous function is differentiable at almost all points. The first
counterexample, the Weierstrass function, proved this conjecture to be false. First pre-
sented in July 1872, this prototypical example shocked the mathematical world. After the
Weierstrass function was published, many other continuous non-differentiable functions
were discovered. Another more geometrically intuitive example presented in this paper is
a function first given by Van der Waerden in 1930.

Monotonicity and differentiability are related as well, and there is a theorem that
associates these concepts: if a function has a positive derivative at every point in an
interval, then the function must be strictly increasing on the interval. Again, we can use
a simple example such as the cubic function to illustrate that the converse is false. To
improve on this notion, we introduce the Cantor function, affectionately known as the
Devil’s Staircase. We use the Cantor function to construct an example of a continuous
strictly monotonic function with a derivative that vanishes almost everywhere. This highly
atypical function was first given by Zaanen and Luxemburg in 1963.

The project is structured as follows. In Chapter 2, we review continuity and differen-
tiability. Since all the pathological examples in this paper are constructed with sequences
of functions, sequences and series are reviewed here as well. Chapter 3 then presents
the two examples of continuous yet nowhere differentiable functions, given by K. W. T.
Weierstrass and B. L. Van der Waerden. In Chapter 4, monotonicity and some important
theorems are presented. Finally, in Chapter 5, we investigate the second type of patho-
logical example of a continuous strictly increasing function with a vanishing derivative
almost everywhere, given by Zaanen and Luxemburg. The main examples are taken from
Counterexamples in Analysis [1], by Gelbaum and Olmsted.
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CHAPTER 2

Continuity and Differentiability

1. Preliminaries

In this chapter we review the necessary definitions and theorems regarding continuity
and differentiability of real-valued functions. Our aim is to lay the foundation for later
discussion of the main examples.

Definition 2.1 ([2]). Let I ⊆ R be an interval, let f : I → R, and let c ∈ I. We say
that f is continuous at c if, given any number ε > 0, there exists δ(ε) > 0 such that if
x is any point of I satisfying |x− c| < δ(ε), then |f(x)− f(c)| < ε.

Equivalently, f is continuous at c when

lim
x→c

f(x) = f(c).

Definition 2.2 ([2]). Let I ⊆ R be an interval, let f : I → R, and let c ∈ I. We say
that a real number L is the derivative of f at c if given any ε > 0 there exists δ(ε) > 0
such that if x ∈ I satisfies 0 < |x− c| < δ(ε), then∣∣∣∣f(x)− f(c)

x− c
− L

∣∣∣∣ < ε.

In other words, the derivative of f at c is given by the limit

f ′(c) = lim
x→c

f(x)− f(c)

x− c
provided this limit exists.

Next we state one of the most significant results in real analysis, the Mean Value
Theorem, which relates the values of a function to the values of its derivative.

Theorem 2.3 (Mean Value Theorem [3]). Suppose that f is continuous on a closed
interval I = [a, b], and that f has a derivative in the open interval (a, b). Then there
exists at least one point c in (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof. The proof of this fundamental result can be found on page 154 of [3]. �

We relate differentiability with continuity of a function with the following theorem.
The pathological property of interest concerns its converse.
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Chapter 2. Continuity and Differentiability 3

Theorem 2.4 ([3]). If f : I → R has a derivative at c ∈ I, then f is continuous at c.

Proof. For all x ∈ I, x 6= c, we have

f(x)− f(c) =

(
f(x)− f(c)

x− c

)
(x− c).

Since f ′(c) exists, we have

lim
x→c

(f(x)− f(c)) = lim
x→c

(
f(x)− f(c)

x− c

)(
lim
x→c

(x− c)
)

= f ′(c) · 0 = 0.

Therefore, lim
x→c

f(x) = f(c) so that f is continuous at c. �

However the converse of the theorem is not necessarily true, which can be easily seen
with the classic example of the absolute value function.

Example 2.5. Let f(x) = |x|. Then f is continuous but not differentiable at x = 0.

For any ε > 0, there exists δ = ε > 0 such that for all x ∈ R, |x− 0| < δ we have

|f(x)− f(0)| =
∣∣|x| − |0|∣∣ = |x| < δ = ε.

Hence f is continuous at x = 0.

For x 6= 0 we have

f(x)− f(0)

x− 0
=
|x|
x

=

{
1 if x > 0

−1 if x < 0.

Hence the left and right hand limits are not equal:

lim
x→0−

f(x)− f(0)

x− 0
6= lim

x→0+

f(x)− f(0)

x− 0

and we conclude that f is not differentiable at x = 0.

Graphically, we can see that the function has a sharp, non-differentiable point at
x = 0.

�
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Figure 1 Graph of f(x) = |x|.

With this simple first example, we see that continuity at a point does not ensure the
existence of the derivative at that point. Indeed, this property of being continuous yet not
differentiable can be seen on the entire domain of certain functions, not just at a single
point; that is, there exist continuous functions that are nowhere differentiable. However,
these functions are not as simple as the example of the absolute value function, as will be
seen in the construction of the examples in Chapter 3.



Chapter 2. Continuity and Differentiability 4

2. Sequences of functions

The examples of continuous but nowhere differentiable functions discussed in this
paper are constructed with sequences and infinite series of continuous functions. We now
review some important properties of sequences and series using definitions and theorems
from [2], beginning with uniform convergence of a sequence of functions.

Definition 2.6. A sequence {fn} of functions on an interval I ⊆ R to R is said to
converge uniformly on I0 ⊆ I to a function f : I0 → R if for each ε > 0 there is a
natural number K(ε) (depending on ε but not on x ∈ I0) such that if n ≥ K(ε), then

|fn(x)− f(x)| < ε for all x ∈ I0.

Theorem 2.7. Let {fn} be a sequence of continuous functions on a set D ⊆ R and
suppose that {fn} converges uniformly on D to a function f : D → R. Then f is
continuous on D.

Proof. Let x0 ∈ D. To show that f is continuous at x0, let ε > 0 be given. By the
uniform convergence of fn, there exists an N ∈ N such that |fn(x) − f(x)| < ε

3
for all

n > N and all x ∈ D. So for n = N + 1, we have |fN+1(x)− f(x)| < ε
3

for all x ∈ D.
Since fN+1 is continuous at x0, there exists a δ > 0 such that |fN+1(x) − fN+1(x0)| < ε

3

for all |x− x0| < δ, x ∈ D. Hence

|f(x)− f(x0)| ≤ |f(x)− fN+1(x)|+ |fN+1(x)− fN+1(x0)|+ |fN+1(x0)− f(x0)|
< ε

3
+ ε

3
+ ε

3
= ε.

Thus f is continuous at the arbitrary point x0 ∈ D. �

This theorem is used in the proof of the analogous Theorem 2.9 for infinite series,
which is a necessary tool for proving continuity in the main examples.

Definition 2.8. If {fn} is a sequence of functions defined on D ⊆ R with values in
R, the sequence of partial sums {sn} of the infinite series

∑
fn is defined for x ∈ D by

s1(x) := f1(x),

s2(x) := s1(x) + f2(x),

...

sn+1(x) := sn(x) + fn+1(x),

...

In case the sequence {sn} of functions converges on D to a function f , we say that the
infinite series of functions

∑
fn converges to f on D and write∑

fn or
∞∑
n=1

fn

to denote either the series or the limit function, when it exists.
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The following is a direct translation of Theorem 2.7 for series.

Theorem 2.9. Let D be a subset of R. If fn is a continuous function on D for each
n ∈ N and if

∑
fn converges to f uniformly on D, then f is continuous on D.

Proof. We simply view
∑
fn as a sequence (of partial sums) and apply Theorem

2.7. We have that sn(x) is continuous on D for each n ∈ N and the sequence of partial
sums sn(x) = f1(x) + f2(x) + · · ·+ fn(x) converges to f(x) uniformly on D. By Theorem
2.7, we conclude that f is continuous on D. �

Theorem 2.10 (Cauchy’s Criterion). Let {fn} be a sequence of functions on D ⊆ R
to R. The series

∑
fn is uniformly convergent on D if and only if for every ε > 0 there

exists an M(ε) such that if m > n ≥M(ε), then

|fn+1(x) + · · ·+ fm(x)| < ε for all x ∈ D.

The following is a well-known theorem that we also use to prove continuity of our
main examples.

Theorem 2.11 (Weierstrass M-Test). Let {Mn} be a sequence of positive real numbers
such that |fn(x)| ≤Mn for x ∈ D,n ∈ N. If the series

∑
Mn is convergent, then

∑
fn is

uniformly convergent on D.

Proof. Since
∑
Mn is convergent, we have that for any ε > 0, there exists N ∈ N

such that if t > s ≥ N , then∣∣∣∣∣
t∑

n=1

Mn −
s∑

n=1

Mn

∣∣∣∣∣ = Ms+1 +Ms+2 + · · ·+Mt < ε.

Then for all x ∈ D we have∣∣∣∣∣
t∑

n=1

fn(x)−
s∑

n=1

fn(x)

∣∣∣∣∣ = |fs+1(x) + fs+2(x) + · · ·+ ft(x)|

≤ |fs+1|+ |fs+2|+ · · ·+ |ft(x)|
≤ Ms+1 +Ms+2 + · · ·+Mt

< ε.

Thus
∑
fn is uniformly convergent on D. �

Having laid the proper foundation, we are now ready to examine two pathological
examples of functions that are continuous yet nowhere differentiable. In both cases, the
Weierstrass M-test and Theorem 2.9 are used to show continuity.



CHAPTER 3

Two Continuous Functions that are Nowhere Differentiable

We look at two examples of continuous functions that are nowhere differentiable. K.
Weierstrass gave the first example of such a function in a paper presented to the Königliche
Akademie der Wissenschaften in July 1872. Another more geometrically intuitive example
of a function demonstrating this intriguing behaviour was first given by Van der Waerden
in 1930.

1. Example given by Weierstrass (1872)

Theorem 3.1 ([4]). Let a be a positive odd integer and 0 < b < 1 such that ab > 1+ 3
2
π.

Then

f(x) =
∞∑
n=0

bncos(anπx)

is a continuous function that is nowhere differentiable on R.

We first define two functions that will be used in the main proof.

Lemma 3.2 ([5]). Define functions α : R→ R and ξ : R→ R by

α(x) = bx+ 1
2
c and ξ(x) = x− α(x) = x− bx+ 1

2
c.

Then x = α(x) + ξ(x) and also the following properties hold:

(i) α(x) ∈ Z,
(ii) ξ(x+ 1) = ξ(x) for all x ∈ R,

(iii) ξ(x) = x for all x ∈ [−1
2
, 1
2
), and

(iv) |ξ(x)| ≤ 1
2

for all x ∈ R.

Proof. (i) This is true since the floor function maps to integers.
(ii) We have

ξ(x+ 1) = (x+ 1)− b(x+ 1) + 1
2
c = (x+ 1)−

(
bx+ 1

2
c+ 1

)
= x− bx+ 1

2
c = ξ(x).

(iii) Since −1
2
≤ x < 1

2
, we have 0 ≤ x + 1

2
< 1 and hence bx + 1

2
c = 0. Then for

x ∈ [−1
2
, 1
2
), we have

ξ(x) = x− bx+ 1
2
c = x− 0 = x.

6



Chapter 3. Two Continuous Functions that are Nowhere Differentiable 7

(iv) If x ≥ 1
2
, then

ξ(x) = ξ ((x− 1) + 1)
(ii)
= ξ(x− 1)

= ξ(x− 2) = · · · = ξ(x−m), where x−m ∈ [−1
2
, 1
2
).

So |ξ(x)| = |ξ(x−m)| (iii)= |x−m| ≤ 1
2
.

Similarly, if x < −1
2
, we have

|ξ(x)| = |ξ(x+1)| = |ξ(x+2)| = · · · = |ξ(x+m)| = |x+m| ≤ 1
2
, where x+m ∈ [−1

2
, 1
2
).

Hence |ξ(x)| ≤ 1
2

for all x ∈ R.

�

Proof of Theorem 3.1 ([5]). Returning to the main theorem, we first show that
f is everywhere continuous. It is clear that the partial sum sn(x) =

∑n
i=0 b

i cos(aiπx) is
continuous for each n. Since 0 < b < 1, the geometric series

∑∞
i=0 b

i converges, and for
all x ∈ R and n ∈ N we have

|bn cos(anπx)| ≤ bn.

By the Weierstrass M-Test (Theorem 2.11) with Mn = bn, the series
∑∞

n=0 b
n cos(anπx)

converges uniformly on R. Now by Theorem 2.9, since each partial sum is continuous and
the convergence of the series to f is uniform, we conclude that f is continuous.

Next we show that f is nowhere differentiable. Let x ∈ R be arbitrary. To show that

lim
h→0

f(x+ h)− f(x)

h
does not exist,

we find a sequence {hn}n≥0 such that hn → 0 as n→∞ but

lim
n→∞

f(x+ hn)− f(x)

hn
does not exist.

First fix an n ∈ N. Then we have

f(x+ hn)− f(x)

hn
=

1

hn

(
∞∑
k=0

bk cos(akπ(x+ hn))−
∞∑
k=0

bk cos(akπx)

)
= Tn +Rn,

where Tn :=
1

hn

n−1∑
k=0

bk
(
cos akπ(x+ hn)− cos(akπx)

)
and Rn :=

1

hn

∞∑
k=n

bk
(
cos akπ(x+ hn)− cos(akπx)

)
.

By the Triangle Inequality, |Rn + Tn| ≥ |Rn| − |Tn| so∣∣∣∣f(x+ hn)− f(x)

hn

∣∣∣∣ ≥ |Rn| − |Tn| for every n ≥ 0. (1)
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Using the trigonometric identity

cosu− cos v = −2 sin

(
u− v

2

)
sin

(
u+ v

2

)

where u = akπ(x+ hn) and v = akπx, we have

| cos akπ(x+ hn)− cos akπx| =
∣∣∣∣ 2 sin

(
akπhn

2

)
sin

(
2akπx+ akπhn

2

)∣∣∣∣
≤
∣∣∣∣ 2 sin

(
akπhn

2

)∣∣∣∣ ≤ 2

∣∣∣∣akπhn2

∣∣∣∣
= akπ|hn|.

Next, with the above relation, we have

|Tn| =

∣∣∣∣∣ 1

hn

n−1∑
k=0

bk
(
cos akπ(x+ hn)− cos(akπx)

)∣∣∣∣∣
≤ 1

|hn|

n−1∑
k=0

bk| cos akπ(x+ hn)− cos(akπx)|

≤ 1

�
��|hn|

n−1∑
k=0

bkakπ�
��|hn| = π

n−1∑
k=0

(ab)k = π
(ab)n − 1

ab− 1

< π
(ab)n

ab− 1
. (2)

To find the desired {hn}, we use the two functions as shown in Lemma 3.2:

α(x) = bx+ 1
2
c and ξ(x) = x− bx+ 1

2
c.

Denote α(anx) := αn and ξ(anx) := ξn. Then

anx = α(anx) + ξ(anx) = αn + ξn,

and αn ∈ Z and |ξn| ≤ 1
2
.

Now for any k ≥ n,

cos akπx = cos ak−nanπx = cos ak−nπ(αn + ξn)

= cos ak−nπαn cos ak−nπξn − sin ak−nπαn sin ak−nπξn

= cos ak−nπαn cos ak−nπξn − 0
(
sin(ak−nαn)π = 0

)
= (−1)a

k−nαn cos ak−nπξn
(
cos kπ = (−1)k for k ∈ Z

)
= (−1)αn cos ak−nπξn (3)
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and

cos akπ(x+ hn) = cos ak−nanπ(x+ hn)

= cos ak−nπ[anx+ anhn]

= cos ak−nπ(αn + ξn + anhn). (4)

Define

hn :=
1− ξn
an

.

Then lim
n→∞

hn = 0 since

hn = |hn| ≤
1 + |ξn|
an

(3.2)(iii)

≤ 3

2an
. (5)

By (4), we have

cos akπ(x+ hn) = cos ak−nπ
(
αn + ��ξn + (1− ��ξn)

)
= cos ak−nπ(αn + 1)

= (−1)a
k−n(αn+1)

= (−1)an+1. (6)

Now by (3), (4), and (6),

|Rn| =
∣∣∣∣ 1

hn

∞∑
k=n

bk[cos akπ(x+ hn)− cos akπx]

∣∣∣∣
=

1

|hn|

∣∣∣∣ ∞∑
k=n

bk
[
(−1)αn+1 − (−1)αn cos ak−nπξn

] ∣∣∣∣
=

1

hn

∣∣(−1)αn+1
∣∣ ∣∣∣∣ ∞∑

k=n

bk(1 + cos ak−nπξn)

∣∣∣∣
=

1

hn

∞∑
k=n

bk(1 + cos ak−nπξn)

≥ 1

hn
bn(1 + cos πξn)

(3.2)(iii)

≥ 1

hn
bn since πξn ∈ [−π

2
, π
2
]

(5)

≥ 2

3
(ab)n. (7)



Chapter 3. Two Continuous Functions that are Nowhere Differentiable 10

So by (1), we see that∣∣∣∣f(x+ hn)− f(x)

hn

∣∣∣∣ ≥ |Rn| − |Tn|

(2)
≥
(7)

2

3
(ab)n − π (ab)n

ab− 1

=
2

3
(ab)n

(
1− π3

2

1

ab− 1

)
=

2

3
(ab)n

ab− (1 + 3
2
π)

ab− 1
. (8)

As n→∞, we have that

2

3
(ab)n

ab− (1 + 3
2
π)

ab− 1
→∞

since ab > 1 + 3
2
π. Finally, from the inequality in (8), we have that

lim
n→∞

f(x+ hn)− f(x)

hn
does not exist.

Therefore, since x was arbitrary, we conclude that f is not differentiable anywhere. �

2. Example given by Van der Waerden (1930)

The second example of a continuous nowhere differentiable function is constructed
through the infinite series of a sequence of continuous “sawtooth” functions. Intuitively,
from Figure 2, it can be seen that as the sequence progresses, the functions remain contin-
uous and have smaller periods that alternate between positive and negative slopes more
frequently. As well, the sharp points where the functions are non-differentiable cover the
entire real line. This behaviour leads to the eventual non-differentiability of the infinite
series.

Example 3.3 ([6]). Let f0 : R→ R be defined by

f0(x) := dist(x,Z) = inf {|x− k| : k ∈ Z} ,

so that f0 is a continuous “sawtooth” function whose graph consists of lines with slope

±1 on the intervals [k
2
, (k+1)

2
], k ∈ Z. For each m ∈ N, let fm(x) := ( 1

4m
)f0(4

mx), so
that fm is also a continuous sawtooth function whose graph consists of lines with slope
±1 and with 0 ≤ fm(x) ≤ 1

2·4m .

The following shows the graphs of the first three functions in the sequence f0, f1 and
f2 defined as above. Underneath each triangle lies four triangles of the next function in
the sequence, all of which are a fourth of the size of the bigger triangle. Note that Figure
2 displays a single period of f0; the graphs extend across the entire real line.
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Figure 2 Graphs of f0, f1, and f2.

Theorem 3.4 ([2]). Let fn be given as in Example 3.3. Then

f(x) =
∞∑
n=1

fm(x) =
∞∑
m=1

f0(4
mx)

4m
.

is everywhere continuous and nowhere differentiable.

Proof ([2]). First we show that f is everywhere continuous. Since
∣∣fm(x)

∣∣ ≤ 1
4m

for
each m ∈ N and all x ∈ R, by the Weierstrass M-Test (2.11), we have that f(x) =

∑
fm(x)

is uniformly convergent. Also since each partial sum is continuous, by Theorem 2.9, we
conclude that f is continuous.

Next we show f is not differentiable at any point of R. Fix an x ∈ R. Since the intervals[
k
2
, (k+1)

2

]
with k ∈ Z divide the entire real line, we have that for each n ∈ N, there exists

a k0 such that the number 4nx belongs to the interval
[
k0
2
, (k0+1)

2

]
. Let hn := ± 1

4n+1 , with

the sign chosen so that both 4nx and 4n(x+ hn) lie in the same interval
[
k0
2
, (k0+1)

2

]
. This

is possible since the interval has length 1
2

and
∣∣4nx−4n(x+hn)

∣∣ =
∣∣4n hn∣∣ =

∣∣4n 1
4n+1

∣∣ = 1
4
.

Since f0 has slope ±1 on the interval
[
k0
2
, (k0+1)

2

]
, then

εn :=
fn(x+ hn)− fn(x)

hn
=

( 1
4n

)f0
(
4n(x+ hn)

)
− ( 1

4n
)f0(4

nx)

hn

=
f0
(
4n(x+ hn)

)
− f0(4nx)

4nhn

=
f0(4

nx+ 4nhn)− f0(4nx)

(4nx+ 4nhn)− 4nx

= ±1.
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If m < n, then on the interval between x and x + hn, the graph of fn lies completely
under one half of the graph of fm, so that fm also has slope ±1. So

εm :=
fm(x+ hn)− fm(x)

hn
=
fm(x+ hn)− fm(x)

(x+ hn)− x
= ±1 for m < n.

On the other hand, if m > n, then 4m(x+hn)−4mx = 4mhn = ±4m−n−1 is an integer.
Since f0 is a periodic function with an integer as its period,

fm(x+ hn)− fm(x) = ( 1
4m

)[f0(4
m(x+ hn))− f0(4mx)] = 0.

Hence we have

f(x+ hn)− f(x)

hn
=

n∑
m=0

fm(x+ hn)− fm(x)

hn
+

∞∑
m=n+1

fm(x+ hn)− fm(x)

hn
=

n∑
m=0

εm,

where the difference quotient
f(x+ hn)− f(x)

hn
is an odd integer if n is even, and an even integer if n is odd.

Therefore the limit

lim
h→0

f(x+ hn)− f(x)

hn
does not exist, so f is not differentiable at the arbitrary point x ∈ R. �



CHAPTER 4

Monotonic Functions and their Derivatives

Our final pathological example is a monotonic function. In this chapter, we define the
necessary terms and state some important theorems required for the construction of this
special function.

1. Preliminaries

Definition 4.1 ([7]). A property holds almost everywhere if the set of elements
for which the property does not hold is a set of measure zero. The term almost everywhere
is abbreviated a.e.

Definition 4.2 ([2]). If A ⊆ R, then a function f : A→ R is said to be increasing
on A if whenever x1, x2 ∈ A and x1 ≤ x2, then f(x1) ≤ f(x2). We say that f is strictly
increasing on A if we have f(x1) < f(x2) whenever x1 < x2 for x1, x2 ∈ A. We can
similarly define when a function is decreasing and strictly decreasing on A but we
will be concerned with strictly increasing functions.

We say that f is strictly monotone on A if a function is either strictly increasing or
strictly decreasing on A.

If a function is differentiable, we can determine the intervals on which f increases
or decreases by examining the sign of the first derivative. A function having a positive
derivative must be strictly increasing as stated by the following theorem. The second
pathological property of interest concerns the converse of this theorem.

Theorem 4.3 ([3]). If a function f is defined on an interval I and f has a positive
derivative at every point on I, then f is strictly increasing.

Proof. Let x1, x2 ∈ I and x1 < x2. It follows from the Mean Value Theorem
(Theorem 2.3) that there exists c ∈ I such that

f(x2)− f(x1) = f ′(c)(x2 − x1).

Since f ′(c) > 0 and x2− x1 > 0, we have that f(x2)− f(x1) > 0. Hence f(x2) > f(x1) so
we conclude that f is strictly increasing. �

Again, as in Chapter 2, we can disprove the converse of this theorem using a simple
example.

13
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Example 4.4. The function f(x) = x3 is a strictly increasing function but f ′(x) = 0
at x = 0.

Note that f is strictly increasing because if x1 < x2, then f(x1) = x31 < x32 = f(x2).
Also f ′(x) = x2 so f ′(0) = 0, that is, f ′(0) is not positive.

From the graph, it can be seen that the tangent line at x = 0 has a slope of 0, that is,
a vanishing derivative exists at x = 0.

Figure 3 Graph of f(x) = x3.

Again, we wish to extend this property of being strictly increasing but having a van-
ishing derivative to the entire domain. To construct a function of this type, we prepare
by looking at a few necessary theorems.

2. Some notable theorems

Note that monotone functions are not necessarily continuous. For example, if f(x) := 0
for x ∈ (−∞, 0] and f(x) := 1 for x ∈ (0,∞), then f is increasing on R but is not
continuous at x = 0. The next result shows that the only discontinuities that a strictly
increasing function can have are jump discontinuities.

Theorem 4.5. If f is a strictly increasing function and discontinuous at c, then f
must have a jump discontinuity at c.

Proof. Suppose that f is discontinuous at the point x = c. If f is increasing, then
for any y < c and z > c, we have that f(y) ≤ f(c) ≤ f(z). Then for the one-sided limits
of f at c, we have

lim
x→c−

f(x) ≤ f(c) ≤ lim
x→c+

f(x).

But f is discontinuous at c, so lim
x→c

f(x) 6= f(c) which implies that

lim
x→c−

f(x) < lim
x→c+

f(x).

Thus f has a jump discontinuity at the point x = c. �

Now we look at some fundamental theorems that will be of use later.
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Lemma 4.6. Let A be a dense subset of (0, 1) and let f : A → R be an increasing
function. Then f can be extended to an increasing function on (0, 1).

Proof. Let x0 ∈ (0, 1) ∼ A. Since A is dense in (0, 1), x0 is a limit point of A.
It follows from the fact that f is increasing on A that lim

x→x0
f(x) exists. Define f(x0) =

lim
x→x0

f(x). Then f is a function on (0, 1) and it is clear that f is increasing. �

Next we present a well-known theorem on the differentiability of monotone functions.

Theorem 4.7 (Lebesgue’s Theorem [8]). Let f : [a, b]→ R be a monotone increasing
function. Then f ′(x) exists for almost all x ∈ [a, b] and∫ b

a

f ′(x) dx ≤ f(b)− f(a).

Proof. The proof requires the use of results in measure theory that are beyond the
scope of this paper. See Theorem 5.2 on page 96 of [8]. �

Using Lebesgue’s Theorem, we obtain the Theorem of Fubini on the termwise differ-
entiability of series with monotone terms, to be used in constructing our last pathological
example.

Theorem 4.8 (Fubini’s Theorem [9]). Let fk : [a, b] → R be a monotone increasing
function for each k = 1, 2, . . . and assume that the series

f(x) =
∞∑
k=1

fk(x)

converges pointwise on [a, b]. Then

f ′(x) =
∞∑
k=1

f ′k(x)

for almost all x ∈ [a, b].

Proof. First we split the infinite sum to a finite sum with a remainder by writing

f(x) =
n∑
k=1

fk(x) +Rn(x)

where

Rn(x) =
∞∑

k=n+1

fk(x)

is the nth remainder for the nth partial sum
∑n

k=1 fk(x).
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By Lebesgue’s Theorem (4.7), since f and Rn are both monotone increasing functions,
these functions are differentiable almost everywhere. Let E be the set of points where all
the functions fk and f are differentiable. Since each of these functions is differentiable
almost everywhere, by definition, [a, b] ∼ E has measure zero. If x ∈ E, then the partial
sum

∑n
k=1 fk(x) is differentiable at x and so we have the existence of

R′n(x) = f ′(x)−
n∑
k=1

f ′k(x).

Also, since R′n(x) ≥ 0, we have

f ′(x) =
n∑
k=1

f ′k(x) +R′n(x) ≥
n∑
k=1

f ′k(x)

for all x ∈ E.

Taking the limit as n→∞ gives f ′(x) ≥
∑∞

k=1 f
′
k(x) for all x ∈ E and hence

∞∑
k=1

f ′k(x) ≤ f ′(x) a.e. (9)

We apply Theorem 4.7 to the monotone increasing functions Rn to get

0 ≤
∫ b

a

R′n(x) dx ≤ Rn(b)−Rn(a) =
∞∑

k=n+1

(
fk(b)− fk(a)

)
. (10)

We know that the series
∑∞

k=1 fk(x) converges pointwise on [a, b], so both the series∑∞
k=1 fk(a) and

∑∞
k=1 fk(b) converge, resulting in the convergence of

∑∞
k=1

(
fk(b)−fk(a)

)
.

So

lim
n→∞

∞∑
k=n+1

(
fk(b)− fk(a)

)
= lim

n→∞

( ∞∑
k=1

(
fk(b)− fk(a)

)
−

n∑
k=1

(
fk(b)− fk(a)

))

=
∞∑
k=1

(
fk(b)− fk(a)

)
−
∞∑
k=1

(
fk(b)− fk(a)

)
= 0.

Combining this result with (10) and applying the Squeeze Theorem gives

lim
n→∞

∫ b

a

R′n(x) dx = 0. (11)
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Also ∫ b

a

f ′(x) dx =

∫ b

a

( n∑
k=1

fk(x)

)′
dx +

∫ b

a

R′n(x) dx

=

∫ b

a

n∑
k=1

f ′k(x) dx +

∫ b

a

R′n(x) dx

≤
∫ b

a

∞∑
k=1

f ′k(x) dx +

∫ b

a

R′n(x) dx.

Now letting n→∞ and using (11) gives∫ b

a

f ′(x) dx ≤
∫ b

a

∞∑
k=1

f ′k(x) dx. (12)

But by (9), we have that
∑∞

k=1 f
′
k(x) ≤ f ′(x) almost everywhere. Therefore the only

way for (9) and (12) to hold simultaneously is if

f ′(x) =
∞∑
k=1

f ′k(x) a.e.

This completes the proof. �

With these important theorems, we are ready to explore the final pathological example.



CHAPTER 5

A Strictly Monotone Function with a Vanishing Derivative

Almost Everywhere

In this chapter, we will see an example of a continuous strictly monotonic function
with a derivative that vanishes almost everywhere. The function is constructed using the
Cantor function, which we first define.

1. Construction of the Cantor function

Let A and B be nonempty subsets of R. We say that A is smaller that B, denoted by
A < B, if for each x ∈ A and each y ∈ B, x ≤ y. We use this ordering when constructing
a sequence of open intervals.

Next we simultaenously construct the Cantor set and the Cantor function in a manner
similar to the method given in Chapter 8 on page 96 of [1]. The Cantor function is
increasing but its derivative is zero almost everywhere.

The Cantor set C is obtained from the closed unit interval [0, 1] by a sequence of
deletions of open intervals known as “middle thirds” as follows.

Step 1: Remove the middle third open interval
(
1
3
, 2
3

)
from [0, 1] to obtain the set

F1 :=
[
0, 1

3

]
∪
[
2
3
, 1
]
.

F1 is the union of 2 increasing closed intervals of length 1
3
.

The sequence of all removed open interval is
{(

1
3
, 2
3

)}
.

The total lengths of the removed intervals is 1
3
.

Define φ(x) = 1
2

for all x ∈
[
1
3
, 2
3

]
.

Step 2: Remove the middle third open interval from each of the closed interval in F1

to obtain the set

F2 :=
[
0, 1

9

]
∪
[
2
9
, 1
3

]
∪
[
2
3
, 7
9

]
∪
[
8
9
, 1
]
.

F2 is the union of 22 increasing closed intervals of length 1
32

.

The sequence of all removed open interval is{ (
1
9
, 2
9

)
,
(
1
3
, 2
3

)
,
(
7
9
, 8
9

) }
.

The total lengths of the removed intervals is 1
3

+ 2
32

.

18
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We define

φ(x) = 1
22

for x ∈
[
1
9
, 2
9

]
, φ(x) = 3

22
for x ∈

[
7
9
, 8
9

]
and φ(x) = 2

22
for x ∈

[
1
3
, 2
3

]
as in Step 1.

Step 3: Remove the middle third open interval from each of the closed interval in
F2 to obtain the set F3 which is the union of 23 increasing closed intervals of length 1

33
.

The open intervals removed from F2 are
(

1
27
, 2
27

)
,
(

7
27
, 8
27

)
,
(
19
27
, 20
27

)
,
(
25
27
, 26
27

)
. They are in

an increasing order and each has length 1
33

.

The sequence of all removed open intervals is{ (
1
27
, 2
27

)
,
(
1
9
, 2
9

)
,
(

7
27
, 8
27

)
,
(
1
3
, 2
3

)
,
(
19
27
, 20
27

)
,
(
7
9
, 8
9

)
,
(
25
27
, 26
27

) }
.

The total lengths of the removed intervals is 1
3

+ 2
32

+ 22

33
.

We define

φ(x) = 1
23

for x ∈
[

1
27
, 2
27

]
, φ(x) = 3

23
for x ∈

[
7
27
, 8
27

]
,

φ(x) = 5
23

for x ∈
[
19
27
, 20
27

]
, φ(x) = 7

23
for x ∈

[
25
27
, 26
27

]
and we have, as in Step 1 and Step 2,

φ(x) = 2
23

= 1
22

for x ∈ [1
9
, 2
9
], φ(x) = 4

23
= 1

2
for x ∈ [1

3
, 2
3
],

φ(x) = 6
23

= 3
22

for x ∈ [7
9
, 8
9
].

Step n: We continue in this way. In general, when we finish Step n, we have that Fn
is a union of 2n increasing closed intervals of length 1

3n
.

The sequence of all the removed open intervals from Fn−1 is

{O1, O2, . . . , Okn},
where the sequence is in increasing order and kn = 1 + 2 + 22 + 23 + · · ·+ 2n−1 = 2n − 1,

The total lengths of the removed intervals is 1
3

+ 2
32

+ 22

33
+ · · ·+ 2n−1

3n
and we define

φ(x) = k
2n

when x ∈ Ok for k = 1, 2, . . . , 2n − 1.

Step n+1: We remove the middle third open interval Oni from each sub-interval in Fn,
where i = 1, 2, . . . , 2n. Then each Oni has length 1

3n+1 . We assume that On1, On2, . . . , On2n

is in increasing order.

The total lengths of the removed intervals is 1
3

+ 2
32

+ 22

33
+ · · ·+ 2n−1

3n
+ 2n

3n+1 .

The sequence of all removed open interval in increasing order is

{On,1, O1, On,2, O2, . . . , Okn , On,2n}.

We rename them by

{ Õ1, Õ2, . . . , Õkn+1 },
where kn+1 = 2n+1 − 1.
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For k = 1, 3, 5, . . . , 2n+1− 1, we define φ(x) = k
2n+1 when x is in the closure of Õk. For

k = 2, 4, 6, . . . , 2n+1 − 2, as in Step n, we have φ(x) =
k
2

2n
= k

2n+1 when x is in the closure

of Õk since Õk = O k
2

as above.

Let O be the union of all the open intervals removed. Then φ is an increasing function
defined on O.

Since all the Fn are closed subsets and Fn+1 ⊆ Fn for each n,
⋂∞
n=1 Fn is nonempty.

The Cantor set is defined as C =
⋂∞
n=1 Fn.

The total length of the removed intervals is

1

3
+

2

32
+

22

33
+ · · ·+ 2n−1

3n
+

2n

3n+1
+ . . . =

1

3

1

1− 2
3

= 1.

Then φ is an increasing function defined on O. Since the total length of O is 1,
O is dense in [0, 1]. Using Lemma 4.6, we can extend φ to an increasing function on
[0, 1]. Because φ is increasing and its range is dense in [0, 1], the function φ has no jump
discontinuities. By Theorem 4.5, a monotonic function can have no discontinuities other
than jump discontinuities, so φ is continuous.

Since the Cantor set C has measure zero and φ is locally constant on the open subset
[0, 1] ∼ C, we have that φ′(x) = 0 almost everywhere in [0, 1]. The function φ is called
the Cantor function.

0 1

1

1
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2
3

1
2

1
32

2
32

7
32

8
32

1
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3
22

1
33

2
33

7
33

8
33

19
33

20
33

25
33

26
33

1
23

3
23

5
23

7
23

Figure 4 Graph of the Cantor function.
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2. Example given by Zaanen and Luxemburg (1963)

The Cantor function is an increasing function with a derivative equal to zero almost
everywhere. Our goal is to use the Cantor function to construct our final example of a
strictly increasing function with a vanishing derivative almost everywhere.

Theorem 5.1 ([1]). If φ is the Cantor function on [0, 1], let

ψ(x) =


φ(x) if x ∈ [0, 1],

0 if x < 0,

1 if x > 1.

If {[an, bn]} is the sequence of closed intervals [0, 1], [0, 1
2
], [1

2
, 1], [0, 1

4
], [1

4
, 1
2
], [1

2
, 3
4
], [3

4
, 1],

[0, 1
8
], . . . , then

f(x) =
∞∑
n=1

1

2n
ψ
( x− an
bn − an

)
is a continuous strictly increasing function with a vanishing derivative almost everywhere.

Proof ([10]). First to prove continuity, we see that for each n, the function

ψ
( x− an
bn − an

)
is a Cantor function on [an, bn]. So for each n,

fn(x) =
1

2n
ψ
( x− an
bn − an

)
is continuous and has a vanishing derivative almost everywhere, that is,

f ′n(x) =

[
1

2n
ψ
( x− an
bn − an

)]′
= 0 a.e. (13)

Also for each n, we have that∣∣fn(x)
∣∣ =

∣∣∣∣ 1

2n
ψ
( x− an
bn − an

) ∣∣∣∣ ≤ ∣∣∣∣ 1

2n

∣∣∣∣.
So by the Weierstrass M-Test (2.11), the convergence of

∑
1
2n

implies that

f(x) =
∞∑
n=1

1

2n
ψ
( x− an
bn − an

)
converges uniformly on R. Since each partial sum is continuous and the convergence of
the series to f is uniform, by Theorem 2.9, we have that f is continuous.
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To show that f is strictly increasing, let x1 < x2 with x1, x2 ∈ [0, 1]. Then there exists
n0 such that x1 < an0 and x2 > bn0 .

Since
x1 − an0

bn0 − an0

<
an0 − an0

bn0 − an0

= 0 and
x2 − an0

bn0 − an0

>
bn0 − an0

bn0 − an0

= 1,

we have

ψ
( x1 − an0

bn0 − an0

)
= 0 and ψ

( x2 − an0

bn0 − an0

)
= 1. (14)

Now for each n, since we have the inequality

ψ
(x1 − an
bn − an

)
≤ ψ

(x2 − an
bn − an

)
and from (14), we obtain the strict inequality

ψ
( x1 − an0

bn0 − an0

)
< ψ

( x2 − an0

bn0 − an0

)
,

so by taking the infinite series, we get the strict inequality
∞∑
n=1

1

2n
ψ
(x1 − an
bn − an

)
<

∞∑
n=1

1

2n
ψ
(x2 − an
bn − an

)
.

Hence f(x1) < f(x2), so f is strictly increasing.

Finally to show that f has a vanishing derivative almost everywhere, we use Fubini’s
Theorem (4.8) to get

f ′(x) =
∞∑
n=1

f ′n(x)

=
∞∑
n=1

[
1

2n
ψ
( x− an
bn − an

)]′
(13)
=

∞∑
n=1

0

= 0 a.e.

Therefore,

f(x) =
∞∑
n=1

1

2n
ψ
( x− an
bn − an

)
is a strictly increasing function with a vanishing derivative almost everywhere. �



CHAPTER 6

Concluding Remarks

In this paper, we examined two types of pathological continuous functions, namely,
two functions that are continuous yet nowhere differentiable, and a continuous strictly
monotonic function that has derivative zero almost everywhere.

In all three examples, infinite series of sequences of continuous functions were con-
structed. To show that each function is continuous, the same method was used: the
Weierstrass M-test showed uniform convergence, which was then used with Theorem 2.9
to prove continuity.

The first example was the Weierstrass function (3.1),

f(x) =
∞∑
n=0

bn cos(anπx),

which has necessary restrictions on a, b, and ab. Its construction involved using special
floor functions and proving its non-differentiability was shown to be quite technical.

A more geometrically intuitive example was the Van der Waerden function (3.4),

f(x) =
∞∑
n=1

fm(x) =
∞∑
m=1

f0(4
mx)

4m
,

where fm is a sequence of continuous sawtooth functions with rapidly alternating positive
and negative slopes which suggests its non-differentiability.

The final example, first given by Zaanen and Luxemburg (5.1) involved revising the
Cantor function, which is increasing yet has a vanishing derivative almost everywhere.
We extended the Cantor function to the entire real line and modified it to be strictly
increasing.

The original discovery of pathological continuous real-valued functions challenged tra-
ditional notions and emphasized the need for analytical rigour in mathematical analysis.
Understanding these special functions may lead to new theories, more general results, and
real-world applications, but ultimately, pathological functions are simply fascinating to
study.
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