
Material for Functional Analysis classes in March 2024

23 marca 2024

I will quote the references as follows:
[B]= B.Bollobas "Linear Analysis"; [C]= J.B.Conway, "Functional Analysis"; [A] D.Arnold’s short text sym-

bol:= means ”equals by definition”. If A,B ⊂ X, t ∈ K, then tA := {tx : x ∈ A} and A − B := {x − y : x ∈ A, y ∈ B}.
———————————–

The course started with the definition of ”TVS” i.e. Topological Vector Space (say, X) over the scalar field K, where either
K = R or K = C. We say that a set E ⊂ X is circled (or balanced), if ∀α∈K|α| ¬ 1 ⇒ αE ⊂ E. Using the existence of a
neighbourhood basis of 0 consisting of circled sets, we’ve proved first two theorems:

—
Th. 1. Any two n− dimensional, Hausdorff TVS, where n <∞ are isomorphic (by a linear homeomorphism) and any linear

map on such spaces are automatically continuous. (These two claims are contained in [B] Theorem2, p.60 and in Corollary 3.,
p,61)1

Th. 2. A linear functional f : X → K is continuous ⇔ ker(f) := {x ∈ X : f(x) = 0} is closed ⇔ f(U) 6= K for some
nonempty open set U ⊂ X. (the crucial part of the result is proved at the beginning of page 46 in [B])

Th. 3. If M is a finite-dimensional proper (i.e. M 6= X) subspace in a Hausdorff TVS X , then M is closed ([B], p.662,
Corollary 7), has empty interior (otherwise- it would be a neighbourhood of 0, hence absorbing, which for subspaces implies
M = X). Using Baire Category Theorem deduce that there is no Banach space algebraically spanned by z countable linearly
independent sequence (en) (=[B], Exercise 22. p.84). —

Th.4. Equivalent conditions for continuity on a linear operator between normed spaces ([B],page 28/29)
Th.5. B(X,Y ) is complete if Y is a complete normed space (i.e. a Banach space)- this is a part of Theorem 4. at p.30 in

[B](which also verifies that ‖T‖ as defined there - is a norm on B(X,Y ) ).
—-
We define the Minkowski functional pE for an absorbing set E. (Since we assume that E is convex, the absorbing property

means that for any x ∈ X ∃t > 0x ∈ tE. We show that pE(x) < s⇒ x ∈ sE, that PE is a sublinear functional (called in [B] a
convex functional) -i.e. pE is subadditive and homogeneous with respect to positive scalars. Moreover {x : pE(x) < 1} ⊂ E ⊂
{x : pE(x) ¬ 1}. The first inclusion is equality in the case of open set E. In [B] Minkowski functional is denoted q(x) at p.28
-but only for absolutely convex sets that are not containing any line {tx : t ∈ R}- then q is even a norm. A more detailed proof
is at p. 106 in [C] (Chapter IV, Proposition 1.14 p.106 and Prop. 3.2 -at p.111)

— Th.6.(Hahn-Banach) Linear functional f on a subspace M of a real vector space X, dominated on M by a sub-linear
(=convex) functional p : X → R has a linear extension on X dominated on X by p. + the case when p is a semi-norm, K = C
or R, |f(x)| ¬ p(x), x ∈M . [B] Chapter 3: Theorem5,p.50, for complex scalars- Th.6 p.51.

(first group of) Corollaries:
(1) Norm- preserving extensions,([B],Theorem 6 p.51);
(2) X∗ separates the points of X, ([B],Cor. 8);
(3) ∀x∃f∈X∗ ‖f‖ = 1, f(x) = ‖x‖ ([B] Corollary 7.) (+ ”Dual formula for the norm ‖x‖”), (4) The canonical injection ι : X → X∗∗

is an isometry.([B] p.52 Th.10) Definition of reflexive spaces.
(Geometric corollaries): Separation of disjoint convex sets: (1) if one of them is open [C] p.113 (ChapterIV,Th.3.7 (2) if both

are closed and one is compact [C] p.114 Th.3.9

1The proofs are carried in [B] only in the normed spaces case, but it will suffice, if you learn this case. Start reading [B] with Chapter 2, since its
first pages (19-22) contain basic definitions and notation.
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