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1 Preliminaria

Here we recall some facts needed from linear algebra:

During this course K will denote the scalar field -equal either to R, or to C. The vector spaces
over K will be denoted X,Y, Z,M,H -some other capital letters may be used. In some cases
arrows over some letters, like ~u, ~w, ~x, ... will be applied to mark the difference between vectors and
scalars (usually denoted either by Greek lowercase letters: α, β, λ, or s, t -for real scalars). Later
on this distinction will be clear and to simplify the notation, the arrows will be suppressed. The
basics of linear algebra are assumed to be known, including the notions of linear independence of
vectors, bases, the dimension, linear mappings and their relation to matrices, the Euclidean space
Rn, or Cn with its canonical 0-1 basis:

ε1 = (1, 0, . . . , 0), ε2 = (0, 1, 0 . . . , 0), . . . , εn = (0, . . . , 0, 1)

and coordinate notations: ~x = (x1, . . . , xn).

If n = 3 (or 2), instead of ε1, ε2, ε3 one usually writes: ~i,~j,~k and ~w = (x, y, z).
The symbols: If F (a) is some logical formula depending on the variable a, then

∃a∈A!F (a) will denote “there exists only one element a ∈ A for which F (a) holds”,
:= -will denote “equals, by definition”. Conjunction will be denoted p and q, or simply p, q rather
than p ∧ q. The word “iff” will stand for “if and only if ”.

Given a mapping φ : D → Y , where D is the domain of φ, denoted D(φ), we say that
F : X → Y extends φ, (or -that φ is a restriction of F to D, notation: F |D = φ, or φ ⊂ F , if

D(φ) ⊂ D(F ) and ∀x∈D F (x) = φ(x).

If moreover F is linear, we speak of a linear extension. Similarly, if it is continuous, we call F
a continuous extension of φ.

Useful Fact 1: A subset G ⊂ X is linearly independent iff any mapping φ : G → Y has
a linear extension (to some linear subspace containing its domain, D, or even to the entire space
X.) In order to get one implication it suffices to require the existence of linear extensions only in
the scalar-valued case: Y = K.

We say, that G spans X, writing X = span(G), if

∀x∈X∃m∈N∃α1,...,αm∈K∃v1,...,vm∈G x =

m∑
j=1

αjvj . (1)

Useful Fact 2: A subset G ⊂ X spans X, if linear extensions of any map φ : G → Y are
unique -provided they exist. This means that if F1 and F2 are linear mappings on X extending
the same φ, one must have F1 = F2. Clearly, not all mappings φ have any linear extension- take
G = X, or even G = {ε1, 2ε1}, X = R2. (Again, it suffices to verify this with Y = K).

For linear bases G in X (sets simultaneously lin. independent and spanning X) any mapping
from G has exactly one linear extension. All bases of X have the same cardinality, called the
dimension of X, denoted dim(X).
If the latter is finite, say dim(X) = m, we may write G = {v1, . . . , vm} and then the quantifiers:
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∃m,∃v1,...vm are redundant in the formula 1, while the quantifier ∃(α1,...,αm) can be written as
∃! . Then we call this m-tuple (α1, . . . , αm) ∈ Km of scalars - the coordinates of x in the basis
(v1, . . . , vm). I will write now

v∗j (x) := αj , so that x =

m∑
j=1

v∗j (x)vj . (2)

The same notation can be used to define the dual system {e∗j : j ∈ J} to an infinite basis
{ej : j ∈ J}. Here some problems arise (see later -in Tutorials section).

When writing the value of a linear operator T on a given vector x one usually omits the
parentheses – writing Tx rather than T (x), when the range is clear. For example, in some formulae
the vectors x themselves will be functions, eg. x(s) for s ∈ [0, 1] and we write (Tx)(s) =

∫ s
0
f(t) dt

in the case of the so called Volterra operator. Here (Tx)(s) looks better than (T (x))(s), or T (x)(s).
Sometimes we need parentheses, otherwise it would be unclear, whether Tx+ y means T (x) + y,
or T (x+ y).

Notation: Lin(X,Y ) := {T : T : X → Y is linear } will be the space of all linear
operators acting from X to Y . Members of Lin(X,K) are called linear functionals on X. If
we have normed spaces with norms ‖ ‖X , ‖ ‖Y , we say that T ∈ Lin(X,Y ) is bounded, if it is
bounded on the unit ball denoted by

BX(0, 1) := {x ∈ X : ‖x‖X < 1}.

Let us define the operator norm ‖T‖ by

‖T‖ := sup{‖Tv‖Y : v ∈ BX(0, 1)}.

Denote the space of all bounded linear operators from X to Y by

B(X,Y ).

If Y = X, we write B(X) in place of B(X,Y ) and if Y = K, we write X ′ for the space B(X,K)
of all bounded linear functionals on X, called the dual space for X. Some textbooks use the
notation L(X,Y ) for B(X,Y ), writing X∗ rather than X ′ is also frequent. An example of linear
functionals is v∗j of the dual system (2).

The vector space structure is defined (both on B(X,Y ) and on Lin(X,Y )) by pointwise linear
operations: given e.g. T, S ∈ B(X,Y ) we write T + S for the operator sending a vector x ∈ X
into (T + S)(x) := T (x) + S(x) ∈ Y . Similarly, (αT )(x) := αT (x) defines the multiplication of
an operator T by the scalar α ∈ K. The constant function 0, called the zero operator, is clearly
bounded and linear. Thes is the zero element of B(X,Y ). Boundedness of the sum of bounded
operators results from the inequalities:

‖(T + S)x‖ = ‖Tx+ Sx‖ ≤ ‖Tx‖+ ‖Sx‖ ≤ ‖T‖+ ‖S‖ valid for any x ∈ BX(0, 1),

which also shows that
‖S + T‖ ≤ ‖S‖+ ‖T‖.

Similarly, one shows that for α ∈ K one has ‖αT‖ = |α|‖T‖. Apart from bounded, we often have
to consider linear operators, that are unbounded and defined on domains D(T ) different from the
entire space. Usually, the domains are dense subsets (in the norm topology of the space X). We
call such mappings densely defined operators in X.

Let D1, D2 be now subspaces (in many applications -dense) of some two normed spaces X1, X2

-resp. and consider two operators T1 : D1 → X2, T2 : D2 → X3. Their composition, T2 ◦ T1,
denoted T2T1 –is defined on the domain

D(T2T1) := {x ∈ D(T1) : T1(x) ∈ D(T2)} by T2T1x := T2(T1x). (3)

We write T 2 for T ◦ T and -proceeding by induction- Tn+1 = T ◦ Tn. Let IX denote the identity
operator on X: IXv = v (∀v ∈ X). Note that Lin(X,X) is an algebra if the multiplication is
defined to be the composition. If dim(X) > 1 this algebra is noncommutative, but it has the
unit, namely IX . It is important to note that B(X,X) -i.e. B(X) is also an algebra. Moreover
‖T2T1‖ ≤ ‖T2‖‖T1‖. This follows easily from the estimate:

‖Tw‖Y ≤ ‖T‖‖w‖X for any w ∈ X, T ∈ B(X,Y ) (4)

The continuity of linear operators and its invertibility are two central issues considered. Let
us recall some results from functional analysis: (TFAE = ”The Following Are Equivalent)

2



Theorem 1.1 For a linear operator T : X → Y between two normed spaces TFAE:

(a) T is continuous on X (even -uniformly continuous),

(b) T is continuous at some point x0 ∈ X,

(c) T is bounded in some nonempty open set,

(d) T is bounded in the unit ball of X, i.e. ‖T‖ < +∞,

(d) For some finite constant M ≥ 0 one has ‖Tx‖Y ≤M‖x‖X for any x ∈ X.

The norm ‖T‖ is the least M ≥ 0 satisfying the estimate in (d).

Theorem 1.2 Any linear mapping on a finite-dimensional normed vector space is continuous.
Any finite-dimensional subspace of a normed space is closed.

Theorem 1.3 Any uniformly continuous mapping f defined on a dense subset D of a metric
spaceX, whose values are in a complete normed space Y has a unique continuous extension to a
continuous mapping F : X → Y .

Theorem 1.4 If Y is complete, then the space B(X,Y ) is also complete. (Conversely, if dim(X) >
0, then from the completeness of B(X,Y ) it follows that Y is complete.)

Theorem 1.5 Any continuous linear functional φ on a subspace M of a normed space X has a
continuous linear extension F having the same norm: ‖φ‖ = ‖F‖.

Theorem 1.6 For any x ∈ X there exists (at least one) bounded linear functional φ ∈ X ′ having
norm one: ‖φ‖ = 1 such that φ(x) = ‖x‖. Hence the dual formula for the norm holds:

‖x‖ = sup{|f(x)| : f ∈ X ′, ‖f‖ ≤ 1}.

Theorem 1.7 If X is complete and ‖T − IX‖ < 1, then T is bijective, has a bounded inverse.
Moreover,

T−1 = IX +

∞∑
n=1

(I − T )n.

Corollary 1.8 The set of all invertible elements of the algebra B(X) is open and the operation
of taking the inverse operator is continuous.

Theorem 1.9 (fundamental Banach results): Here X,Y are Banach spaces.
Open Mapping Theorem Any continuous linear surjection T ∈ B(X,Y ) maps open subsets of
X onto open subsets of Y .
Inverse Mapping Theorem The inverse of a continuous bijection T ∈ B(X,Y ) is also contin-
uous
Closed Graph Theorem If T ∈ Lin(X,Y ) has closed graph (i.e. the set ΓT := {(x, y) ∈ X×y :
y = Tx} is closed in the product topology), then T must be continuous.
Banach – Steinhaus Theorem If a sequence of bounded linear operators satisfies the pointwise
- boundedness condition: ∀x∈X supn ‖Tnx‖ < ∞ , then it is uniformly bounded on the unit ball:
supn ‖Tn‖ <∞.

We say that two norms, say ‖ ‖ and ‖ ‖∗ on the same linear space X are equivalent norms,
if there exist positive constants m,M > 0 such that

∀x∈X m‖x‖ ≤ ‖x‖∗ ≤M‖x‖. (5)

We say that a linear mapping T : X → Y is bounded below on X, if for some m > 0 we have
estimates

∀x∈X ‖Tx‖ ≥ m‖x‖. (6)

Theorem 1.10 Any two equivalent norms define the same topology. On a finitely-dimensional
space all norms are equivalent.
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More notation: For a linear mapping its kernel, known also as the nullspace is denoted
either by N (T ), or by ker(T ) and is, by definition, the set

N (T ) := {x ∈ X : Tx = 0}.

The range space of T ∈ Lin(X,Y ) is denoted by R(T ) (or in some books -by Im(T ). Here

R(T ) := {y ∈ Y : ∃x∈X y = Tx}.

Both sets are linear subspaces. From linear algebra we know that

T is injective iff N (T ) = {0}. (7)

Surjectivity means that R(T ) = Y . In the finite-dimensional case we have the relation

dim(N (T )) + dim(R(T ) = dim(X),

which for X = Y gives the equivalence:

Lemma 1.11 T ∈ Lin(X,X) is invertible iff N (T ) = {0}. (This no longer applies in the infinite
dimensional case!)

1.1 Tutorials 1

Given a basis (ej)j∈J the dual system of functionals (e∗j )j∈J is defined by (2), where the ej stand
in place of vj , the summation ranges through some finite subset {j1, . . . , jm} of the set J of indices
rather than through {1, . . . ,m}. From linear algebra we know that these functionals e∗j are linear.
They just describe the coordinates of a vector x with respect to the given basis.

1. In the Euclidean space Kn the norm is given by ‖~x‖ =
√
|x1|2 + . . .+ |xn|2. Here xj = ε∗j (~x)

(according to the notation from equation (1)) are the coordinates of ~x in the canonical 0-1
basis (ε1, . . . , εn). Any linear operator T : Kn → Y can be represented as T =

∑n
j=1 ε

∗
jTεj .

Deduce the continuity of such T . Express the matrix entries ajk in terms of the basis vectors,
T and the dual basis functionals only.

2. Show that if (e1, . . . , en) form a basis of X, then the dual system: (e∗1, . . . , e
∗
n) is a basis of

X∗, hence dim(X) = dim((X,K)) provided that dim(X) <∞.

3. In the infinitely dimensional case let G = (ej : j ∈ J) be a basis of X. Show that the dual
system is linearly independent, but it fails to span the algebraic dual space (X,K). In this
case dim((X,K)) = 2dim(X).

4. Let µ be the counting measure defined on the σ-algebra of all subsets A ⊂ N of the set N
of natural numbers. In other words, any one-point set {n} has measure 1, so that µ(A) =
#A, the number of elements of A. Denote a sequence a = (αn)n∈N as a formal sum a =∑∞
n=1 αn1{n}, where 1{n} is the characteristic function of the 1-point set {n}. If αn = 0

for n sufficiently large, we call such a a finite sequence and at least for finite sequences
our sum represents a function on N (which is nothing else, but our sequence). Clearly, here
all functions are measurable and in the case of finite sequences the integral of our function,
that can be written as

∫
a dµ or

∫
a(n) dµ(n) is just the sum

∑∞
n=1 αn.

Verify that in this case Lp(µ) with 1 ≤ p < ∞ can be identified isometrically with the
sequence space `p, whose norm is

‖a‖p :=
( ∞∑
n=1

|αn|p
) 1

p .

5. Let H be the Hilbert space `2 of infinite, square summable sequences of scalars a = (αn)n∈N
(i.e. such that ‖a‖22 :=

∑∞
n=1 |αn|2 < ∞). Let εj be the element of H which as a sequence

has all but one zero terms, the only nonzero entry equal 1 appearing at the j-th position.
This system generalizes the canonical 0-1 basis of Kn, it is linearly independent but show
that in this case its linear span (has the dimension equal ℵ0) is strictly smaller than `2.
Adjoin to it the vector e• represented by the infinite sequence whose n-th member is 1

n . So
extended system is still linearly independent and it is contained in some algebraic basis of
H. Show that the linear span of {ej : j ∈ N} is dense in H, then analysing e∗•(ej) deduce
that the coordinate functional e∗• is discontinuous, while the e∗j are norm-continuous on H.

4



6. Prove Theorem 1.10 in the case of the Euclidean space X = Rn. Then try to transfer the
result to any n-dimensional space.

7. Prove Theorem 1.1

8. If L ∈ B(X,Y ) is a bounded linear operator and x =
∑∞
n=1 xn is a sum of a convergent

series in the normed space X, show the convergence of x =
∑∞
n=1 yn, where yn = Txn.

9. Let LS : B(X) → B(X) be the operator of left multiplication by a given operator S ∈
B(X). Namely, LST := ST Show its continuity and compute its norm. This together
with the previous point will allow you to interchange the left multiplication with convergent
(in operator norm) series. Denote the right hand side of the equality in Theorem 1.7 as∑∞
n=0(I−T )n. Apply LS to this sum, where S = (I−T ) and compute the result. Repeating

the argument for the right -multiplication RST := TS - conclude the proof of Theorem 1.7

2 Preliminaria on Hilbert space

In this course we mainly consider vector spaces X,H, V over the complex scalars field C. Let us
recall some notions related to the inner product.

DEFINITIONs: (1) A sesquilinear form on V is a mapping q : V ×V → C assigning a scalar
q(u, v) to each pair of vectors u, v ∈ V , which is linear in the first variable and anti-linear i the
second one, i.e. for any α ∈ C, u, v, u1, v1, u2, v2 ∈ V we have

q(αu, v) = αq(u, v), q(u, αv) = ᾱq(u, v),

q(u1 + u2, v) = q(u1, v) + q(u2, v), q(u, v1 + v2) = q(u, v1) + q(u, v2).

(2) A form q : V × V → C is non-negative (or positive semi-definite), if q(v, v) ≥ 0 for any
v ∈ V . It is said to be positive, or positive -definite, if q(v, v) > 0 for any non-zero v ∈ V .

(3) A hermitian form is a sesquilinear form satisfying additionally the following ”skew
symmetry” postulate:

q(v, w) = q(w, v) (∀w,v∈V ).

Finally, the scalar product on V is a hermitian, positive definite form, denoted usually

〈u, v〉

rather than q(u, v). The linear algebra textbooks use often the ”dot notation” either u ·v, or u◦v,
unacceptable in the case where u, v are functions, which often is the case. The orthogonality
relation u ⊥ v means that 〈u, v〉 = 0

The quadratic form Q : V → C associated to a sesquilinear form q : V × V → C is defined for
w ∈ V by

Q(w) = q(w,w).

In the scalar product space we write ‖w‖2 for Q(w), as it turns out that

‖w‖ :=
√
〈w,w〉

defines then a norm on V . If V with respect to this norm is complete, then it is called a Hilbert
space. (Etymology: from Latin sēsqui = one and a half)

Theorem 2.1 Basic properties of sesquilinear forms q and their associated quadratic forms Q:

(a) (Parallelogram Law) Q(v + w) +Q(v − w) = 2Q(v) + 2Q(w).

(b) (Polarisation Identity) q(f, g) = 1
4 (Q(f + g)−Q(f − g) + iQ(f + ig)− iQ(f − ig)).

(c) (Phytagorean Theorem): If q(u,w) = 0, then Q(u+ w) = Q(u) +Q(w)

(d) (Schwarz Inequality) If q is nonnegative-definite (⇒hermitian), then |q(u,w)|2 ≤ Q(u)Q(w).

(e) q is hermitian if and only if Q assumes only real values (cf. previous point (d))

If the inner product notation is used, the Schwarz Inequality takes the form:

|〈u, v〉| ≤ ‖u‖‖v‖. (8)
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The proofs of (a),(b), (c) reduce to direct calculations, (e) follows from (b) by expressing the real
part of q(u, v) as : Re q(u,w) = 1

4 (Q(u + v) − Q(u − v)) if Q(H) ⊂ R. Ihe imaginary part of
q(u, v) -as a linear functional in the variable u is equal to −Re q(iu, w). Using these formulae
one computes the adjoint of q(u, v) and compares it to q(v, u) by elementary linear algebra. The
converse implication in (e) is obvious. Now using both non-negativity and hermitian property, for
any real t we get 0 ≤ p(t) := Q(u + tw) = Q(u) + 2tRe q(u,w) + t2Q(w), which is a polynomial
of degree 2 in t. It cannot have two distinct roots, so -non-positive must be its discriminant
(“Delta”): 0 ≥ (2Re q(u,w))2 − 4Q(u)Q(v). Hence |Re q(u,w)| ≤

√
Q(u)Q(w). For any fixed

w the right-hand side is a seminorm of v and the following easy lemma (replace u by e−iφu, if
q(u, v) = |q(u, v)|eiφ) concludes the proof

Lemma 2.2 If F : H → C is a C-linear functional and ρ : X → [0,+∞) is a seminorm on H,
then (

∀x∈H Re F (x) ≤ ρ(x)
)
⇔
(
∀x∈H |F (x)| ≤ ρ(x)

)
.

IMPORTANT NOTE: If one considers the real scalar field R, the sesquilinear forms become just
the bilinear ones, but the Polarisation Identity fails in the real case, unless we assume
the symmetry. For symmetric R-valued bilinear q, i.e. satisfying q(u, v) = q(v, u)∀u,v we
obtain q(f, g) = 1

4 (Q(f + g)−Q(f − g)) -just by subtracting side-by-side the equalities expressing
Q(f±g). Another algebraic result (Jordan – von-Neumann Theorem) says that any norm obeying
the Parallelogram Law is defined by some inner product. This holds both for B = R and K = C.

The sesquilinear form qT and the corresponding quadratic form QT defined by a linear operator
T : H → H are given by

qT (x, y) = 〈Tx, y〉, QT (x) = 〈Tx, x〉, x, y ∈ H. (9)

The rotation 2× 2 matrix

(
0 −1
1 0

)
generates the (isometric) linear mapping A : R2 → R2

that rotates any vector by 90 degrees, hence QA(x) = 0∀x. It is therefore important to stress
that in the complex inner product spaces the quadratic form does determine the operator: If
QT (x) = QS(x) for all x ∈ H, then T = S (even without assuming any symmetry). This is so
because the polarisation formula holds in this case (K = C). Hence from QT we recover qT . The
way of getting the vector Tx from the values of qT (x, y), where y runs through H, comes from
the Fourier series theory. If {en : n ∈ N} is an orthonormal basis, then

Tx =

∞∑
n=1

〈Tx, en〉en =

∞∑
n=1

qT (x, en)en

.
The orthogonal projection of a vector x ∈ H onto a convex closed set M in a Hilbert

space H, denoted PM is the unique point y ∈ M that minimises the distance from x, meaning
that for any z ∈M one has ‖x− y‖ ≤ ‖x− z‖. In other words, if δ = dist(x,M) := inf{‖x− z‖ :
z ∈ M}, then PMx is the only vector y such that y ∈ M and ‖x− y‖ = δ. In any inner product
space V one finds a sequence of the points zn ∈ M with δ = lim ‖x − zn‖ Using (a) above and
the convexity (so that still 1

2 (zn + zk) ∈ M , which implies ‖2x − (zn + zk)‖2 ≥ 4δ2 ) we show
the Cauchy’s condition for the sequence (zn). Unless V is complete (i.e. -a Hilbert space), or at
least M is complete as a subspace, nothing else can be done. But using the completeness -one
obtains the limit of (zn), say y = lim zn. Since M is closed, y ∈ M . By the continuity of the
norm, ‖x− y‖ = lim ‖x− zn‖, proving the existence. The uniqueness results from the inequalities
used earlier in the proof.

Theorem 2.3 If P = PM is the orthoprojection onto a closed linear subspace M 6= {0} of a
Hilbert space H, then

1. For x ∈ H, y ∈M we have y = PMx⇔ x− y ⊥M ,

2. The mapping PM : H → H is bounded and linear, of norm ‖PM‖ = 1

3. If a linear mapping P : H → H,P 6= 0 is bounded, linear, then there exists a closed linear
subspace M 6= {0} such that P = PM if and only if PP = P and P satisfies one of the
additional conditions: ‖P‖ ≤ 1 or P ∗ = P , the latest meaning 〈Pv,w〉 = 〈v, Pw〉 ∀v,w∈H .

4. The orthogonal decomposition holds : Any x ∈ H can be written uniquely in the form
x = y + r, where y ∈M, r ⊥M . Here r ⊥M means r ⊥ z ∀z∈M .
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5. for P = PM we have M = N (I − P ) = R(P ) and I − P is the orthoprojection onto M⊥

-the orthocomplement of M in H, denoted also H 	M .

Note that N (I − P ), the nullspace (=kernel) of the identity minus P is exactly the set of all
fixpoints of P , i.e. such points v ∈ H that Pv = v. In the remaining case M = {0}, we clearly
have PM = 0.

There are also ”skew projections” -corresponding to a direct sum decomposition. If

H = M1 +M2, M1 ∩M2 = {0},

we say that H is a direct sum of the subspaces M1,M2. From linear algebra we know that this
corresponds to a unique decomposition: x = x1 + x2 with xj ∈ Mj , j = 1, 2. The projection of x
onto M1 in the direction of M2, denoted PM1,M2x is simply the summand x1. One can prove that
unless M1 ⊥M2, we have the norm of this projection > 1. Also this operator’s adjoint is different
from PM1,M2

x in this case. If only M1,M2 are both closed and H is complete, the continuity of
the corresponding projection can be deduced from Banach’s Inverse Mapping Theorem applied to
the addition mapping: S : M1 ×M2 3 (u, v)→ u+ v ∈ H.

EXAMPLES OF ORTHOPROJECTIONS
1. Any diagonal matrix whose diagonal entries are either 0 or 1
2. If an orthonormal basis {en : n ∈ N} of H is given, for any k ∈ N the k-th partial sum of

the Fourier series,

Sk(x) :=

k∑
n=1

〈x, en〉en

defines the operator Sk : H → H. It is easy to verify the condition from point (1.) of theorem 2.3.
Hence Sk are the orthoprojections onto the linear span of {e1, . . . , ek}. Hence ‖Sk(x)‖2 ≤ ‖x‖2,

which due to the Pythagorean Theorem gives
∑k
n=1 |〈x, en〉|2 ≤ ‖x‖2 and passing with k →∞ we

get Bessel’s Inequality:
∞∑
n=1

|〈x, en〉|2 ≤ ‖x‖2 (10)

Last Thursday I have discussed 3 theorems describing arbitrary bounded linear functionals ϕ
on specific Banach spaces (the so called F.Riesz’ Representation Theorems): On Lp(µ) one finds
ρ ∈ Lq(µ) with 1

p + 1
q = 1 so that

ϕ(f) =

∫
f(ω)ρ(ω)dµ,

while on C(X) with X -a compact topological space, there exist a Borel-measurable ρ : X → {z ∈
C : |z| = 1} and a Borel, regular measure ν on X so that

ϕ(f) =

∫
f(ω)ρ(ω)dν,

In Hilbert spaces any bounded linear functional comes from a vector v ∈ H via the inner product:

ϕ(x) = 〈x, v〉.

FOR THE NEXT TUTORIALS please solve the following (in addition to the previously given
problrms): Given nonzero vectors u, v ∈ H define the linear operator L : H 3 x → 〈x, v〉u ∈ H,
denoted by u ⊗ v, or by uv∗. Hence (u ⊗ v)(x) := 〈x, v〉u. This ”tensor product -style notation
is a bit misleading, so later I will replace it by uv∗- consistent with column-vector u multiplied
(as a matrix) with its Hermitian conjugate (a row vector v∗ having the complex conjugates of the
coefficients of v).

This is a rank-one operator (rank (L) is the dimension of the range space L(H). L is the only
linear mapping that sends the vector v to ‖v‖2u and for which the nullspace N (L) (= ker(L))
equals the orthocomplement of {v}, i.e to the set {v}⊥ := {y ∈ H : y ⊥ v}.

(1) Show, that the adjoint to this L is obtained by interchanging the vectors: (v⊗u)∗ = u⊗ v
(2) In particular, v ⊗ v is self-adjoint. Show that this operator is of the form ‖v‖2P , where P

is the orthoprojection onto the 1-dimensional subspace spanned by v
(3) Show that any finite-rank operator T ∈ B(H) can be written as a finite sum of the form∑k
n=1 vn ⊗ wn with some vectors vj , wj , j ≤ k. (Hint: take any basis of the range space R(T ).=
(4) Show that ‖u⊗ v‖ = ‖u‖‖v‖
(5) Find a condition (in terms of the matrix’ entries) for a nonzero 2×2 matrix to be a matrix

for some rank-one operator. Generalize to d× d matrices.
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3 More basic facts on Hilbert space operators

DEFINITIONs: (1)(Eigenvectors and eigenvalues) : If T : H → H is a linear operator, then a
scalar λ ∈ K is called an eigenvalue of T , if for some nonzero w ∈ H (called eigenvector of T )
we have

Tw = λw. (equivalently, if N (T − λI) 6= {0}).

The set of all eigenvalues is called the point spectrum of T and is denoted by

σp(T ).

The set of all eigenvectors corresponding to λ, equal to N (T − λI), is a linear subspace -called
the eigenspace of T corresponding to the eigenvalue λ. (Here we treat 0 also as an eigenvector.)

The simplest linear operators on the sequence Hilbert space `2 are the diagonal operators

T = diag(an)

corresponding to a given sequence (an) of complex numbers. Its domain,

D(diag(an)) := {(xn) ∈ `2 : (anxn) ∈ `2}

is the maximal ”natural domain”, where the following definition makes sense: T (xn) = (anxn).
Recall that the sequence (anxn) belongs to `2 iff

∑
n |anxn|2 < ∞. The domain is the entire `2

and the operator is bounded iff the sequence (an) is bounded, i.e. it belongs to `∞ and then the
operator norm, ‖T‖ is equal to the `∞ norm of (an), which is ‖(an)‖∞ = sup{ |an| : n ∈ N}.
We have checked it substituting the basic 0-1 vectors εj forming an orthonormal basis in `2. A
converse result holds true:

Theorem 3.1 If some orthonormal basis (fn) of a Hilbert space H consists of eigenvectors of
a bounded linear operator T , so that Tfn = anfn for some scalars an, then the infinite matrix
representing T in this basis (whose entries are equal to 〈Tfj , fk〉) is diagonal, with the main
diagonal’s n-th entry equal an.

Which operators can be diagonalised in the above manner? -is a nontrivial question. A partial
answer will be given by the spectral theorem. The existence of such an orthonormal basis of
eigenvectors for T will be proved for compact normal operators defined below.

Definition 3.2 A linear operator T : H1 → H2 is called

• an isometry, if ‖Tx‖ = ‖x‖∀x ∈ H1

• a partial isometry, if ‖Tx‖ = ‖x‖ ∀x ∈ H1 	N (T )

• a unitary operator, if T is a surjective isometry

• a normal operator, if D(T ∗) = D(T ) and ‖T ∗x‖ = ‖Tx‖ ∀x ∈ D(T )

• a selfadjoint operator, if D(T ∗) = D(T ) and T ∗x = Tx ∀x ∈ D(T )

Finally, an operator T : H1 → H2 is compact, if the image of any bounded sequence of vectors
xn ∈ H1 contains a convergent subsequence. The set of all compact linear operators from H1 to
H2 will be denoted B0(H1, H2) and by B0(H1), if H1 = H2. In other words, if supn ‖xn‖ < ∞,
then for some integers 1 ≤ n1 < n2 < . . . there should exist a limit limk→∞ Txnk

in the norm
topology of H2.

We have the following equivalent formulations for the above properties:

Theorem 3.3 If D(T ) = H1 for a bounded linear operator T : H1 → H2, then

(a) T is an isometry iff T ∗Tx = x ∀x ∈ H1, i.e. iff T ∗T = IH1

(b) T is unitary iff ( T ∗T = IH1
and TT ∗ = IH2

), i.e. iff T ∗ = T−1.

(c) T is normal iff T ∗T = TT ∗

(d) T is selfadjoint, iff D(T ∗) = D(T ) and the form QT (x) = 〈Tx, x〉 is real-valued.

Recall, that by c0 we denote the space of all scalar sequences converging to zero, called sometimes
”null sequences”.
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Theorem 3.4 Let T = diag(an) : `2 → `2 be a diagonal operator corresponding to a sequence
(an) ∈ `∞. Then T is normal and its adjoint is also a diagonal operator, T ∗ = diag(ān), defined
by the complex conjugates of its diagonal sequence. Moreover, T is an isometry iff |an| = 1∀n ∈ N.
T is compact iff (an) ∈ c0. The composition TS of two diagonal operators is a diagonal operator
with diagonal anbn, if T = diag(an), S = diag(bn). In particular, TS = ST .

The compactness of a subset E ⊂ H in a normed space is equivalent to sequential compactness
(the existence of convergent subsequences ynk

for any sequence yn in E, so that limk ynk
∈ E).

If we only assume the existence of limk ynk
∈ H, the condition means the compactness of the

closure of E, called the relative compactness of E. If B̄ denotes the closed unit ball in H1, then
the compactness of a linear operator T : H1 → H2 means the relative compactness of the image
T (B̄) of the closed unit ball. As in the case of the equivalent conditions for continuity of T , the
compactness of T is equivalent to the relative compactness of the image of any ball of positive
radius. Since relatively compact subsets are bounded, any compact operator must be bounded.
The definition, as stated, applies to Banach spaces as well. In the case of Hilbert spaces, or
reflexive Banach spaces, the image T (B̄) of any closed ball is also closed. This is a consequence
of the compactness of B̄ in the weak topology (Banach -Alaoglu’s Theorem) and the continuity
of bounded linear maps also with respect to weak topologies. We are not going to use this fact,
however in this course. More important is the following remark: The unit closed ball B̄ in H
cannot be compact unless dim(H) <∞.

Another important characterisation of (relative) compactness, similar to the classical Bolzano-
Weierstrass theorem: (”Bounded subsets of the Euclidean space Rn are relatively compact”) is
due to Hausdorff. We know, that in the infinite dimensional case boundedness will not suffice
(why?). We need the stronger property than just boundedness:

Definition 3.5 A subset E in a metric space (X, d) is totally bounded if it has finite coverings
by finite families of sets with arbitrarily small diameter. In other words,

∀ε>0∃k∈N∃x1,...,xk∈E∀x∈E∃j≤kd(x, xj) < ε.

The set {x1, . . . xn} is then called an ε-network for E and the balls with radii ε, centered at xj
cover E. (Their diameters satisfy, of course, diamB(xj , ε) ≤ 2ε). If we just require that the xj
are points from the space X, we get an equivalent definition (why?). We may call a sequence
(zn) ⊂ X a uniformly separated sequence, if for some δ > 0 and for any k, j ∈ N one has
d(zj , zk) ≥ δ. Clearly, any of its subsequences is also uniformly separated and it cannot satisfy
Cauchy’s condition. Therefore to prove that a set Z is not relatively compact it suffices to find
a uniformly separated sequence of its points. Check that orthonormal sequences are uniformly
separated and that completely bounded sets are bounded. Now the positive result:

Theorem 3.6 (Hausdorff) A set E in a complete metric space is relatively compact if and only
if it is completely bounded. In particular, E is compact iff E is closed and completely bounded.

Using this characterisation it is relatively easy to describe the set B0(H1, H2) of compact
operators. Recall that a sequence (xn) converges weakly to x0 in a Banach space X, if for any
continuous linear functional φ ∈ X ′ the scalar sequence φ(xn) converges to φ(x0). In Hilbert
spaces this is equivalent to lim〈xn − x0, z〉 = 0∀z∈X .

Theorem 3.7 Let T ∈ B(H1, H2) be a bounded linear operator in a Hilbert space. Then TFAE:

1. T is compact (in symbols, T ∈ B0(H1, H2)).

2. If (xn) ⊂ H1 converges weakly to zero, then ‖Txn‖ → 0.

3. There exists a sequence of finite rank operators Tn : H1 → H2 such that ‖Tn − T‖ → 0.

The set B0(H) of compact linear operators S : H → H is a two-sided closed ideal in B(H). In
other words, the limit of norm-convergent sequence (Sn) of compact operators is compact and so
is any linear combination of two compact operators. If S is compact and T is bounded, then both
ST and TS are compact.
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4 Compact operators

4.1 Weak convergence

The weak topology is a bit exotic, since it is non-metrizable in any∞− dimensional Banach space.
Denote the weak convergence by ⇀. Recall, that a sequence of vectors xj in a Banach space X
converges weakly to x0 ∈ X, a fact denoted by xj ⇀ x0, if for any fixed continuous linear functional
ϕ ∈ X ′ the sequence of (real or complex) numbers ϕ(xj) converges to ϕ(x0). In Hilbert spaces
we have ϕ(x) uniquely represented as 〈x, z〉 for some z ∈ H, so the defining condition becomes
simply

xj ⇀ x0 ⇔ ∀z∈H lim
j
〈xj , z〉 = 〈x, z〉.

In any case this convergence comes from the weak topology defined as the weakest topology making
all ϕ ∈ X ′ continuous. This is the topology defined by a family of seminorms {pφ(·) : φ ∈ X ′},
where pφ(x) = |φ(x)| for x ∈ X. Basis of weak neighbourhoods of zero is formed by the family of
sets

W (φ1, . . . φk) = {x ∈ X : |φ1(x)| < 1, . . . |φk(x)| < 1}, where k ∈ N, φ1, . . . φk ∈ X ′.

Hence as an indexing set we may take the family of all finite subsets of X ′. Note that for families
of seminorms pj one should consider finite intersections of balls {x ∈ X : pj(x) < r} of radii
r > 0. This is because for one neighbourhood of zero the minimum (taken over j ∈ {1, . . . , k}) of
a finite set of radii rj can be put instead of the radii r1, . . . , rk. In the case of the weak topology it
simplifies further -we can take r = 1 throughout, since φ can be replaced by the functional r−1φ,
since | 1rφ(x)| < 1⇔ |φ(x)| < r.

In any Hilbert space with orthonormal sequence (en) it follows from Bessel’s inequality that
en ⇀ 0 as n→∞. The famous example due to von Neumann shows this: If E = {en+nem, n,m ∈
N}, then the iterated weak limit is zero:

lim
n

(lim
m
en + nem) = lim

n
(en + n0) = 0,

hence zero belongs to the weak closure of E. But -unlike in the metric spaces - we have the
following fact: there is no sequence of vectors xk ∈ E weakly convergent to zero. Indeed,
by the Uniform Boundedness Principle (or directly from the Banach-Steinhaus Theorem), as a
weakly convergent sequence, such a sequence should be bounded. As xk = enk

+ nkemk
for some

nk,mk ∈ N and ‖xk‖2 = 1 + n2k, the sequence nk should be bounded, hence it should contain a
constant subsequence nkj -equal to some n0. But then either mk is eventually constant (say, equal
m0 for sufficiently large k, leading to xkj ⇀ en0

+ n0em0
), or we should have mkj →∞, yielding

xkj ⇀ en0
+ 0, a contradiction.

For general normed spaces X – the non-metrizability follows from the fact that any countable
intersection of a sequence of weak neighbourhoods of zero is of the form

⋂∞
n=1W (φn) and contains

more than one point (show that codim
⋂∞
n=1 ker(φn) ≤ ℵ0 – exercise). In metric spaces the balls

centered at 0, of radii 1
n have one-point intersection.

Any ball in X with respect to the norm (and any bounded set) has empty interior in the weak
topology.

Despite of these drawbacks, the weak convergence (of ordinary sequences) is in a sense quite
natural:

In the sequence spaces `p, 1 < p <∞ a sequence xn ∈ `p converges weakly to x0 iff it is bounded
(supn ‖xn‖p < ∞) and each coordinate converges: (xn)k = e∗k(xn) → (x0)k as n → ∞(∀k ∈ N).
This is a particular case of the following general principle (with D = {e∗k : k ∈ N}):

Theorem 4.1 If the linear span of a subset D ⊂ X ′ is dense in X ′ (with its norm), then a se-
quence (xn) converges weakly to x0 iff it is bounded and φ(xn)→ φ(x0) for any φ ∈ D. If moreover
such a ”generating set” D = {φj}j∈N is countable, then the metric ρ(x, y) :=

∑∞
n=1 2−j |φj(x) −

φj(y)| defines the weak topology on bounded subsets of X.

A surprising result at p = 1 is due to I. Schur: A sequence in `1 converges weakly if and only
if it norm- converges to the same limit. (Note that the two topologies are different!)

In Hilbert spaces any bounded sequence has weakly convergent subsequence and any closed
ball is weakly compact. In separable Hilbert spaces the weak topology, when restricted to bounded
subsets is metrizable! The weak compactness of the closed unit ball (and of any closed
ball) takes place iff the space is reflexive (i.e. the canonical embedding in its second dual space
j : X → X ′′, (j(φ))(x) := φ(x), φ ∈ X ′, x ∈ X is surjective -a fact denoted often as X = X ′′.

For convex sets their weak closures are equal to their norm-closures, due to Hahn-Banach
theorem (precisely, from its corollary on separation of points from closed convex sets).
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4.2 Convergence of sequences of operators

We say that a sequence (or a generalized sequence, i.e. a net) of operators Tj ∈ B(X,Y ) acting
between two Banach spaces converges to an operator T ∈ B(X,Y )

• uniformly, or in norm (notation Tj → T ), if the operator norms ‖Tj − T‖ converges to zero

• strongly (notation Tj → T (SOT )), if for any x ∈ X we have ‖Tjx− Tx‖ → 0

• weakly (notation Tj → T (WOT)) if for any x ∈ X we have Tjx− Tx ⇀→ 0

Clearly, the uniform convergence implies the strong convergence. The strong convergence
implies the weak convergence. None of these implications is reversible.

The remaining part of this page can be omitted at the first reading, we are going to concentrate on
ordinary (not generalised) sequences. The (SOT) convergence corresponds to the strong operator topology
given by the family of seminorms {px : x ∈ X, where px(T ) := ‖Tx‖. Similarly, the weak operator
topology is defined by pxϕ(T ) := |ϕ(Tx)|, a family of seminorms indexed by (x, ϕ) ∈ X × Y ′. Let us
concentrate for a while on the latter two convergences in the Hilbert spaces case: Neither of these two
convergences is metrizable (but their restrictions to bounded sets of operators are). Clearly, in the Hilbert
space case for Tj , T ∈ B(H)

• the weak convergence: Tj → T (WOT) means that 〈Tjx, y〉 → 〈Tx, y〉 ∀x,y∈H .

It turns out, that the multiplication in B(H) is discontinuous -but is sequentially continuous!
Here the multiplication TS is just the composition: (TS)(x) = T (Sx). The relevant example can be
found in a separate file entitled ”example1.pdf”. The difference between nets and sequences is that
for sequences the index j runs through the set N of natural numbers and only finitely many terms of
a convergent sequence can stay outside a given neighbourhood of the limit. By Uniform Boundedness
Principle, WOT - convergent sequences are bounded. The same cannot be asserted for convergent nets,
where we have the index set J possibly uncountable, directed by some transitive relation j � i such that
∀j,k∈J∃i∈Jj � i and k � i. Here the convergence of Tj to T means that for any neighbourhood W of
T there exists j0 ∈ J such that j ∈ J, j0 � j ⇒ Tj ∈ W. Any accumulation point (or a point from the
closure Ē) of a set E is always a limit of some generalized sequence of elements of E. The example from
the previous subsection on weak convergence with E = {en + nem, n,m ∈ N} shows, that the ordinary
sequences can be inadequate for the latter purpose -even for countable sets E.

EXERCISE 1. Let us direct the set of integers Z by the ordinary relation j ≤ k. Is the net (2−j)j∈Z
bounded? Does it converge?

EXERCISE 2. If we direct N × N by (j, k) � (n,m) meaning that max(j, k) ≤ min(n,m) , is the
convergence ‖xn − xm‖ corresponding to this direction of N×N equivalent to the Cauchy condition (in a
normed space X)?

EXERCISE 3. The diameter δ(T ) of a partition T = (t0 = a < t1 < . . . < tn = b of an interval [a, b]
is defined as δ(T ) := max{tj − tj−1 : j = 1, . . . n}. In the set of pairs (T ,Λ), where Λ = {λ1, . . . λk} is
a collection of intermediate points for T , so that λj ∈ [tj−1, tj ] define a direction (T1,Λ1) � (T2,Λ2), if
δ(T1) ≤ δ(T2).

Now let f : [a, b]→ R be a given function. Define

S(f, T ,Λ) =

n∑
j=1

f(λj)(tj − tj−1).

If we treat S(f, T ,Λ) ∈ R as a generalised sequence indexed by such pairs (T ,Λ), what is the meaning
for its convergence to some limit S ∈ R? (answer using a notion from basic calculus)

EXERCISE 4. If we have a neighbourhood basis (Wj)j∈J of a point x0 in some topological space, so
that for any neighbourhood U of x0 there exists j ∈ J such that Wj ⊂ U , let us pick arbitrary points
xj ∈Wj and direct J by j � k meaning Wj ⊃Wk (the reverse inclusion!). Show that the net xj converges
to x0. (Using this one can show that the continuity at a point x0 of a mapping F between two topological
spaces takes place iff for any generalised sequence xj converging to x0 the values F (xj) converge to x0.)

EXERCISE 5. Let Ω be the set of all continuous functions on [0, 1], taking values from [0, 1]. Consider

the topology of pointwise convergence defined on C[0, 1] by the seminorms pt(x) := |x(t)|, where t ∈
[0, 1], x ∈ C[0, 1]. Show that the functional F : Ω 3 x → F (x) :

∫ 1

0
x(t) dt is sequentially continuous,

i.e. it satisfies the Heine condition: for all ordinary sequences xn ∈ Ω convergent pointwise to x0 one has

F (xn)→ F (x0). On the other hand, any neighbourgood of zero in Ω contains a basic neighbourghood of

the form Wt1,...,tk := {x ∈ Ω : |x(t1)| < ε, . . . |x(tk)| < ε} corresponding to some ε > 0 and a finite set of

points t1, . . . tk ∈ [0, 1]. We can pick a function z ∈ Wt1,...,tk (e.g. vanishing at these finite set of points

-then any ε > 0 will be ”good”) such that
∫ 1

0
z(t) dt > 1

2
(draw a picture of a piecewise-linear function

having these properties). This shows the discontinuity of F on Ω.

WE HAVE PROVED THIS: If a sequence of operators Pn → P (SOT) and K is a compact
operator, then PnK → PK uniformly. If a Schauder basis exists in X, then ∃Pn of finite rank,
(SOT)-convergent to I (identity). Compact operators are then uniform limits of finite rank oper-
ators. Continuous finite rank operators and uniform limits of compact operators are compact.

11


