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1. Preliminaria

Here we recall some facts needed from linear algebra:

During this course K will denote the scalar field -equal either to R, or to C. The vector spaces
over K will be denoted X,Y, Z,M,H -some other capital letters may be used. In some cases
arrows over some letters, like ~u, ~w, ~x, ... will be applied to mark the difference between vectors and
scalars (usually denoted either by Greek lowercase letters: α, β, λ, or s, t -for real scalars). Later
on this distinction will be clear and to simplify the notation, the arrows will be suppressed. The
basics of linear algebra are assumed to be known, including the notions of linear independence of
vectors, bases, the dimension, linear mappings and their relation to matrices, the Euclidean space
Rn, or Cn with its canonical 0-1 basis:

ε1 = (1, 0, . . . , 0), ε2 = (0, 1, 0 . . . , 0), . . . , εn = (0, . . . , 0, 1)

and coordinate notations: ~x = (x1, . . . , xn).

If n = 3 (or 2), instead of ε1, ε2, ε3 one usually writes: ~i,~j,~k and ~w = (x, y, z).
The symbols: If F (a) is some logical formula depending on the variable a, then

∃a∈A!F (a) will denote “there exists only one element a ∈ A for which F (a) holds”,
:= -will denote “equals, by definition”. Conjunction will be denoted p and q, or simply p, q rather
than p ∧ q. The word “iff” will stand for “if and only if ”.

Given a mapping φ : D → Y , where D is the domain of φ, denoted D(φ), we say that F : X → Y
extends φ, (or -that φ is a restriction of F to D, notation: F |D = φ, or φ ⊂ F , if

D(φ) ⊂ D(F ) and ∀x∈D F (x) = φ(x).

If moreover F is linear, we speak of a linear extension. Similarly, if it is continuous, we call F
a continuous extension of φ.

Useful Fact 1: A subset G ⊂ X is linearly independent iff any mapping φ : G → Y has a
linear extension (to some linear subspace containing its domain, D, or even to the entire space
X.) In order to get one implication it suffices to require the existence of linear extensions only in
the scalar-valued case: Y = K.

We say, that G spans X, writing X = span(G), if

(1) ∀x∈X∃m∈N∃α1,...,αm∈K∃v1,...,vm∈G x =

m∑
j=1

αjvj .

Useful Fact 2: A subset G ⊂ X spans X, if linear extensions of any map φ : G → Y are
unique -provided they exist. This means that if F1 and F2 are linear mappings on X extending
the same φ, one must have F1 = F2. Clearly, not all mappings φ have any linear extension- take
G = X, or even G = {ε1, 2ε1}, X = R2. (Again, it suffices to verify this with Y = K).

For linear bases G in X (sets simultaneously lin. independent and spanning X) any mapping
from G has exactly one linear extension. All bases of X have the same cardinality, called the
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dimension of X, denoted dim(X). If the latter is finite, say dim(X) = m, we may write G =
{v1, . . . , vm} and then the quantifiers: ∃m,∃v1,...vm are redundant in the formula 1, while the
quantifier ∃(α1,...,αm) can be written as ∃!(α1,...,αm) . Then we call this m-tuple (α1, . . . , αm) ∈ Km
of scalars - the coordinates of x in the basis (v1, . . . , vm). I will write now

(2) v∗j (x) := αj , so that x =

m∑
j=1

v∗j (x)vj .

The same notation can be used to define the dual system {e∗j : j ∈ J} to an infinite basis
{ej : j ∈ J}. Here some problems arise (see later -in Tutorials section).

When writing the value of a linear operator T on a given vector x one usually omits the
parentheses – writing Tx rather than T (x), when the range is clear. For example, in some formulae
the vectors x themselves will be functions, eg. x(s) for s ∈ [0, 1] and we write (Tx)(s) =

∫ s
0
f(t) dt

in the case of the so called Volterra operator. Here (Tx)(s) looks better than (T (x))(s), or T (x)(s).
Sometimes we need parentheses, it would be unclear, whether Tx+y means T (x)+y, or T (x+y).

Notation: Lin(X,Y ) := {T : T is linear, T : X → Y } will be the space of all linear
operators acting from X to Y . Members of Lin(X,K) are called linear functionals on X. If
we have normed spaces with norms ‖ ‖X , ‖ ‖Y , we say that T ∈ Lin(X,Y ) is bounded, if it is
bounded on the unit ball denoted by

BX(0, 1) := {x ∈ X : ‖x‖X < 1}.
Let us define the operator norm ‖T‖ by

‖T‖ := sup{‖Tv‖Y : v ∈ BX(0, 1)}.
Denote the space of all bounded linear operators from X to Y by

B(X,Y ).

If Y = X, we write B(X) in place of B(X,Y ) and if Y = K, we write X ′ for the space B(X,K)
of all bounded linear functionals on X, called the dual space for X. Some textbooks use the
notation L(X,Y ) for B(X,Y ), writing X∗ rather than X ′ is also frequent. An example of linear
functionals is v∗j of the dual system (2).

The vector space structure is defined (both on B(X,Y ) and on Lin(X,Y )) by pointwise linear
operations: given e.g. T, S ∈ B(X,Y ) we write T + S for the operator sending a vector x ∈ X
into (T + S)(x) := T (x) + S(x) ∈ Y . Similarly, (αT )(x) := αT (x) defines the multiplication of
an operator T by the scalar α ∈ K. The constant function 0, called the zero operator, is clearly
bounded and linear. This is the zero element of B(X,Y ). Boundedness of the sum of bounded
operators results from the inequalities:

‖(T + S)x‖ = ‖Tx+ Sx‖ ≤ ‖Tx‖+ ‖Sx‖ ≤ ‖T‖+ ‖S‖ valid for any x ∈ BX(0, 1),

which also shows that
‖S + T‖ ≤ ‖S‖+ ‖T‖.

Similarly, one shows that for α ∈ K one has ‖αT‖ = |α|‖T‖. Apart from bounded, we often have
to consider linear operators, that are unbounded and defined on domains D(T ) different from the
entire space. Usually, the domains are dense subsets (in the norm topology of the space X). We
call such mappings densely defined operators in X.

Let D1, D2 be now subspaces (in many applications -dense) of some two normed spaces X1, X2

-respectively and consider two operators T1 : D1 → X2, T2 : D2 → X3. Their composition, T2 ◦T1,
denoted T2T1 –is defined on the domain

(3) D(T2T1) := {x ∈ D(T1) : T1(x) ∈ D(T2)} by T2T1x := T2(T1x).

We write T 2 for T ◦ T and -proceeding by induction- Tn+1 = T ◦ Tn. Let IX denote the identity
operator on X: IXv = v (∀v ∈ X). Note that Lin(X,X) is an algebra where the multiplication is
defined to be the composition. If dim(X) > 1, this algebra is noncommutative, but it has the unit,
namely IX . It is important to note that B(X,X) -denoted as B(X) is also an algebra. Moreover
‖T2T1‖ ≤ ‖T2‖‖T1‖. This follows easily from the estimate:

(4) ‖Tw‖Y ≤ ‖T‖‖w‖X for any w ∈ X, T ∈ B(X,Y )

The continuity of linear operators and its invertibility are two central issues considered. Let us
recall some results from functional analysis: (TFAE = ”The Following Are Equivalent)

Theorem 1.1. For a linear operator T : X → Y between two normed spaces TFAE:

(a) T is continuous on X (even -uniformly continuous),
(b) T is continuous at some point x0 ∈ X,
(c) T is bounded in some nonempty open set,



3

(d) T is bounded in the unit ball of X, i.e. ‖T‖ < +∞,
(e) For some finite constant M ≥ 0 one has ‖Tx‖Y ≤M‖x‖X for any x ∈ X.

The norm ‖T‖ is the least M ≥ 0 satisfying the estimate in (e). Also ‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1}.

Theorem 1.2. Any linear mapping on a finite-dimensional normed vector space is continuous.
Any finite-dimensional subspace of a normed space is closed.

Theorem 1.3. Any uniformly continuous mapping f defined on a dense subset D of a metric
spaceX, whose values are in a complete normed space Y has a unique continuous extension to a
continuous mapping F : X → Y .

Theorem 1.4. If Y is complete, then the space B(X,Y ) is also complete. (Conversely, if
dim(X) > 0, then from the completeness of B(X,Y ) it follows that Y is complete.)

Theorem 1.5. Any continuous linear functional φ on a subspace M of a normed space X has a
continuous linear extension F having the same norm: ‖φ‖ = ‖F‖.

Theorem 1.6. For any x ∈ X there exists (at least one) bounded linear functional φ ∈ X ′ having
norm one: ‖φ‖ = 1 such that φ(x) = ‖x‖. Hence the dual formula for the norm holds:

‖x‖ = sup{|f(x)| : f ∈ X ′, ‖f‖ ≤ 1}.

Theorem 1.7. If X is complete and ‖T − IX‖ < 1, then T is bijective, has a bounded inverse.
Moreover,

T−1 = IX +

∞∑
n=1

(I − T )n.

Corollary 1.8. The set of all invertible elements of the algebra B(X) is open and the operation
of taking the inverse operator is continuous.

Theorem 1.9. (fundamental Banach results): Here X,Y are Banach spaces.
Open Mapping Theorem Any continuous linear surjection T ∈ B(X,Y ) maps open subsets of
X onto open subsets of Y .
Inverse Mapping Theorem The inverse of a continuous bijection T ∈ B(X,Y ) is also contin-
uous
Closed Graph Theorem If T ∈ Lin(X,Y ) has closed graph (i.e. the set ΓT := {(x, y) ∈ X×y :
y = Tx} is closed in the product topology), then T must be continuous.
Banach – Steinhaus Theorem If a sequence of bounded linear operators satisfies the pointwise
- boundedness condition: ∀x∈X supn ‖Tnx‖ < ∞ , then it is uniformly bounded on the unit ball:
supn ‖Tn‖ <∞.

We say that two norms, say ‖ ‖ and ‖ ‖∗ on the same linear space X are equivalent norms,
if there exist positive constants m,M > 0 such that

(5) ∀x∈X m‖x‖ ≤ ‖x‖∗ ≤M‖x‖.
We say that a linear mapping T : X → Y is bounded below on X, if for some m > 0 we have
estimates

(6) ∀x∈X ‖Tx‖ ≥ m‖x‖.

Theorem 1.10. Any two equivalent norms define the same topology. On a finitely-dimensional
space all norms are equivalent.

More notation: For a linear mapping its kernel, known also as the nullspace is denoted either
by N (T ), or by ker(T ) and is, by definition, the set

N (T ) := {x ∈ X : Tx = 0}.
The range space of T ∈ Lin(X,Y ) is denoted by R(T ) (or in some books -by Im(T ). Here

R(T ) := {y ∈ Y : ∃x∈X y = Tx}.
Both sets are linear subspaces. From linear algebra we know that

(7) T is injective iff N (T ) = {0}.
Surjectivity means that R(T ) = Y . In the finite-dimensional case we have the relation

dim(N (T )) + dim(R(T ) = dim(X),

which for X = Y gives the equivalence:

Lemma 1.11. T ∈ Lin(X,X) is invertible iff N (T ) = {0}. (This no longer applies in the infinite
dimensional case!)
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1.1. Tutorials 1. Given a basis (ej)j∈J the dual system of functionals (e∗j )j∈J is defined by (2),
where the ej stand in place of vj , the summation ranges through some finite subset {j1, . . . , jm}
of the set J of indices rather than through {1, . . . ,m}. From linear algebra we know that these
functionals e∗j are linear. They just describe the coordinates of a vector x with respect to the
given basis.

(1) In the Euclidean space Kn the norm is given by ‖~x‖ =
√
|x1|2 + · · ·+ |xn|2. Here xj =

ε∗j (~x) (according to the notation from equation (1)) are the coordinates of ~x in the canonical
0-1 basis (ε1, . . . , εn). Any linear operator T : Kn → Y can be represented as T =∑n
j=1 ε

∗
jTεj . Deduce the continuity of such T . Express the matrix entries ajk in terms of

the basis vectors, T and the dual basis functionals only.
(2) Show that if (e1, . . . , en) form a basis of X, then the dual system: (e∗1, . . . , e

∗
n) is a basis

of X∗, hence dim(X) = dim((X,K)) provided that dim(X) <∞.
(3) In the infinitely dimensional case let G = (ej : j ∈ J) be a basis of X. Show that the

dual system is linearly independent, but it fails to span the algebraic dual space (X,K).
In this case dim((X,K)) = 2dim(X).

(4) Let µ be the counting measure defined on the σ-algebra of all subsets A ⊂ N of the set
N of natural numbers. In other words, any one-point set {n} has measure 1, so that
µ(A) = #A, the number of elements of A. Denote a sequence a = (αn)n∈N as a formal
sum a =

∑∞
n=1 αn1{n}, where 1{n} is the characteristic function of the 1-point set {n}.

If αn = 0 for n sufficiently large, we call such a a finite sequence and at least for finite
sequences our sum represents a function on N (which is nothing else, but our sequence).
Clearly, here all functions are measurable and in the case of finite sequences the integral
of our function, that can be written as

∫
a dµ or

∫
a(n) dµ(n) is just the sum

∑∞
n=1 αn.

Verify that in this case Lp(µ) with 1 ≤ p <∞ can be identified isometrically with the
sequence space `p, whose norm is

‖a‖p :=
( ∞∑
n=1

|αn|p
) 1

p .

(5) Let H be the Hilbert space `2 of infinite, square summable sequences of scalars a =
(αn)n∈N (i.e. such that ‖a‖22 :=

∑∞
n=1 |αn|2 <∞). Let εj be the element of H which as a

sequence has all but one zero terms, the only nonzero entry equal 1 appearing at the j-th
position. This system generalizes the canonical 0-1 basis of Kn, it is linearly independent
but show that in this case its linear span (has the dimension equal ℵ0) is strictly smaller
than `2. Adjoin to it the vector e• represented by the infinite sequence whose n-th member
is 1

n . So extended system is still linearly independent and it is contained in some algebraic
basis of H. Show that the linear span of {ej : j ∈ N} is dense in H, then analysing e∗•(ej)
deduce that the coordinate functional e∗• is discontinuous, while the e∗j are norm-continuous
on H.

(6) Prove Theorem 1.10 in the case of the Euclidean space X = Rn. Then try to transfer the
result to any n-dimensional space.

(7) Prove Theorem 1.1
(8) If L ∈ B(X,Y ) is a bounded linear operator and x =

∑∞
n=1 xn is a sum of a convergent

series in the normed space X, show the convergence of x =
∑∞
n=1 yn, where yn = Txn.

(9) Let LS : B(X) → B(X) be the operator of left multiplication by a given operator S ∈
B(X). Namely, LST := ST Show its continuity and compute its norm. This together with
the previous point will allow you to interchange the left multiplication with convergent
(in operator norm) series. Denote the right hand side of the equality in Theorem 1.7
as
∑∞
n=0(I − T )n. Apply LS to this sum, where S = (I − T ) and compute the result.

Repeating the argument for the right -multiplication RST := TS - we conclude the proof
of Theorem 1.7

2. Preliminaria on Hilbert space

In this course we mainly consider vector spaces X,H, V over the complex scalars field C. Let
us recall some notions related to the inner product.

DEFINITIONs: (1) A sesquilinear form on V is a mapping q : V ×V → C assigning a scalar
q(u, v) to each pair of vectors u, v ∈ V , which is linear in the first variable and anti-linear i the
second one, i.e. for any α ∈ C, u, v, u1, v1, u2, v2 ∈ V we have

q(αu, v) = αq(u, v), q(u, αv) = ᾱq(u, v),

q(u1 + u2, v) = q(u1, v) + q(u2, v), q(u, v1 + v2) = q(u, v1) + q(u, v2).
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(2) A form q : V × V → C is non-negative (or positive semi-definite), if q(v, v) ≥ 0 for any
v ∈ V . It is said to be positive, or positive -definite, if q(v, v) > 0 for any non-zero v ∈ V .

(3) A hermitian form is a sesquilinear form satisfying additionally the following ”skew
symmetry” postulate:

q(v, w) = q(w, v) (∀w,v∈V ).

Finally, the scalar product on V is a hermitian, positive definite form, denoted usually

〈u, v〉

rather than q(u, v). The linear algebra textbooks use often the ”dot notation” either u ·v, or u◦v,
unacceptable in the case where u, v are functions, which often is the case. The orthogonality
relation u ⊥ v means that 〈u, v〉 = 0

The quadratic form Q : V → C associated to a sesquilinear form q : V × V → C is defined for
w ∈ V by

Q(w) = q(w,w).

In the scalar product space we write ‖w‖2 for Q(w), as it turns out that

‖w‖ :=
√
〈w,w〉

defines then a norm on V . If V with respect to this norm is complete, then it is called a Hilbert
space. (Etymology: from Latin sēsqui = one and a half)

Theorem 2.1. Basic properties of sesquilinear forms q and their associated quadratic forms Q:

(a) (Parallelogram Law) Q(v + w) +Q(v − w) = 2Q(v) + 2Q(w).
(b) (Polarisation Identity) q(f, g) = 1

4 (Q(f + g)−Q(f − g) + iQ(f + ig)− iQ(f − ig)).
(c) (Phytagorean Theorem): If q(u,w) = 0, then Q(u+ w) = Q(u) +Q(w)
(d) (Schwarz Inequality) If q is nonnegative-definite (⇒hermitian), then |q(u,w)|2 ≤ Q(u)Q(w).
(e) q is hermitian if and only if Q assumes only real values (cf. previous point (d))

If the inner product notation is used, the Schwarz Inequality takes the form:

(8) |〈u, v〉| ≤ ‖u‖‖v‖.

The proofs of (a),(b), (c) reduce to direct calculations, (e) follows from (b) by expressing the
real part of q(u, v) as : Re q(u,w) = 1

4 (Q(u + v) − Q(u − v)) if Q(H) ⊂ R. The imaginary part
of q(u, v) -as a linear functional in the variable u is equal to −Re q(iu, w). Using these formulae
one computes the adjoint of q(u, v) and compares it to q(v, u) by elementary linear algebra. The
converse implication in (e) is obvious. Now using both non-negativity and hermitian property, for
any real t we get 0 ≤ p(t) := Q(u + tw) = Q(u) + 2tRe q(u,w) + t2Q(w), which is a polynomial
of degree 2 in t. It cannot have two distinct roots, so -non-positive must be its discriminant
(“Delta”): 0 ≥ (2Re q(u,w))2 − 4Q(u)Q(v). Hence |Re q(u,w)| ≤

√
Q(u)Q(w). For any fixed

w the right-hand side is a seminorm of v and the following easy lemma (replace u by e−iφu, if
q(u, v) = |q(u, v)|eiφ) concludes the proof

Lemma 2.2. If F : H → C is a C-linear functional and ρ : H → [0,+∞) is a seminorm, then(
∀x∈H Re F (x) ≤ ρ(x)

)
⇔
(
∀x∈H |F (x)| ≤ ρ(x)

)
.

IMPORTANT NOTE: If one considers the real scalar field R, the sesquilinear forms become just
the bilinear ones, but the Polarisation Identity fails in the real case, unless we assume
the symmetry. For symmetric R-valued bilinear q, i.e. satisfying q(u, v) = q(v, u)∀u,v we
obtain q(f, g) = 1

4 (Q(f + g)−Q(f − g)) -just by subtracting side-by-side the equalities expressing
Q(f±g). Another algebraic result (Jordan – von-Neumann Theorem) says that any norm obeying
the Parallelogram Law is defined by some inner product. This holds both for B = R and K = C.

The sesquilinear form qT and the corresponding quadratic form QT defined by a linear operator
T : H → H are given by

(9) qT (x, y) = 〈Tx, y〉, QT (x) = 〈Tx, x〉, x, y ∈ H.

The rotation 2 × 2 matrix

(
0 −1
1 0

)
generates the (isometric) linear mapping A : R2 → R2

that rotates any vector by 90 degrees, hence QA(x) = 0∀x. It is therefore important to stress
that in the complex inner product spaces the quadratic form does determine the operator: If
QT (x) = QS(x) for all x ∈ H, then T = S (even without assuming any symmetry). This is so
because the polarisation formula holds in this case (K = C). Hence from QT we recover qT . The
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way of getting the vector Tx from the values of qT (x, y), where y runs through H, comes from
the Fourier series theory. If {en : n ∈ N} is an orthonormal basis, then

Tx =

∞∑
n=1

〈Tx, en〉en =

∞∑
n=1

qT (x, en)en

.
The orthogonal projection of a vector x ∈ H onto a convex closed set M in a Hilbert

space H, denoted PM is the unique point y ∈ M that minimises the distance from x, meaning
that for any z ∈M one has ‖x− y‖ ≤ ‖x− z‖. In other words, if δ = dist(x,M) := inf{‖x− z‖ :
z ∈ M}, then PMx is the only vector y such that y ∈ M and ‖x− y‖ = δ. In any inner product
space V one finds a sequence of the points zn ∈ M with δ = lim ‖x − zn‖ Using (a) above and
the convexity (so that still 1

2 (zn + zk) ∈ M , which implies ‖2x − (zn + zk)‖2 ≥ 4δ2 ) we show
the Cauchy’s condition for the sequence (zn). Unless V is complete (i.e. -a Hilbert space), or at
least M is complete as a subspace, nothing else can be done. But using the completeness -one
obtains the limit of (zn), say y = lim zn. Since M is closed, y ∈ M . By the continuity of the
norm, ‖x− y‖ = lim ‖x− zn‖, proving the existence. The uniqueness results from the inequalities
used earlier in the proof.

Theorem 2.3. If P = PM is the orthoprojection onto a closed linear subspace M 6= {0} of a
Hilbert space H, then

(1) For x ∈ H, y ∈M we have y = PMx⇔ x− y ⊥M ,
(2) The mapping PM : H → H is bounded and linear, of norm ‖PM‖ = 1
(3) If a linear mapping P : H → H,P 6= 0 is bounded, linear, then there exists a closed linear

subspace M 6= {0} such that P = PM if and only if PP = P and P satisfies one of the
additional conditions: ‖P‖ ≤ 1 or P ∗ = P , the latest meaning 〈Pv,w〉 = 〈v, Pw〉 ∀v,w∈H .

(4) The orthogonal decomposition holds : Any x ∈ H can be written uniquely in the form
x = y + r, where y ∈M, r ⊥M . Here r ⊥M means r ⊥ z ∀z∈M .

(5) for P = PM we have M = N (I − P ) = R(P ) and I − P is the orthoprojection onto M⊥

-the orthocomplement of M in H, denoted also H 	M .

Note that N (I − P ), the nullspace (=kernel) of the identity minus P is exactly the set of all
fixpoints of P , i.e. such points v ∈ H that Pv = v. In the remaining case M = {0}, we clearly
have PM = 0.

There are also ”skew projections” -corresponding to a direct sum decomposition. If

H = M1 +M2, M1 ∩M2 = {0},

we say that H is a direct sum of the subspaces M1,M2. From linear algebra we know that this
corresponds to a unique decomposition: x = x1 + x2 with xj ∈ Mj , j = 1, 2. The projection of x
onto M1 in the direction of M2, denoted PM1,M2

x is simply the summand x1. One can prove that
unless M1 ⊥M2, we have the norm of this projection > 1. Also this operator’s adjoint is different
from PM1,M2

x in this case. If only M1,M2 are both closed and H is complete, the continuity of
the corresponding projection can be deduced from Banach’s Inverse Mapping Theorem applied to
the addition mapping: S : M1 ×M2 3 (u, v)→ u+ v ∈ H.

EXAMPLES OF ORTHOPROJECTIONS
1. Any diagonal matrix whose diagonal entries are either 0 or 1 is a projection
2. If an orthonormal basis {en : n ∈ N} of H is given, for any k ∈ N the k-th partial sum of

the Fourier series,

Sk(x) :=

k∑
n=1

〈x, en〉en

defines the operator Sk : H → H. It is easy to verify the condition from point (1.) of theorem
2.3. Hence Sk are the orthoprojections onto the linear span of {e1, . . . , ek} and ‖Sk(x)‖2 ≤ ‖x‖2,

which due to the Pythagorean Theorem gives
∑k
n=1 |〈x, en〉|2 ≤ ‖x‖2 and passing with k →∞ we

get Bessel’s Inequality:

(10)

∞∑
n=1

|〈x, en〉|2 ≤ ‖x‖2

Last Thursday I have discussed 3 theorems describing arbitrary bounded linear functionals ϕ
on specific Banach spaces (the so called F.Riesz’ Representation Theorems): On Lp(µ) one finds
ρ ∈ Lq(µ) with 1

p + 1
q = 1 so that

ϕ(f) =

∫
f(ω)ρ(ω)dµ,
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while on C(X) with X -a compact topological space, there exist Borel, regular, nonnegative
measure ν on X and a a Borel-measurable ρ : X → {z ∈ C : |z| = 1} such that

ϕ(f) =

∫
f(ω)ρ(ω)dν, µ(X) = ‖ϕ‖.

In Hilbert spaces any bounded linear functional comes from a vector v ∈ H via the inner product:

ϕ(x) = 〈x, v〉.
FOR THE NEXT TUTORIALS please solve the following.

Given nonzero vectors u, v ∈ H define the linear operator L : H 3 x → 〈x, v〉u ∈
H, denoted by u⊗v, or by uv∗. Hence (u⊗v)(x) := 〈x, v〉u. This ”tensor product
- style” notation is a bit misleading, so later I will replace it by uv∗- consistent
with column-vector u multiplied (as a matrix) with its Hermitian conjugate (a
row vector v∗ having the complex conjugates of the coefficients of v).

This is a rank-one operator [rank (L) is the dimension of the range space L(H)]. L is the only
linear mapping that sends the vector v to ‖v‖2u and for which the nullspace N (L) (= ker(L))
equals the orthocomplement of {v}, i.e to the set {v}⊥ := {y ∈ H : y ⊥ v}.

(1) Show, that the adjoint to this L is obtained by interchanging the vectors: (v ⊗ u)∗ = u⊗ v
(2) In particular, v ⊗ v is self-adjoint. Show that this operator is of the form ‖v‖2P , where P

is the orthoprojection onto the 1-dimensional subspace spanned by v
(3) Show that any finite-rank operator T ∈ B(H) can be written as a finite sum of the form∑k
n=1 vn ⊗ wn with some vectors vj , wj , j ≤ k. (Hint: take any basis of the range space R(T ).=
(4) Show that ‖u⊗ v‖ = ‖u‖‖v‖
(5) Find a condition (in terms of the matrix’ entries) for a nonzero 2× 2 matrix to be a matrix

for some rank-one operator. Generalize to d× d matrices.

3. More basic facts on Hilbert space operators

DEFINITIONs: (1)(Eigenvectors and eigenvalues) : If T : H → H is a linear operator, then a
scalar λ ∈ K is called an eigenvalue of T , if for some nonzero w ∈ H (called eigenvector of T )
we have

Tw = λw. (equivalently, if N (T − λI) 6= {0}).
The set of all eigenvalues is called the point spectrum of T and is denoted by

σp(T ).

The set of all eigenvectors corresponding to λ, equal to N (T − λI), is a linear subspace -called
the eigenspace of T corresponding to the eigenvalue λ. (Here we treat 0 also as an eigenvector.)

The simplest linear operators on the sequence Hilbert space `2 are the diagonal operators

T = diag(an)

corresponding to a given sequence (an) of complex numbers. Its domain,

D(diag(an)) := {(xn) ∈ `2 : (anxn) ∈ `2}
is the maximal ”natural domain”, where the following definition makes sense: T (xn) = (anxn).
Recall that the sequence (anxn) belongs to `2 iff

∑
n |anxn|2 < ∞. The domain is the entire `2

and the operator is bounded iff the sequence (an) is bounded, i.e. it belongs to `∞ and then the
operator norm, ‖T‖ is equal to the `∞ norm of (an), which is ‖(an)‖∞ = sup{ |an| : n ∈ N}.
We have checked it substituting the basic 0-1 vectors εj forming an orthonormal basis in `2. A
converse result holds true:

Theorem 3.1. If some orthonormal basis (fn) of a Hilbert space H consists of eigenvectors of
a bounded linear operator T , so that Tfn = anfn for some scalars an, then the infinite matrix
representing T in this basis (whose entries are equal to 〈Tfj , fk〉) is diagonal, with the main
diagonal’s n-th entry equal an.

Which operators can be diagonalised in the above manner? -is a nontrivial question. A partial
answer will be given by the spectral theorem. The existence of such an orthonormal basis of
eigenvectors for T will be proved for compact normal operators defined below.

Definition 3.2. A linear operator T : H1 → H2 is called

• an isometry, if ‖Tx‖ = ‖x‖∀x ∈ H1

• a partial isometry, if ‖Tx‖ = ‖x‖ ∀x ⊥ N (T )
• a unitary operator, if T is a surjective isometry
• a normal operator, if D(T ∗) = D(T ) and ‖T ∗x‖ = ‖Tx‖ ∀x ∈ D(T )



8

• a selfadjoint operator, if D(T ∗) = D(T ) and T ∗x = Tx ∀x ∈ D(T )

Finally, an operator T : H1 → H2 is compact, if the image of any bounded sequence of vectors
xn ∈ H1 contains a convergent subsequence. The set of all compact linear operators from H1 to
H2 will be denoted B0(H1, H2) and by B0(H1), if H1 = H2. In other words, if supn ‖xn‖ < ∞,
then for some integers 1 ≤ n1 < n2 < . . . there should exist a limit limk→∞ Txnk

in the norm
topology of H2.

We have the following equivalent formulations for the above properties:

Theorem 3.3. If D(T ) = H1 for a bounded linear operator T : H1 → H2, then

(a) T is an isometry iff T ∗Tx = x ∀x ∈ H1, i.e. iff T ∗T = IH1

(b) T is unitary iff ( T ∗T = IH1
and TT ∗ = IH2

), i.e. iff T ∗ = T−1.
(c) T is normal iff T ∗T = TT ∗

(d) T is selfadjoint, iff D(T ∗) = D(T ) and the form QT (x) = 〈Tx, x〉 is real-valued.

Recall, that by c0 we denote the space of all scalar sequences converging to zero, called some-
times ”null sequences”.

Theorem 3.4. Let T = diag(an) : `2 → `2 be a diagonal operator corresponding to a sequence
(an) ∈ `∞. Then T is normal and its adjoint is also a diagonal operator, T ∗ = diag(ān), defined
by the complex conjugates of its diagonal sequence. Moreover, T is an isometry iff |an| = 1∀n ∈ N.
T is compact iff (an) ∈ c0. The composition TS of two diagonal operators is a diagonal operator
with diagonal anbn, if T = diag(an), S = diag(bn). In particular, TS = ST .

3.1. Compactness. The compactness of a subset E ⊂ H in a normed space is equivalent to
sequential compactness (the existence of convergent subsequences ynk

for any sequence yn in E,
so that limk ynk

∈ E). If we only assume the existence of limk ynk
∈ H, the condition means the

compactness of the closure of E, called the relative compactness of E. If B̄ denotes the closed unit
ball in H1, then the compactness of a linear operator T : H1 → H2 means the relative
compactness of the image T (B̄) of the closed unit ball. As in the case of the equivalent
conditions for continuity of T , the compactness of T is equivalent to the relative compactness
of the image of any ball of positive radius. Since relatively compact subsets are bounded, any
compact operator must be bounded. The definition, as stated, applies to Banach spaces as well.
In the case of Hilbert spaces, or reflexive Banach spaces, the image T (B̄) of any closed ball is also
closed. This is a consequence of the compactness of B̄ in the weak topology (Banach -Alaoglu’s
Theorem) and the continuity of bounded linear maps also with respect to weak topologies. We
are not going to use this fact, however in this course. More important is the following remark:

The unit closed ball B̄ in H cannot be compact unless dim(H) <∞.
Another important characterisation of (relative) compactness, similar to the classical Bolzano-

Weierstrass theorem: (”Bounded subsets of the Euclidean space Rn are relatively compact”) is
due to Hausdorff. We know, that in the infinite dimensional case boundedness will not suffice
(why?). We need the stronger property than just boundedness:

Definition 3.5. A subset E in a metric space (X, d) is totally bounded if it has finite coverings
by finite families of sets with arbitrarily small diameter. In other words,

∀ε>0∃k∈N∃x1,...,xk∈E∀x∈E∃j≤k d(x, xj) < ε.

The set {x1, . . . xn} is then called an ε-network for E. The balls with radii ε, centered at xj
cover E. (Their diameters satisfy, of course, diamB(xj , ε) ≤ 2ε). If we just require that the xj
are points from the space X, we get an equivalent definition (why?). Check that the closure of a
totally bounded set is also totally bounded.

We may call a sequence (zn) ⊂ X a uniformly separated sequence, if for some δ > 0 and for any
k, j ∈ N one has d(zj , zk) ≥ δ. Clearly, any of its subsequences is also uniformly separated and
it cannot satisfy Cauchy’s condition. Therefore to prove that a set Z is not relatively compact it
suffices to find a uniformly separated sequence of its points. Check that orthonormal sequences
are uniformly separated and that completely bounded sets are bounded. Now the positive result:

Theorem 3.6. (Hausdorff) A set E in a complete metric space is relatively compact if and
only if it is totally bounded. In particular, E is compact iff E is closed and totally bounded.

Using this characterisation it is relatively easy to describe the set B0(H1, H2) of compact
operators. Recall that a sequence (xn) converges weakly to x0 in a Banach space X, if for any
continuous linear functional φ ∈ X ′ the scalar sequence φ(xn) converges to φ(x0). In Hilbert
spaces this is equivalent to lim〈xn − x0, z〉 = 0∀z∈X .

Theorem 3.7. Let T ∈ B(H1, H2) be a bounded linear operator in a Hilbert space. Then TFAE:
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(1) T is compact (in symbols, T ∈ B0(H1, H2)).
(2) If (xn) ⊂ H1 converges weakly to zero, then ‖Txn‖ → 0.
(3) There exists a sequence of finite rank operators Tn ∈ B(H1, H2) such that ‖Tn − T‖ → 0.

The set B0(H) of compact linear operators S : H → H is a two-sided closed ideal in B(H). In
other words, the limit of norm-convergent sequence (Sn) of compact operators is compact and so
is any linear combination of two compact operators. If S is compact and T is bounded, then both
ST and TS are compact. (We prove this theorem and the above remark on tutorials.)

4. Compact operators

4.1. Weak convergence. The weak topology is a bit exotic, since it is non-metrizable in any
∞− dimensional Banach space. Denote the weak convergence by ⇀. Recall, that a sequence of
vectors xj in a Banach space X converges weakly to x0 ∈ X, a fact denoted by xj ⇀ x0, if for
any fixed continuous linear functional ϕ ∈ X ′ the sequence of (real or complex) numbers ϕ(xj)
converges to ϕ(x0). In Hilbert spaces we have ϕ(x) uniquely represented as 〈x, z〉 for some z ∈ H,
so the defining condition becomes simply

xj ⇀ x0 ⇔ ∀z∈H lim
j
〈xj , z〉 = 〈x, z〉.

In any case this convergence comes from the weak topology defined as the weakest topology making
all ϕ ∈ X ′ continuous. This is the topology defined by a family of seminorms {pφ(·) : φ ∈ X ′},
where pφ(x) = |φ(x)| for x ∈ X. Basis of weak neighbourhoods of zero is formed by the family of
sets

W (φ1, . . . φk) = {x ∈ X : |φ1(x)| < 1, . . . |φk(x)| < 1}, where k ∈ N, φ1, . . . φk ∈ X ′.

Hence as an indexing set we may take the family of all finite subsets of X ′. Note that for families
of seminorms pj one should consider finite intersections of balls {x ∈ X : pj(x) < r} of radii
r > 0. This is because for one neighbourhood of zero the minimum (taken over j ∈ {1, . . . , k}) of
a finite set of radii rj can be put instead of the radii r1, . . . , rk. In the case of the weak topology it
simplifies further -we can take r = 1 throughout, since φ can be replaced by the functional r−1φ,
since | 1rφ(x)| < 1⇔ |φ(x)| < r.

In any Hilbert space with orthonormal sequence (en) it follows from Bessel’s inequality that
en ⇀ 0 as n→∞. The famous example due to von Neumann shows this: If E = {en+nem, n,m ∈
N}, then the iterated weak limit is zero:

lim
n

(lim
m
en + nem) = lim

n
(en + n0) = 0,

hence zero belongs to the weak closure of E. But -unlike in the metric spaces - we have the
following fact: there is no sequence of vectors xk ∈ E weakly convergent to zero. Indeed,
by the Uniform Boundedness Principle (or directly from the Banach-Steinhaus Theorem), as a
weakly convergent sequence, such a sequence should be bounded. As xk = enk

+ nkemk
for some

nk,mk ∈ N and ‖xk‖2 = 1 + n2k, the sequence nk should be bounded, hence it should contain a
constant subsequence nkj -equal to some n0. But then either mk is eventually constant (say, equal
m0 for sufficiently large k, leading to xkj ⇀ en0 + n0em0), or we should have mkj →∞, yielding
xkj ⇀ en0 + 0, a contradiction.

For general normed spaces X – the non-metrizability follows from the fact that any countable
intersection of a sequence of weak neighbourhoods of zero ”is” (to be precise: contains the subset)
of the form

⋂∞
n=1W (φn) and contains more than one point (show that codim

⋂∞
n=1 ker(φn) ≤ ℵ0

– exercise). In metric spaces the balls centered at 0, of radii 1
n have one-point intersection.

Any ball in X with respect to the norm (and any bounded set) has empty interior in the
weak topology.

Despite of these drawbacks, the weak convergence (of ordinary sequences) is in a sense quite
natural:

In the sequence spaces `p, 1 < p <∞ a sequence xn ∈ `p converges weakly to x0 iff it is bounded
(supn ‖xn‖p < ∞) and each coordinate converges: (xn)k = e∗k(xn) → (x0)k as n → ∞(∀k ∈ N).
This is a particular case of the following general principle (with D = {e∗k : k ∈ N}):

Theorem 4.1. If the linear span of a subset D ⊂ X ′ is dense in X ′ (with its norm), then a
sequence (xn) converges weakly to x0 iff it is bounded and φ(xn) → φ(x0) for any φ ∈ D. If
moreover such a ”generating set” D = {φj}j∈N is countable, then the metric ρ defined by the
formula ρ(x, y) :=

∑∞
n=1 2−j |φj(x)− φj(y)| defines the weak topology on bounded subsets of X.



10

A surprising result at p = 1 is due to I. Schur: A sequence in `1 converges weakly if and only
if it norm- converges to the same limit. (Note that the two topologies are different!)

In Hilbert spaces any bounded sequence has weakly convergent subsequence and any closed ball
is weakly compact. In separable Hilbert spaces the weak topology, when restricted to bounded
subsets is metrizable! (but not on the whole space!) The weak compactness of the closed
unit ball (and of any closed ball) takes place iff the space is reflexive (i.e. the canonical
embedding in its second dual space

j : X → X ′′, (j(φ))(x) := φ(x), φ ∈ X ′, x ∈ X

is surjective -a fact denoted often as X = X ′′.
For convex sets their weak closures are equal to their norm-closures, due to Hahn-Banach

theorem (precisely, from its corollary on separation of points from closed convex sets).

4.2. Convergence of sequences of operators. We say that a sequence (or a generalized se-
quence, i.e. a net) of operators Tj ∈ B(X,Y ) acting between two Banach spaces converges to an
operator T ∈ B(X,Y )

• uniformly, or in norm (notation Tj → T ), if the operator norms ‖Tj − T‖ converges to
zero
• strongly (notation Tj → T (SOT )), if for any x ∈ X we have ‖Tjx− Tx‖ → 0
• weakly (notation Tj → T (WOT)) if for any x ∈ X we have Tjx− Tx ⇀ 0

Clearly, the uniform convergence implies the strong convergence. The strong convergence im-
plies the weak convergence. None of these implications is reversible.

The remaining part of this page can be omitted at the first reading, we are going to concentrate on
ordinary (not generalised) sequences. The (SOT) convergence corresponds to the strong operator topology
given by the family of seminorms {px : x ∈ X}, where px(T ) := ‖Tx‖. Similarly, the weak operator
topology is defined by pxϕ(T ) := |ϕ(Tx)|, a family of seminorms indexed by (x, ϕ) ∈ X × Y ′. Let us
concentrate for a while on the latter two convergences in the Hilbert spaces case: Neither of these two
convergences is metrizable (but their restrictions to bounded sets of operators are). Clearly, in the Hilbert
space case for Tj , T ∈ B(H)

• the weak convergence: Tj → T (WOT) means that 〈Tjx, y〉 → 〈Tx, y〉 ∀x,y∈H .

It turns out, that the multiplication in B(H) is discontinuous -but is sequentially continuous!
Here the multiplication TS is just the composition: (TS)(x) = T (Sx). The relevant example can be
found in a separate file entitled ”example1.pdf”. The difference between nets and sequences is that
for sequences the index j runs through the set N of natural numbers and only finitely many terms of
a convergent sequence can stay outside a given neighbourhood of the limit. By Uniform Boundedness
Principle, WOT - convergent sequences are bounded. The same cannot be asserted for convergent nets,
where we have the index set J possibly uncountable, directed by some transitive relation j � i such that
∀j,k∈J∃i∈Jj � i and k � i. Here the convergence of Tj to T means that for any neighbourhood W of
T there exists j0 ∈ J such that j ∈ J, j0 � j ⇒ Tj ∈ W. Any accumulation point (or a point from the
closure Ē) of a set E is always a limit of some generalized sequence of elements of E. The example from
the previous subsection on weak convergence with E = {en + nem, n,m ∈ N} shows, that the ordinary
sequences can be inadequate for the latter purpose -even for countable sets E.

EXERCISE 1. Let us direct the set of integers Z by the ordinary relation j ≤ k. Is the net (2−j)j∈Z
bounded? Does it converge?

EXERCISE 2. If we direct N × N by (j, k) � (n,m) meaning that max(j, k) ≤ min(n,m) , is the
convergence ‖xn − xm‖ corresponding to this direction of N×N equivalent to the Cauchy condition (in a
normed space X)?

EXERCISE 3. The diameter δ(T ) of a partition T = (t0 = a < t1 < · · · < tn = b of an interval [a, b]
is defined as δ(T ) := max{tj − tj−1 : j = 1, . . . n}. In the set of pairs (T ,Λ), where Λ = {λ1, . . . λk} is
a collection of intermediate points for T , so that λj ∈ [tj−1, tj ] define a direction (T1,Λ1) � (T2,Λ2), if
δ(T1) ≤ δ(T2).

Now let f : [a, b]→ R be a given function. Define

S(f, T ,Λ) =

n∑
j=1

f(λj)(tj − tj−1).

If we treat S(f, T ,Λ) ∈ R as a generalised sequence indexed by such pairs (T ,Λ), what is the meaning
for its convergence to some limit S ∈ R? (answer using a notion from basic calculus)

EXERCISE 4. If we have a neighbourhood basis (Wj)j∈J of a point x0 in some topological space, so
that for any neighbourhood U of x0 there exists j ∈ J such that Wj ⊂ U , let us pick arbitrary points
xj ∈Wj and direct J by j � k meaning Wj ⊃Wk (the reverse inclusion!). Show that the net xj converges
to x0. (Using this one can show that the continuity at a point x0 of a mapping F between two topological
spaces takes place iff for any generalised sequence xj converging to x0 the values F (xj) converge to x0.)

EXERCISE 5. Let Ω be the set of all continuous functions x on [0, 1], taking values x(t) ∈ [0, 1].

Consider the topology of pointwise convergence defined on C[0, 1] by the seminorms pt(x) := |x(t)|,
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where t ∈ [0, 1], x ∈ C[0, 1]. Show that the functional F : Ω 3 x → F (x) :
∫ 1

0
x(t) dt is sequentially

continuous, i.e. it satisfies the Heine condition: for all ordinary sequences xn ∈ Ω convergent pointwise

to x0 one has F (xn) → F (x0). On the other hand, any neighbourgood of zero in Ω contains a basic

neighbourghood of the form Wt1,...,tk := {x ∈ Ω : |x(t1)| < ε, . . . |x(tk)| < ε} corresponding to some

ε > 0 and a finite set of points t1, . . . tk ∈ [0, 1]. We can pick a function z ∈ Wt1,...,tk (e.g. vanishing at

these finite set of points -then any ε > 0 will be ”good”) such that
∫ 1

0
z(t) dt > 1

2
(draw a picture of a

piecewise-linear function having these properties). This shows the discontinuity of F on Ω.

WE HAVE PROVED THIS: If a sequence of operators Pn → P (SOT) and K is a compact
operator, then PnK → PK uniformly. If a Schauder basis exists in X, then ∃Pn of finite rank,
(SOT)-convergent to I (identity). Compact operators are then uniform limits of finite rank oper-
ators. Continuous finite rank operators and uniform limits of compact operators are compact.

Lemma 4.2. Let T : X → Y be a linear operator between normed spaces X,Y . The quotient space
X/ ker(T ) has the same dimension as the range space T (X) and if the latter is finite (rk(T ) <∞),
then T is continuous iff ker(T ) is closed and if the latter takes place, T is a compact operator.

To prove this, one uses the so called “canonical factorisation”: T = T̃ ◦ π, where π : X 3 X →
[x] := {z ∈ X : x − z ∈ kerT} ∈ X/ker(T ) is the canonical surjection onto the quotient space (with

the (semi-)norm ‖[x]‖ := inf{‖z‖ : z ∈ [x]}) and T̃ : X/ ker(T ) → Y is defined by T̃ ([x]) := Tx (which

does not depend on the choice of the representative x of the equivalence class [x]). Now T̃ is a linear

isomorphism onto the range space T (X), preserving the dimensions. Continuity of π is obvious. Any

linear mapping on a normed space of finite dimension is continuous. Hence T̃ will be continuous, if only

‖[x]‖ is a norm, not just a seminorm. But dist(x, kerT ) = 0 if and only if x belongs to the closure of

ker(T ), while [x] = 0 ⇔ x ∈ ker(T ). These two conditions are equivalent iff kerT is closed. In the

latter case any bounded sequence (xn) in X is mapped by π into a bounded sequence [xn]. All finitely

dimensional normed spaces are isomorphic to the Euclidean space Kn, where each bounded sequence has

a convergent subsequence. Hence [xnk ] is convergent for some subsequence (nk) of N. By continuity of

T̃ , the subsequence T̃ [xnk ] converges in Y . But as T̃ [xnk ] = Txnk , the compactness of T follows. In the

opposite direction, compactness implies continuity of T , which in turn implies that kerT is closed.

4.3. Hilbert-Schmidt operators. Hilbert-Schmidt operators (shortly, H-S operators) are de-
fined by the condition

‖|T‖|2 :=
∑
n

‖Ten‖2 <∞,

where T : H1 → H2 is linear and (en) is any orthonormal basis in H1. Using Parseval Identity for
some other orthonormal basis (fk) in H2 we represent ‖|T‖|2 as the double sum

(11) ‖|T ||2 =
∑
n

∑
k

|〈Ten, fk〉|2 =
∑
n

∑
k

|〈T ∗fk, en〉|2,

which is
∑
k ‖T ∗fk‖2 after interchanging the order of summation and applying the Parseval iden-

tity for T ∗fk in the basis (en). At this stage any different ONB (ẽn) in H1 can be applied.

Theorem 4.3. H-S operators are bounded with ‖T‖ ≤ ‖|T‖|. Moreover, H-S operators are com-
pact

The reasoning can be this:
(1) For arbitrarily chosen x ∈ H we can construct an orthonormal basis (en) in H with e1 = x.

Then the Hilbert-Schmidt norm ‖|T‖| = (
∑
n ‖Ten‖2)

1
2 is ≥ ‖Te1‖ Passing to the supremum over

all such x we get ‖T‖ ≤ ‖|T‖|.
(2) If Pn is the orthoprojection onto the linear span of the first n vectors of an orthonormal

basis e1, . . . , en, then TPn has finite rank (at most n). The squared H-S -norm of T − Tn equals

‖|T − TPn‖|2 =

∞∑
j=n+1

‖Tej‖2

-converging to zero as n → ∞. By (11), we also have ‖T − TPn‖ → ∞ and since rk(TPn) < ∞,
the compactness follows from lemma 4.2..

4.4. integral operators of H-S type. The integral operator TK corresponding to a kernel
function K : X × Y → C is defined for two (complete) measure spaces (X,µ), (Y, ν), where
the respective σ-algebras of measurable sets are hidden to simplify the notation. Even further
simplification is obtained if one writes

∫
f(x) dx in place of

∫
f(x)dµ(x) and similarly one replaces

dν(y) with dy. The inner product on L2(µ) is 〈f, g〉 =
∫
f(x)g(x) dx. Here (and in what follows)

the bar is used to denote complex conjugation. The product measure µ × ν is defined on the
smallest σ-algebra on X × Y containing all the products of the form E ×F with E -a measurable
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subset of X, F - measurable subset of Y . We put µ× ν(E ×F ) := µ(E)ν(F ) and extend this to a
complete measure space (e.g. by Caratheodory’s construction). Using Fubuni -Tonelli’s theorem
we can establish the following basic fact:

Lemma 4.4. If (en)n∈N is an orthonormal basis in L2(µ) and (fk)k∈N is an orthonormal basis
in L2(ν), then

(1*) also (f̄k)k∈N is an orthonormal basis in L2(ν) and

(2*) the functions en× f̄k : X×Y 3 (x, y)→ en(x)fk(y) with (n, k) running through the product
N× N generate an othonormal basis in L2(µ× ν).

Definition For f ∈ L2(ν) and for a measurable function K : X × Y → C define

(TKf)(x) =

∫
K(x, y)f(y)dν(y)

whenever the latter integral makes sense and then it is the inner product 〈K(x, ·), f〉.
If K ∈ L2(µ× ν), one shows (a direct consequence of Tonelli’s theorem) that
(3*) for almost all x we have K(x, ·) ∈ L2(ν) and

∫
‖K(x, ·)‖2 dx = ‖K‖2 <∞.

Theorem 4.5. For K ∈ L2(µ × ν) the operator TK : L2(ν) → L2(µ) is H-S and ‖|TK‖| =
‖K‖L2(µ×ν). Conversely, any H-S operator T : L2(ν)→ L2(µ) is of the form T = TK as above.

Indeed, with Tfk = 〈K(x, ·), fk〉 and ‖Tfk‖2 =
∫
|〈K(x, ·), fk〉|2dx we get∑

k

‖Tfk‖2 =
∑
k

∫
|〈K(x, ·), fk〉|2dx =

∫ ∑
k

|〈K(x, ·), fk〉|2dx.

We can interchange the summation and integration, because of the nonnegativity. Now by (1*) and from

the Parseval Identity,
∑
k |〈K(x, ·), fk〉|2 = ‖K(x, ·)‖2, where the norm of K(x, ·) : Y 3 y → K(x, y) is

computed in L2(ν). From (*) we get the needed equality ‖|TK‖|2 = ‖K‖2.
Conversely, if ‖|T‖| <∞, this implies by (11) the square-summability of the double-indexed sequence

c(n,k) := 〈Tfk, en〉 and this impies that the Fourier series with such coefficients converges in L2(µ × ν)

to some K ∈ L2(µ × ν), namely, K(x, y) :=
∑

(n,k) c(n,k)en(x)fk(y). By comparing the coefficients in

the basis (en), we get Tfk = TKfk. The equality extends to finite linear combinations, by linearity
of both operators. By continuity, the equality holds also on the closure of the linear span of the basic
vectors (fk) -which is the entire space L2(ν). In particular, if both X,Y have finite measures, than
any bounded measurable K : X × Y → C yields a compact (even H-S) integral operator. For Lebesgue
measure compactness of X ⊂ Rd, Y ⊂ Rp and continuity of K will be sufficient.

5. Spectral theory of compact selfadjoint operators

5.1. Spectrum and its parts. Recall that the spectrum of an operator T ∈ B(H) is the set σ(T ) of
all λ ∈ C such that the operator λI − T (denoted for this paragraph by Tλ) has a bounded inverse. Its
complement, C \ σ(T ) is called the resolvent set for T .

One of the possible reasons for the non-invertibility is that ker(λI−T ) 6= {0} so that Tλ is non-injective.
Any nonzero vector x ∈ kerTλ is called an eigenvector and the corresponding λ -an eigenvalue of T . The
set of all eigenvalues is called the point spectrum of T , denoted σp(T ).

For λ ∈ C \ σp(T ) the injective operator Tλ has an inverse Rλ := (Tλ)−1 but defined only on the range
space R(T ) := T (H). If the latter is closed (actually, if and only if) then Rλ is bounded. If λ 6∈ σp(T ) then
either R(T ) = H, so that Tλ is bijective and then its bounded (by Banach’s Inverse Mapping Theorem)
inverse Rλ is called the resolvent operator for T . The name can be explained by the fact that x := Rλy
provides the unique solution x of the inhomogeneous equation Tx− λx = y.

Another reason for non-invertibility is the possible unboundedness of Rλ (or non-injectivity). This
is equivalent to the lower bound of ‖Tλx‖ over the unit sphere {x ∈ H : ‖x‖ = 1} being equal to
zero and defines the approximate point spectrum, σa(T ). More precisely -we say that λ ∈ C is in the
approximate point spectrum of T , denoted σa(T ), if there exists a sequence (xn) in H such that ‖xn‖ = 1
and ‖Txn − λxn‖ → 0. (Check, that for any such a sequence if (xn) contains a convergent subsequence
than its limit is an eigenvector of T with eigenvalue λ, and that σp(T ) ⊂ σa(T ).)

We have checked that if T ∈ B(H) is compact and λ ∈ σa(T ) \ {0}, then λ ∈ σp(T ). For normal (e.g.
for selfadjoint) operators N ∈ B(H) we have proved that the spectrum satisfies σ(N) = σa(T ). Also the
eigenvectors corresponding to different eigenvalues are orthogonal. In other words,

(12) if NN∗ = N∗N, then ker(Nλ) = ker((N∗)λ̄) and ∀λ6=µ ker(Nλ) ⊥ ker(Nµ).

For compact operators T nonzero eigenvalues have finite multiplicity (multiplicity of λ, denoted n(λ):=the
dimension of kerTλ) and zero is their only possible accumulation point. As a finite rank operator, the
orthogonal projection Pλ onto ker(Tλ) for λ ∈ σp(T ) \ {0} is of the form

H 3 x→ Pλx =

n(λ)∑
j=1

〈x, ej(λ)〉ej(λ),
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where {e1(λ), . . . , en(λ)(λ)} is any orthonormal basis of ker(Tλ). To get the eigenvalue decomposition for
T on the whole space H we need to control the operator norm by means of the spectrum. The easiest
case of selfadjoint operators will be addressed first in the next paragraph, using the numerical range of T .

(Some problems for tutorials)

(1) Suppose that a sequence (xn) in a Hilbert space H converges weakly to x0. (A) Then show that
:

(13) ‖x0‖ ≤ lim inf ‖xn‖.
(B) Moreover, some sequence (zk) of convex combinations of the xn’s norm- converges to x0.(i.e.
zn = α1xj1 + · · · + αkxjk , where αj > 0, α1 + · · · + αn = 1. (Hint: the convex hull of the set
{xn : n ∈ N} has equal weak- and norm- closures, by Separation Theorem in functional analysis).

(2) Show that if xn ⇀ x0 and ‖xn‖ → ‖x0‖, then ‖xn − x0‖2 → 0. (just compute)
(3) Show that for T ∈ B(H,K) where H,K are Hilbert spaces, T is compact iff for any weakly

convergent to zero sequence (xn) in H we have ‖Txn‖ → 0. (Hints: We may assume that H is
separable and then use the weak-compactness of its closed unit ball).

(4) Using the results of two previous problems show that the compactness of T ∗T implies that of T .
Deduce that the adjoint of compact operator in a Hilbert space is compact

(5) Let M be the bound of the quadratic form QT (x) corresponding to the sesquilinear form qT (x, y)
defined by a selfadjoint operator T ∈ B(H), i.e.

qT (x, y) := 〈Tx, y〉, QT (x) := qT (x, x), M := sup{|QT (x)| : x ∈ H, ‖x‖ = 1}.
Show that |QT (x)| ≤ M‖x‖2 for any x ∈ H. Using the polarisation formula valid if q(y, x) =

q(x, y) obtain analogous bounds for |qT (x, y)| and finally deduce that M = ‖T‖.
(6) The numerical range of T ∈ B(H) is defined as the set

W (T ) := {〈Tx, x〉 : ‖x‖ = 1}.
Let a = inf W (T ), b = supW (T ). If T = T ∗, then clearly W (T ) ⊂ R and by the previous result,
M = ‖T‖. But M = max(|A|, |B|). The selfadjoint operator S is said to be nonnegative, if
QS(x) ≥ 0 for any x ∈ H. For nonnegative operators we have the Cauchy-Schwarz inequality

|qS(x, y)|2 ≤ QS(x)QS(y).

Show that the operators T − aI and S := bI − T are nonnegative. If for some unit vectors
‖xn‖ = 1, xn ∈ H we have QT (xn) → b, so that QS(xn) → 0 deduce that ‖Sxn‖ → 0, hence
b ∈ σa(T ). Similarly, a ∈ σa(T ). (hint: ‖Sx‖ = sup{|qS(x, y)| : ‖y‖ = 1}.)

(7) If S = S∗ is non-negative, for any x ∈ H show that ‖Sx‖2 ≤ ‖S‖QS(x).

In this manner we have shown that the spectrum of T - a selfadjoint operator (= here the approximate
point spectrum) contains a point (here either a, or b) of modulus equal to ‖T‖. The same can be proved
for normal operators. For compact normal operators if ‖T‖ > 0 we already know that this point actually
is an eigenvalue!

8. If S ∈ B(H) is selfadjoint and M ⊂ H is its invariant subspace, which means S(M) ⊂ M , then
show that S|M : M → M is alaso a selfadjoint operator on M . Moreover, M⊥ = H 	M is also
invariant for M .

9. Check that if M is an invariant subspace for a bounded linear operator T : H → H, then for
T |M ∈ B(M) its adjoint (as an operator in B(M)) satisfies (T |M )∗ = PMT

∗|M . Deduce that
if T is normal, then its restriction to an invariant subspace M is normal if (and only if) M is
also invariant for T ∗. We call such a subspace a reducing subspace for T . It is equivalent to the
invariance of both M and M⊥ for T .

10. Let M be a closed linear span of some eigenspaces ker(T −λjI) (taken over j ∈ J for some index
set J). Show that if T is a normal operator then M is a reducing subspace. (We shall use this
only for finite sets J).

We already know that compact normal operators have at most countable spectrum, with 0 as the only
possible accumulation point.

If δ > 0 and

M = span
⋃
{ker(T − λI) : |λ| ≥ δ},

then dimM <∞, by compactness of T . The restriction Sδ := T |M⊥ of T to the orthocomplement of M
is normal. In the case of selfadjoint T , also Sδ is selfadjoint, compact and ‖Sδ‖ is either zero, or is the
maximum of the moduli of the eigenvalues of Sδ. But any eigenvalue λ of Sδ satisfies Sδx0 = λx0 for some
x0 ∈ H,x0 ⊥M,x0 6= 0 and is also an eigenvalue of T . We cannot have |λ| ≥ δ, since otherwise we would
have x0 ∈M , hence x0 ∈M∩M⊥ = {0} –contrary to our setting. Hence ‖Sδ‖ = max{|λ| : λ ∈ σ(Tδ)} ≤ δ.
Since T |ker(T−λI) is of the form λPλ, where Pλ is the projection onto the eigenspace ker(T − λI), we have
proved the following
spectral theorem for compact selfadjoint operators T :

T =
∑

λ∈σ(T )\{0}

λPλ.

In our class instead of restricting to a subspace, we have subtracted from T its “part” corresponding to
the eigenvalues |λ| ≥ δ : Let Rδ = T −

∑
|λ|≥δ λPλ. For M as above we have Rδ|M = 0 -which is easily
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seen on each of the (generating M) subspaces ker(T − λI). If x ∈ H \ {0} is some eigenvector of Rδ, say
Rδx = µx, then decompose x orthogonally to x = x1 + x2, where x2 ∈ M , x1 ⊥ M . Then Rδx2 = 0,
hence Rδx = Rδx1 = µx1 + µx2. Since Rδ is selfadjoint and M is invariant, also its orthocomplement is
invariant for Rδ and Rδx1 ⊥ M, forcing µx2 to be orthogonal to M , hence zero. But Rδx1 = Tx1, since
Pλx1 = 0, as x1 ⊥ ker(T − λI) for any |λ| ≥ δ. This shows that µ is an eigenvalue of T and |µ| < δ. We
have shown that σ(Rδ) ⊂ {λ ∈ C : |λ| < δ. This estimates the norm : ‖Rδ‖ < δ, so that the series

∑
λPλ

converges to T in operator norm .

————————– (added December 08 2021 :)————————-

6. Bounded self-adjoint operators, projections

Theorem 6.1. Let xn be an orthogonal sequence in a Hilbert space H and let Sk :=
∑k
j=1 xj. Then the

following are equivalent:

(1) The series
∑∞
j=1 xj is convergent in norm (i.e. ∃S∈H lim ‖S − Sk‖ = 0 ),

(2) The series converges weakly ( i.e. ∃S∈H∀y∈H lim〈S − Sk, y〉 = 0, )
(3) The series is bounded (i.e. supn ‖Sn‖ <∞),
(4)

∑∞
j=1 ‖xj‖

2 < +∞.

Proof. Note that (3)⇔ (4), since ‖Sk‖2 =
∑k
j=1 ‖xj‖

2 (by Pythagorean Theorem). Also (2) ⇒ (3), by

Uniform Boundedness Principle. Now for m > k we have ‖Sm − Sk‖2 =
∑m
j=k+1 ‖xj‖

2, hence (4) implies

the Cauchy condition for our series, yielding (1). The rest is easy. �

Recall that for self-adjoint operators T1, T2 ∈ B(H) the inequality

T1 ≤ T2 means that ∀x∈H 〈T1x, x〉 ≤ 〈T2x, x〉.
Let us now consider a sequence of orthogonal projections Pn, where Pn project onto subspaces Mn ⊂ H.

Lemma 6.2. Mn is the range, R(Pn) and Mn = N (I − Pn). Moreover

P0 ≤ P1 ⇔M0 ⊂M1, and then P1 − P0 is a projection onto M1 	M0 := M1 ∩M⊥0 ,
P1 + P2 is a projection ⇔ P1P2 = 0⇔M1 ∩M2 = {0} (and then R(P1 + P2) = M1 ⊕M2 ).

Moreover, if P1, P2 are two commuting projections, then P1P2 projects onto M1 ∩M2.
Any monotone sequence of projections Pn has a strong limit P := sot − limPn (but not a norm limit!)
which is again a projection. For non-decreasing sequences P is the projection onto the closure of

⋃
nMn.

For nonincreasing Pn their limit projects onto
⋂
Mn.

(Proof will be at tutorials)
As we know1, for bounded monotone sequences of self-adjoint operators An, the strong limits exist, are

self-adjoint and (limAn)2 = lim(A2
n) (in strong topology). Since P 2

n = Pn, we see that if An = Pn are
ortho-projections, then so is P - their strong limit.

We have constructed the ”continuous functional calculus” in a self-adjoint bounded operator
T = T ∗: If Ω := σ(T ) is the spectrum of T , then Ω ⊂ R and there is an isometric homomorphism
Φ : C(Ω) 3 f 7→ f(T ) ∈ B(H) of Banach algebras with unit, preserving the involution: Φ(f̄) = (Φ(f))∗.
Here isometry means that ‖Φ(f)‖ = ‖f‖Ω := sup{|f(t)| : t ∈ Ω}.

This homomorphism Φ agrees on the polynomials p(t) = a0 + a1t + · · · + ant
n with the natural

functional calculus : p(T ) := a0I + a1T + · · · + anT
n = Φ(p) and it preserves the positivity: (f ≥ 0

on σ(T )) ⇒ Φ(f) ≥ 0. If we fix x ∈ H, we have the ”elementary measures” µx, denoted also µx,x (i.e.
nonnegative Borel measures on Ω such that

∫
f dµx = 〈Φ(f)x, x〉 for all f ∈ C(Ω)). We also have for any

x, y ∈ H the countably additive set functions (signed measures attaining complex values) µx,y such that∫
fdµx,y = 〈Φ(f)x, y〉, f ∈ C(Ω).

Here we may use polarisation formula to obtain µx,y from these elementary measures:

µx,y(∆) =
1

4

4∑
k=1

ikµx+iky,x+iky(∆).

For a given Borel set ∆ ⊂ Ω the sesquilinear form (x, y) 7→ µx,y(∆) is equal to 〈E(∆)x, y〉 for some
bounded self-adjoint operator E(∆) ∈ B(H).

Linearity and self-adjointness of E(∆) is easy to obtain, but some work is needed to establish the
identity E(∆)2 = E(∆).

In this purpose we may extend the continuous functional calculus Φ to define Ψ(f) = lim Φ(fn) in
the case, when there exists a monotone sequence of continuous real-valued functions fn converging to f .

1For any x ∈ H the monotone sequence an(x) := 〈Anx, x〉 has a limit: call this limit a(x). Then passing
with the Polarisation Formula (cf. Theorem 2.1) to the limit we obtain a bounded sesquilinear form α(x, y) :=
1
4

(a(x+ y)− a(x− y)− ia(x− iy) + ia(x+ iy)). It corresponds to a bounded selfadjoint operator A. The strong

convergence An → A follows from the Schwarz inequality (cf. Theorem 2.1) for the quadratic form of A − An if

An ≤ A. Indeed, |〈Ax−Anx, y〉| ≤ 〈Ax−Anx, x〉〈Ay −Any, y〉 and passing to supremum over ‖y‖ ≤ 1 we obtain
‖Ax−Anx‖ ≤ 〈Ax−Anx, x〉 · (‖A‖+ ‖An‖), where the first factor equal a(x)− an(x) converges to zero.
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Then The sequence of self-adjoint operators Φ(fn) is monotone and strongly converges. The set of so
obtainable functions f is not so easy to describe, but it contains indicator (= characteristic) functions
of all closed subsets of Ω. Indeed, if ∆ = ∆̄ ⊂ Ω, then there exists a sequence of hn ∈ C(Ω) such that
0 ≤ hn ≤ 1, hn(t) = 1 for t ∈ ∆, while hn(s) = 0 if dist(s,∆) ≥ 1

n
. Then hn converge pointwise to the

indicator function χ∆. By replacing each hk with min(h1, h2, . . . , hk) -still continuous, we may also get
the monotone convergence.

The following lemma is very important

Lemma 6.3. (a)If (fn), (gn) are two monotone sequences in C(Ω) converging to the same function f ,
then lim Φ(fn) = lim Φ(gn).
(b) If fn → χ∆ in a monotone way, then Ψ(χ∆) := lim Φ(fn) is an idempotent, i.e. (Ψ(χ∆))2 = Ψ(χ∆).
(c) Moreover, in this case Ψ(χ∆) = E(∆), hence E(∆)2 = E(∆).

Proof. If we fix a vector x ∈ H, then 〈Φ(fn)x, x〉 =
∫
fn dµx →

∫
f dµx and 〈Φ(gn)x, x〉 =

∫
gn dµx →∫

f dµx by the Monotone Convergence Theorem. On the other hand, we have strong limits, say T =
SOT − lim Φ(fn) and S = SOT − lim Φ(gn) of these monotone sequences of operators. But strong
(and even WOT)-convergence implies that 〈Tx, x〉 = lim〈Φ(fn)x, x〉 and 〈Sx, x〉 = lim〈Φ(gn)x, x〉 From
previous equalities we deduce that 〈Tx, x〉 = 〈Sx, x〉. Now, since x ∈ H was arbitrary, (after applying
polarisation) we deduce that S = T , which proves (a).

Now for fn as in (b) we may additionally assume that fn ≥ 0 (after replacing fn with max(fn, 0) if
needed. Then apply part (a) for gn = f2

n converging in a monotone way to χ2
∆ = χ∆ and hence these

limits must be equal. But the sequential continuity of operator multiplications in SOT topology implies
that lim Φ(f2

n) = lim(Φ(fn))2 = (lim Φ(fn))2, which gives us part (b). If we have a monotone sequence of
functions fn ∈ C(Ω) converging pointwise to χ∆, then the first equality in (c) follows from Monotone Con-
vergence Theorem, since 〈Ψ(χ∆)x, x〉 = lim〈Φ(fn)x, x〉 = lim

∫
fn(t), dµx(t) =

∫
χ∆(t) dµ)t) = µx(∆) =

〈E(∆)x, x〉. The rest follows from part (b). �

The operators E(∆) commute, as limits of commuting operators, hence all parts of Lemma 6.2 are
applicable. Let us define the set

M := {E ∈ B(Ω) : E(∆)2 = E(∆)}.

Theorem 6.4. This family M is an algebra of sets, containing all closed subsets of Ω and a monotone
class. Hence M is a sigma-field, containing all Borel subsets E(∆) are orthogonal projections.

Proof. Firs we show (using Lemma 6.2 that M is an algebra. Simce E(Ω) = I and for any projection
P also I − P is a projection, while E(Ω \∆) = Ψ(1 − χ∆), M is closed under taking complements. For
∆ = ∆1∩∆2 the characteristic function s satisfy χ∆ = χ∆1χ∆2 and Ψ preserve products. But products of
commuting idempotents is also idempotent, hence M is closed under finite intersections. By additivity, it
is closed under finite unions of disjoint sets and by taking intersections and finite intersections, we convert
finite unions into finite unions of pairwise disjoint sets. Therefore M is an algebra of sets. The monotone
class property follows from the Lemma on projections, as for increasing sequences of sets the corresponding
E(∆n) form a monotone, strongly convergent sequences of projections and passing to strong limits we
preserve the idempotency. Now the result follows from Monotone Class Theorem. This theorem says that
the smallest monotone class containing an algebra of sets is the sigma-algebra generated by this algebra.
(This is a standard tool in the proof of Fubini’s Theorem) �

The sigma- additivity of µx,y implies directly the sigma-additivity of E in the weak operator topology,
but if ∆j are pairwise disjoint, then for any x ∈ H the sequence xn = E(∆n)x is orthogonal and Theorem
6.1 implies the norm convergence of

∑∞
n=1 xn, which gives the strong operator topology convergence of∑

(∆n). Hence the orthogonal projections E(∆) form a spectral measure. For g1(t) = t we obtain (looking
back to the formulae defining µx,y and the equality g1(T ) = T that∫

g1(t)dµx,y = 〈Tx, y〉.

This is the Spectral Theorem for T , since the last equality is meaning that

(14) T =

∫
σ(T )

t E(dt).

Similarly,

Φ(f) =

∫
f(t)E(dt), f ∈ C(Ω).

Moreover, an operator S commutes with T (i.e. ST = TS) iff S commutes with every E(∆). Indeed, then
S commutes with any polynomial of T and with uniform limits of such polynomials, i.e. with Φ(T ). The
set of all operators S ∈ B(H) which commute with T is called the commutant of T and denoted {T}′.
This is a subalgebra of B(H) closed under SOT-limits (or even WOT-limits). Hence it contains the closed
subsets of Ω and all the monotone class containing the algebra of sets generated by such closed sets (hence
it contains all Borel sets). Conversely, if we approximate the identity function (our t in (14)) by simple
functions, their spectral integrals are linear combinations of some E(∆j) . Hence if S commutes with any
E(∆) =the spectral measure for T , it must commute also with T =

∫
t E(dt), as this spectral integral is
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a limit (in WOT-topology) of integrals of simple functions converging to the identity function f(t) = t on
Ω = σ(T ).

————————– (added January 05 2022 :)————————-

7. unbounded operators, graphs, adjoints

We consider only densely defined (”d.d.”) linear operators. This means that the domain D(T ) is a
dense linear subspace of a Hilbert space H. I will denote this by

T : D(T ) ⊂ H → H.

(Some authors write T : H → H specifying later that D(T ) 6= H.) Along with T we consider its graph

ΓT := {(x, Tx) ∈ H ×H : x ∈ D(T )},

which is a linear subspace of H × H. This Cartesian product is often denoted by H ⊕ H, since these
spaces are isometrically identified. We also need two surjective isometries:

(15) U,W : H ×H → H ×H, U(f, g) := (g, f) W (f, g) := (−g, f).

(Recall that ‖(f, g)‖ :=
(
‖f‖2 + ‖g‖2

) 1
2 and note that W 2 = −I, U2 = I - identity.) For example,(

U(ΓT ) is a graph of some operator (namely, of T−1)

)
⇔
(

operator T is injective

)
:

A linear operator T is injective ⇔ N (T ) := {x ∈ D(T ) : Tx = 0} = {0}.

Definition.

We say that a linear operator T is closed, if its graph is closed. If the closure, ΓT is a
graph of some operator (denoted by T̄ ) then we say that T is closable and T̄ is then
called the closure of T . We say that operator S is an extension of T , in symbols: S ⊃ T ,
if D(T ) ⊂ D(S) and Sx = Tx for any x ∈ D(T ).

By the Closed Graph Theorem, if D(T ) is a closed subspace in H and T is closed, then T is bounded.
An easy exercise shows that the converse is also true. This results from the following Lemma applied to
S : ΓT 3 (f, Tf) 7→ f ∈ D(T ) (what is the range, R(S) -how it relates to T in this case?).

Lemma 7.1. If S is a closed operator bounded below: ∃c>0∀x∈D(S) ‖Sx‖ ≥ c‖x‖, then R(S) is closed.

Proof. If a sequence of Sxn ∈ R(S) converges to some y ∈ H we have to show that y = Sx for some
x ∈ D(S). But (xn) is a Cauchy sequence, since ‖xn − xk‖ ≤ 1

c
‖S(xn − xk)‖ → 0 as n, k →∞. Now the

sequence of pairs: (xn, Sxn) converges in H ×H. By the closedness, x := lim ∈ D(T ) and Sx = y. �

Examples:(1) If ϕ : X → C is a measurable, possibly unbounded function, the multiplication operator

Mϕ : D(Mϕ) 3 f 7→ ϕf ∈ L2(µ)

is closed on its maximal domain D(Mϕ) := {f ∈ L2(µ) : ϕf ∈ L2(µ)}. (easy exercise). In particular,
if this domain equals L2(µ), we must have Tϕ bounded and in the case of σ-finite µ, we deduce that
ϕ ∈ L∞(µ). Let for example X =

⋃
n<∞Xn, where µ(Xn) <∞, Xn ⊂ Xn+1. Since Define the sets

An := {x ∈ Xn : |ϕ(x)| ≤ n}, ,Fn := {f ∈ L2(µ) : f = 0 outside An}.

Then clearly ∀n Fn ⊂ D(Mϕ), hence this domain is dense. In fact, for any f ∈ L2(µ) the sequence defined
by fn(x) = f(x) for x ∈ An and fn(x) = 0 if x /∈ An satisfies fn ∈ Fn, fn → f (pointwise). Since
|fn − f | ≤ |f |, by Lebesgue’s Dominated Convergence Theorem we obtain

∫
|f − fn|2dµ → 0 as n → ∞,

showing the density of D(Mϕ) in L2(µ).
(2) In Banach space C[a, b] (with sup-norm) the differential operator d

dt
with domain C1[a, b] is closed.

(3)The same operator with the same domain, but on the Hilbert space L2[a, b] is not closed. The domain
of its closure is the Sobolev space H1[a, b] = W 1,2[a, b]. This space may be defined as the completion of
C1[a, b] under the graph norm defined below, but also can be defined as the set of absolutely continuous
functions whose (existing almost everywhere) derivative belong to L2[a, b]. Third definition uses the notion
of weak derivative (and, unlike the previous one, is applicable also in multi-dimensional setting) -this will
be exactly the domain of the adjoint operator to d

dx
. (cf. infra)

(4) Example of non-closable operator is T : H1[0, 1] 3 f 7→ f(0) · 1, where 1 is the constant function
equal 1. Indeed, it is easy to see that T : D(T ) → H is closable iff for xn ∈ D(T ) with ‖xn‖ → 0 there
must be Txn → 0. Here take xn(t) := (1− t)n, so T (xn) = 1, while xn → 0.

We often use the so called graph norm on D(T ) defined by

‖x‖T := ‖x‖+ ‖Tx‖.

This is not a Hilbertian norm, but is clearly equivalent to such a norm, namely to ‖x‖(T ) :=
(
‖x‖2 + ‖Tx‖2

) 1
2 .

Theorem 7.2. A densely defined operator T : D(T )→ H is closed iff (D(T ), ‖ · ‖T ) is a complete normed
space.
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Proof. The mapping D(T ) 3 x 7→ (x, Tx) ∈ ΓT is an isometric bijection and the completness of either of
the spaces: (D(T ), ‖ · ‖(T )), (ΓT , ‖ · ‖) with respect to their corresponding norms implies the completeness
of the other. Here we may use the sum of the norms of coordinates of the pair (x, Tx), equivalent
to the Hilbertian norm on H × H. Completeness of ΓT under these (both) norms is equivalent to its
closedness. �

The most important example of a closed operator is the adjoint operator T ∗ defined for
a densely defined operator T as follows

D(T ∗) := {y ∈ H : ∃z∈H ∀x∈D(T )〈Tx, y〉 = 〈x, z〉} with T ∗y := z.

The uniqueness of z satisfying the above condition results from the density ofD(T ). Another formulation of
the definition of D(T ∗) is to postulate the continuity of the linear functional ψ : D(T ) 3 x 7→ 〈Tx, y〉 ∈ C.
As a continuous functional, it extends uniquely to a bounded linear functional on H, generated by some z
as above: ψ(x) = 〈x, z〉. On the last meeting in 2021 we have verified that T ∗ is always a closed operator.

Examples: (a) If ϕ is a measurable function, then the multiplication operator Mϕ from Example (1) is
closed, its adjoint has the same domain as the (maximal) domain of Mϕ and is the multiplication by the
complex conjugate function ϕ̄, like in the bounded case.

(b) In the notation of Example (3), we consider first the adjoint of T• := d
dt

on L2[0, 1] having the

domain D• := {f ∈ C1[0, 1] : ∃δ>0supp(f) ⊂ (δ, 1 − δ)}. Then for any f, g ∈ D• the integration by part
gives

(16) 〈T•f, g〉 =

∫ 1

0

f ′(t)ḡ(t) dt = fḡ|10 −
∫ 1

0

f(t)g′(t) dt = 〈f,−T•g〉.

Hence T ∗• ⊃ −T•. The containment is, in fact, proper: As long as the integration by part applies, any
g ∈ L2[0, 1] such that g′ exists almost everywhere and g′ ∈ L2[0, 1] -will satisfy this equality. Here
fḡ|10 = f(1)ḡ(1) − f(0)ḡ(0) = 0 for any g, since f(0) = f(1) = 0 and we are using the fact that d

dt
ḡ(t) is

the complex conjugate of d
dt
g(t). We may take g from the Sobolev space H1[0, 1].

Note that if g′ ∈ L2[0, 1] and the integration by parts applies with f = 1, then |g(t) − g(s)| =

|
∫ t
s
g′(x) dx| ≤

√
|t− s|

∫ s
t
|g′(x)|2. Moreover if [sj , tj ] is a finite collection of pairwise disjoint subintervals

of [0, 1] with δ :=
∑k
j=1 |tj − sj | sufficiently small, then

∑k
j=1 |g(tj)− g(sj)| will be arbitrarily small. This

is, by definition, the absolute continuity of g. When k = 1 it is just the uniform continuity, but there exist
uniformly continuous functions that are not absolutely continuous. An example is the ”Devil’s staircase
function” γ: nondecreasing, constant in any interval ∆ deleted from [0, 1] during the construction of
Cantor’s ternary set. Its derivative is equal zero on any such ∆, hence almost everywhere, so the Lebesgue

integral
∫ 1

0
γ′(x) dx = 0 6= 1 = γ(1) − γ(0). For absolutely continuous functions g we have g′ ∈ L1[a, b]

and
∫ 1

a
g′(b) dx = g(b) − g(a). For unbounded domains (e.g. if g ∈ L2(R)), one assumes the absolute

continuity of g on any bounded interval contained in this domain of g.
We call a linear densely defined operator T symmetric, if T ⊂ T ∗ -which is the same as saying that

∀f,g∈D(T ) 〈Tf, g〉 = 〈f, Tg〉.
Unlike in the case of bounded operators, this is not the same, as the self-adjointness condition (s-a -for
short): T = T ∗. For example, if we multiply our operator T• by the imaginary unit i, we obtain a
symmetric, but not s-a operator, since the domain of iT ∗• is the same as D(T ∗• ) = H1[a, b]. This operator
is even not essentially self-adjoint. It can be shown that the closure iT̄• of iT• is the operator acting as i d

dt

on H1
00(0, 1) := {f ∈ H1[0, 1] : f(0) = 0 = f(1)}. This closure has the same adjoint (in general, always

T̄ ∗ = T ∗).
There exist (even infinitely many) different self-adjoint extensions of this symmetric operator:

Tα := i
d

dt
with the domain Dα := {f ∈ H1[0, 1] : f(1) = αf(0)}, where α ∈ C, |α| = 1.

Then while integrating by parts as in (16), we only have to remember that fḡ|10 = αf(0)αg(0)−f(0)g(0) =
0, since αᾱ = |α|2 = 1, by our assumption. Usually one takes ony α = 1. Then for the sake of simplicity we
may assume that the functions are real-valued. One defines h ∈ L2[a, b] to be a weak derivative of f ∈ L2,
if for any C1 function g whose support is a compact subset of (a, b) [a fact is denoted: g ∈ C1

c (a, b)], we
have ∫ b

a

f(t)g′(t) dt = −
∫ b

a

h(t)g(t).

Clearly, if f ∈ C1[a, b], its weak and strong derivatives are the same: h = f ′. The existence of such
h ∈ L2[a, b] for f is evidently equivalent to the fact, that f is in the domain of the adjoint operator to{
d
dt

acting on this space C1
c (a, b)

}
. From this one can deduce that this domain of the adjoint is exactly

the Sobolev space.
We have also considered the integral operators. The adjoint operators to TK , where (TKf)(x) =∫
f(y)K(x, y)dµ(y) is the integral operator corresponding to the ”kernel function” K∗ , where K∗(x, y) =

K(y, x) with bar denoting the complex conjugate. In most applications, however, these integral opera-
tors will be bounded, everywhere defined. They appear in formulae for solutions of certain differential
equations.

One important result is the following characterisation of closability, proved by J.von Neumann:
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Theorem 7.3. For a densely defined linear operator T : D(T ) ⊂ H → H we have ΓT∗ =
(
W (ΓT )

)⊥
,

where W is defined as in (15). Moreover, T is closable iff D(T ∗) is a dense subspace in H. In such case
the closure is T̄ = T ∗∗.

Proof. If (x, y) ∈ H×H, then (x, y) ⊥W (ΓT ) means that for all f ∈ D(T ) we have 0 = 〈(−Tf, f), (x, y)〉.
The latter inner product is equal to 〈−Tf, x〉+ 〈f, y〉. Hence this orthogonality holds iff 〈Tf, x〉 = 〈f, y〉.
Since D(T ) is dense, T ∗ is a well-defined operator and then (x, y) ∈

(
W (ΓT )

)⊥
iff x ∈ D(T ∗), y = T ∗x, so

that (x, y) ∈ ΓT∗ . The mapping W , as a linear bijective isometry, can be interchanged with orthogonal
complement sign ⊥, which in case of D(T ∗) dense- gives

ΓT∗∗ =
(
W (Γ∗T )

)⊥
=
(
W (
(
W (ΓT )

)⊥
)
)⊥

=
(
W ◦W (ΓT )

)⊥⊥
. Since W ◦W = −I and ΓT is a linear subspace, we finally have ΓT∗∗ = (ΓT )⊥⊥. The double ortho-
complement is the closure, hence T is then closable, with its closure equal T ∗∗. It remains to prove that
conversely, if T is closable, then D(T ∗) must be dense. We have seen that the closure of ΓT -which we

now assume to be a graph of some operator- is equal to
(
W (Γ∗T )

)⊥
. Replacing now T ∗ with S it is enough

to apply the following Lemma 7.4. �

Lemma 7.4. If S : D(S) ⊂ H → H is a linear operator then
(
W (ΓS)

)⊥
is a graph of some operator iff

D(S) is dense in H.

Proof. A linear subspace L ⊂ H ×H is a graph of some mapping iff (0, h) ∈ L⇒ h = 0, for if (x, y1) ∈ L
and (x, y2) ∈ L, their difference equal to (0, y1 − y2) also belongs to L. Note also that

(0, h) ⊥W (ΓS)⇔ h ⊥ D(S).

Indeed, 〈(0, h), (−Tx, x)〉 = 〈h, x〉. Now
{

(∀x∈D(S) h ⊥ x)⇒ h = 0
}

holds iff D(S) is dense in H. �

There is a sharp difference between some properties of unbounded operators comparing to the bounded
case. For example, the sum of two closed operators may not be closed (take T + (−T ), where T is closed,
the sum is the zero operator on D(T ), different from its closure for unbounded T ). In the case of sums
some additional assumption guarantees closedness:

We say that S is T -bounded if D(T ) ⊂ D(S) and there exist a, b ≥ 0 such that

(17) ∀x∈D(T )‖Sx‖ ≤ a‖x‖+ b‖Tx‖.
This actually is the continuity of S in either of the two graph norms on D(T ). If the above constants can
be chosen so that b < 1, then we say that S is strongly dominated by T .

Theorem 7.5. Let S be a strongly dominated2 operator by a densely defined operator T . If T is closed,
then S+T is closed on D(T ). If moreover S∗ is also strongly dominated by T ∗, then D(T ∗+S∗) = D(T ∗)
and

(18) (T + S)∗ = T ∗ + S∗.

Proof. If T is closed, replacing it with some ε·T and S with εS we may assume that also a < 1 in condition
(7.5). Then for some α ∈ (0, 1) we have ‖Sx‖ ≤ α(‖x‖+ ‖Tx‖), from where we deduce that

(1− α)‖x‖T ≤ ‖x‖T+S ≤ (1 + α)‖x‖T for all x ∈ D(T ).

The graph norms on D(T ) of T and of T + S are therefore equivalent and the completeness of these two
norms is also equivalent. Since T is closed, so is T + S.

Operators S + T defined on D(T ) and S∗ + T ∗ on D(T ∗) are closed by the above arguments. Let
y ∈ D(T ∗). Then y ∈ D(S∗) and

〈Sx+ Tx, y〉 = 〈x, S∗y〉+ 〈x, T ∗y〉 = 〈x, S∗y + T ∗y〉, ∀x∈D(T ).

Hence T ∗+S∗ ⊂ (T +S)∗ and in H×H the orthogonality W (ΓT+S) ⊥ ΓT∗+S∗ takes place. By Theorem
7.3 the equality (18) will follow, once we show that W (ΓT+S) ⊕ ΓT∗+S∗ = H × H. As above, we may
assume that a, b < 1, the strong domination taking the form

‖Sx‖2 ≤ a2(‖x‖2 + ‖Tx‖2), x ∈ D(T ), ‖S∗x‖2 ≤ a2(‖x‖2 + ‖T ∗x‖2), x ∈ D(T ∗).

Define a linear operator Q on (f, g) ∈ H×H as follows. From the decomposition H×H = W (ΓT )⊕ΓT∗ ,
there exist x ∈ D(T ), y ∈ D(S) such that f = −Tx+ y, g = x+T ∗ y. Put Q(f, g) = (-Sx, S*y). It follows
from the above ”domination inequalities that

‖Q(f, g)‖2 = ‖Sx‖2 + ‖S∗x‖2 ≤ a2(‖f‖2 + ‖g‖2),

which means that ‖Q‖ ≤ a < 1. Hence I +Q is invertible in B(H ×H) Hence by our choice of (x, y), we
have

(I+Q)(f, g) = (−Tx+y, x+T ∗y)+(−Sx, S∗y) = W (x, Tx+Sx)+(y, T ∗y+S∗y) ∈W (ΓT+S)⊕ΓT∗+S∗ .

This shows the desired orthogonal decomposition of H ×H. �

The following implication from the domains inclusion is very useful.

2In some books instead of strong domination the ”graph T -norm of S is < 1” appears, which is equivalent in
such purposes (after replacing S, T by εS, εT an in the present proof)
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Theorem 7.6. If T is closed and S is closable, then the inclusion D(T ) ⊂ D(S) implies T -boundedness
of S.

Proof. Denote by ST the restriction of S to D(T ), where the latter domain is considered with ‖ · ‖T
-norm (hence it is a complete space). By the Closed Graph Theorem, it remains to show that ST is a
closed operator. Take x, xn ∈ D(T ) such that simultaneously ‖xn − x‖T → 0 and ‖Sxn − y‖ → 0. Then
‖xn − x‖ → 0 (c0nvergence in H). Now since S is closable and x ∈ D(T ) ⊂ D(S), we have y = Sx. �


