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Introduction 
 

The proof that pi is a transcendental number, first provided by Carl Louis Ferdinand von Lindemann in 
1882, was and remains one of the most celebrated results of modern mathematics. It was of interest in its 
own right, and it also resolved a host of questions that had focused the attention of mathematicians since 
ancient times. 

 
The problem of “squaring the circle”— that is, constructing with straightedge and compass alone a 

square whose area equals that of a given circle— was one of the great problems of classical geometry. 
Ancient Greek geometers studying the circle had proven that the circumference, or “periphery”, is 
proportional to the diameter, and that the area is proportional to the square of the radius. The proportionality 
constant in each case was eventually denoted by “pi”, the first letter of the word “periphery” in Greek. The 
problem of squaring the circle, as well as several related problems, thus amounted to constructing the 
number pi by geometric means. 

 
Successively more accurate approximations of pi by rational (and, thus, constructible) numbers, were 

achieved during ancient, medieval, and modern times, first by the use of purely geometric methods such as 
the construction of regular polygons inscribed or circumscribed about the circle, and later by the use of 
analytic methods such as Machin’s formula. Eventually, in 1761, pi was proven to be irrational by Johann 
Heinrich Lambert, who employed a complicated approach based on continued fractions.1 However, the 
irrationality of pi does not resolve the matter of squaring the circle, since many irrational numbers (most 
obviously, √2) are constructible. 

 
Several of the classical construction problems, such as the trisection of an arbitrary angle, were proven 

impossible by showing that their solution would amount to constructing the roots of an irreducible 
polynomial of high degree.2 Von Lindemann’s work on pi showed that the squaring of the circle is an 
impossible problem in an even more profound sense, because he showed that no polynomial of any degree 
and with rational (or equivalently, integral) coefficients can include pi among its roots. Such numbers are 
said to be transcendental or nonalgebraic. 

 
Von Lindemann, a professor of mathematics at the University of Freiburg, was a specialist in geometry 

and analysis, and had completed his doctoral thesis on a topic in non-Euclidean geometry under the direction 
of the renowned Felix Klein at Erlangen.3 The French mathematician Charles Hermite had already 
established the transcendence of e in an 1873 paper 4 based largely on methods of number theory. While von 
Lindemann’s proof 5 of the transcendence of pi does not actually rely on the transcendence of e, it uses 
substantially the same methods as those that had been employed by Hermite, together with the fact that 

01  ie , a consequence of Euler’s formula. Interestingly, the latter equation is the only property of pi that 
comes into play in the proof, and it is used near the very beginning. 

 
Successively modified and simplified versions of von Lindemann’s proof were published (still in 

German) by Karl Weierstrass (1885), Paul Gordan (1893), and H. Weber (1902) 6. All of these were still 
based largely on number theory. For example, Weber’s proof 7 explicitly invokes Fermat’s “little theorem” 
that if p is a prime that does not divide the integer a, then ap-1 is congruent to 1 (mod p). A proof based more 
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on analytic methods, together with a few key number-theoretic facts, was published in 1952 by R. Steinberg 
and R. M. Redheffer at UCLA.8 

 
My goal in this paper is to convey von Lindemann’s result in a form that will be accessible to the average 

undergraduate mathematics major. I have mainly followed the presentation given by Hardy and Wright 9, 
which in turn is based on modifications and simplifications of von Lindemann’s approach provided by 
Edmund Georg Hermann Landau and Oskar Perron. I have provided clarifying details where necessary, have 
simplified some of the notation, and have rearranged some of the order of presentation. I have also provided 
an introductory discussion, “Polynomial Preliminaries”, to explain some key points of polynomial theory that 
are needed in the proof, including results from the “theory of equations” that are no longer normally taught to 
undergraduates, even back in my own day. Much of that introductory discussion, including my Lemmata 1 
and 2 (which correspond to Theorems 203 and 202, respectively, in Hardy and Wright), is set forth without 
formal proof. Instead, I devised a series of convincing polynomial examples whose concreteness will provide 
the undergraduate reader greater insight than would be provided by a more abstract treatment like that given 
in the sources I have used. 

 
 

Polynomial Preliminaries 
 
 

As a necessary prelude to our presentation of von Lindemann’s proof, we must recall some familiar 
properties of polynomial equations, and establish some less familiar ones. 

 
The Fundamental Theorem of Algebra tells us that any polynomial of degree n, with complex 

coefficients, has exactly n complex roots if repeats are counted. Of course, what is true of the field of 
complex numbers is not true of other sets. For instance, if the coefficients are real, we are not guaranteed n 
real roots. Likewise with rational or integral coefficients. 

 
On the other hand, the set of roots of a polynomial is such that certain functions of the roots are 

predictably well-behaved. For instance, if a polynomial with rational coefficients has complex roots, these 
occur in conjugate pairs, and the sum or product of any pair of conjugate roots will be real (in fact, rational). 
More generally, any symmetric polynomial of the roots will be rational. Although we will not give a proof, 
we provide an example below that suggests why this fact is true. This fact is a manifestation of the yet more 
general Fundamental Theorem of Symmetric Polynomials, part of the “theory of equations” developed by 
Viète, Girard, Descartes, Fermat, and others. 

 
We call a polynomial symmetric if its value is unchanged by all permutations of its variables. 

 
Ex 1. 22 343),( yxyxyxf   

          ),(343),( 22 yxfxyxyxyf  , so f is symmetric. 
 
Ex 2. 22 443),( yxyxyxg   

          ),(443),( 22 yxgxyxyxyg  , so g is not symmetric. 
 
Ex 3. Consider 43)( 23  xxxxf  

                                  )1)(43( 2  xxx , with roots ii xxx
2

3

2

1
32

3

2

1
23

4
1 ,,   . 

 
Some symmetric polynomials of these roots include: 
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Notice that, in each case, the irrational or imaginary parts “cancel each other out”, and 
the result is rational. Notice, too, that since the highest-degree coefficient of f is 3, any 
symmetric polynomial of the tripled roots 321 3,3,3 xxx  will be an integer. 

 
 

Next, consider an integral polynomial f of degree m, i.e., 
 

 ,, integersfor   )( 10
0

2
210 aaxaxaxaxaaxf

m

n

n
n

m
m 



  

 
As a notational convenience, Landau and others adopted an unusual symbolism that allows conciseness in 
writing certain often-recurring expressions involving the coefficients an and factorials of the exponents n. 
Specifically, they defined an associated polynomial of the same degree, 
 

)()()()()( )( xfxfxfxfhxf m                                     Eqn (1) 
 
It is very important to keep in mind that in this notation, h does not signify an actual quantity, nor does the 
plus sign in x + h signify an actual addition.10 To avoid confusion, in this paper only the symbol h will be 
used in this special role, and h will not be used in any other role. 
 
Some examples of this notation: 
 

Ex 4. 663)( then ,)( If 233  xxxhxfxxf . 
 

Ex 5. 10)103()532()( then ,532)( If 22  xxxhxfxxxf  

                                                                     251315 xx  . 
 

As a special case of Eqn (1), note that substituting x = 0 leads to 
 

)0()0()0()0()( )(mffffhf    

mamaaaahf !62)( 3210                                                  Eqn (2) 

 
and as a further special case, note that substituting mxxf )(  in Eqn (2) leads to 
 

!!0000 mmhm      .                                                       Eqn (3) 
 
 

We now make some observations that can be summarized concisely in this new notation. 
 

Ex 6. Consider 2532)( xxxf  . Now pick an arbitrary integer, say 10. 

          Let )532()()( 121110
 

!9

1
 

!9

10
xxxxfxF x  . 
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Then )]!12(5)!11(3)!10(2[)(  
!9

1 hF  using Eqn (3) 

         )101112(5)1011(3)10(2)( hF , 
the result being a multiple of 10 due to the divisibility of each factorial by 9!. 
 
This suggests, more generally, that for any integral polynomial and any integer n > 1,  

if )()(  
)!1(

xfxF
n

nx


 , then F(h) is a multiple of n, or in other words ) (mod  0)( nhF  . 

 

In addition, if we let )532()()( 11109
 

!9

1
 

!9

9
xxxxfxG x  , 

                          then )]!11(5)!10(3)!9(2[)(  
!9

1 hG   

                                  )1011(5)10(32)( hG , 
the result once again being an integer (due to the divisibility of each factorial by 9!), but 
this time congruent to 2, the 0th-degree term of f. 
 
This suggests, more generally, that for any integral polynomial and any integer n > 1, 

if )()(  
)!1(

1
xfxG

n

nx




 , then ) (mod  )0()( nfhG  . Thus: 

 
Lemma 1. Let f be an integral polynomial, and n a positive integer. 

(a) If )()(  
)!1(

xfxF
n

nx


 , then ) (mod  0)( nhF  . 

(b) If )()(  
)!1(

1
xfxG

n

nx




 , then ) (mod  )0()( nfhG  . 

 
 

The h notation also helps us relate polynomials to the Taylor series expansion for ex. Returning to the 
polynomial used in Example 4, 
 

Ex 7. 663)( 233  xxxhx  

)1(6
12

2

6

3
 xxx  

)]([6
120

5

24

4
 xxxe    using the Taylor series expansion for ex 

)(6
20

2

4

3  xxx xe . 

 
More generally, 

      ][!)(
)2)(1(

2

1


 nn

x

n

xnxn xenhx . 

 
Now define 

      
 )2)(1(

2

1
)(

nn

x

n

x
n xu  

 
so that 
     )(!)( xuxenhx n

nxn   

                   )(xuxeh n
nxn  . 

 
Thus, 

. )()( xuxhxeh n
nnxn 
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Now define 

       
||

)(
)(

x
n

n e

xu
x  , where |x| denotes the magnitude of the complex number x, 

 
so that 
      ||)()( x

n
nnxn exxhxeh   

      ||

000

)()( x
n

n
m

n
n

n
m

n
n

xn
m

n
n exxahxaeha 



  

      )()(
0

||

00

xxaehxahae n
n

m

n
n

xn
m

n
n

n
m

n
n

x 


 . 

 
Thus, we have shown the following principle, which crystallizes a relation between 
polynomial and exponential functions: 
 

Lemma 2. For any polynomial 



m

n

n
n xaxf

0

)( , if we let )()(
0

* xxaxf n

m

n

n
n 



 , 

 
                                                   then )()()( *|| xfehxfhfe xx  . 
 
 
 

Proof of the Transcendance of Pi 
 
 

Suppose, by way of proof by contradiction, that  were algebraic, i.e., a root of an integral polynomial: 
 

 ,, integersfor    0 10
3

3
2

210 bbbbbbb k
k    

 
This would imply that i is a root of an integral polynomial of no more than twice that degree, since we 
would have: 
 

0)()()()( 4
4

3
3

2
210  k

kbibiibibiibb    

 
])()([])()([ 3

31
4

4
2

20   ibibiibibb   

 
23

31
24

4
2

20 ])()([])()([   ibibibibb   

 
0])()([])()([ 23

31
24

4
2

20   ibibibibb  . 

 
Renaming the variables, we can therefore deduce an integral polynomial equation satisfied by i: 
 

 ,, integersfor    0 10
2

210 ccxcxcxcc m
m                                      Eqn (4) 

 
By the Fundamental Theorem of Algebra this equation has m roots, call them ω1, ω2, …,ωm, including i. 
Focusing on the latter one first, by Euler’s formula we have 
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iie i 01sincos    

 
01  ie  

 
00  iee  . 

 
The mere fact 01  ie  does not imply that π is transcendental, even if we couple with this the fact that e 
itself is transcendental. Rather— and this is the key idea of the proof, and the main reason for its 
complexity— this fact must be combined with similar information about all of the other roots (besides πi) of 
the assumed polynomial in Eqn (4). These roots would have to be related to one another in ways that were 
explored above in Polynomial Preliminaries and that we will now exploit. 
 

We now form similar terms for the other roots and multiply the results, knowing that the product is zero 
since at least one factor (the one with πi)  is zero: 
 

0)())(( 000 21  meeeeee   . 
 
Multiplying out, 
 

.  0)()()( 213121210   mm eeeeeee    
 
Note that each term in the above expression corresponds to one of the 2m subsets of the set of roots ω1, ω2, 
…,ωm. We also record, for later reference, that each exponent is a symmetric integral polynomial of those 
roots. Renaming the exponents α1, α 2, …, we get 
 

0
2

1




m

i

i

e . 

 

The proof will amount to showing that the left side of this equation equals a nonzero integer plus a proper 
fraction, and so cannot equal zero, giving us the contradiction that we sought. 
 

Recall that α1 = 0, and note that some of the other αi could conceivably vanish as well (although of 
course, not all of them). We now re-index the αi so that the first n of them are the nonvanishing ones: 
 

0
2

1

0

1

 


m

i

ni

n

i

ee  

0
1




qe
n

i

i , setting the integer q = 2m – n.                            Eqn (5) 

 
With special reference to the highest-degree coefficient cm of the polynomial in Eqn (4), we now choose any 
large prime number p satisfying 
 

|)())((|   ,   , 21 nmmmm cccpcpqp    

 
and consider the polynomial 
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p
n

n
m

p
p
m xxxcx

p

c
x )]())(([

)!1(
)( 21

1
1

 


 


                              Eqn (6) 

 
whose degree is np + p – 1. Multiplying Eqn (5) by )(h  gives 
 

0)()(
1




hqeh
n

i

i    

 

0)()(
1




hqhe
n

i

i     since )(h  is independent of i 

 

0)()]()([ *||

1




hqeh i

n

i
i

i      by Lemma 2 

 

0)()()( ||

1

*

1

 


hqeh i

n

i
i

n

i
i    

 
s1   +   s2   +   s3   = 0 , by way of abbreviation.                                  Eqn (7) 

 
We now systematically evaluate  s1,  s2,  and  s3. 
 
 

First, we will show that s1 is an integral multiple of the chosen prime p. To evaluate s1, we start with Eqn 
(6) and note that shifting the polynomial )(x  by any of the displacements αi creates a net additional factor 
x, i.e., p of them versus p – 1: 
 

p
niiiiiii

n
m

p
i

p
m

i xxxxxxcx
p

c
x )]())()(())(([)(

)!1(
)( 1121

1
1

 


 






 

               p
niiiiiii

n
m

p
i

p
m

p

xxxxxcxc
p

x
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)!1( 1121
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  . 

 
Summing the results gives 
 













n

i

p
niiiiiii

n
m

p
i

p
m

pn

i
i xxxxxcxc

p

x
x

1
1121

11

1

)]())(())(([)(
)!1(

)(   . 

 
The summation portion of the right side is a polynomial in x of degree (p – 1) + (n – 1) p = np – 1. 
Multiplying out, and combining like terms, we get 
 




 


1

11 )!1(
)(

np

j

j
j

pn

i
i x

p

x
x                                                        Eqn (8) 

 
where each coefficient βj is a symmetric integral polynomial of the constants cmα1,  cmα2, …, cmα n. Recall 
that each αi is itself a symmetric integral polynomial of ω1, ω2, …,ωm, which are the roots of a polynomial 
having integer coefficients, with cm being the highest-degree coefficient. Recalling Example 3 above, by the 
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Fundamental Theorem of Symmetric Polynomials we can conclude that βj is an integer for j = 0, 1, … , np – 
1. This allows us to apply Lemma 1(a) to Eqn (8), yielding 

) (mod   0)(
1

ph
n

i
i 



  

 
     ) (mod   01 ps   .                                                                Eqn (9) 

 
 

Next, we will show that s2 can be made vanishingly small by choosing the prime p to be sufficiently 
large. To evaluate s2 we first note, from DeMoivre’s formula and the Triangle Inequality for complex 
numbers, that 
 

ii xxzzzz      and   2121    for i = 1, 2, … 

 
Thus, 

 
)())(()())(( 2121 nn xxxxxx     

 
But by Eqn (6), 
 

p
n

n
m

p
p
m xxxcx

p

c
x )]())(([

)!1(
)( 21

1
1

 


 


 , 

 
so 
 

)!1(

)]())([(
)( 21

11








p

xxxxc
x

p
n

ppnp

m 



. 

 
As we let p increase without bound, (p – 1)! eventually overtakes the pth power of any constant, so the right-
hand fraction can be made arbitrarily small. Thus, )(x  can be made arbitrarily small by sufficiently large 

choice of p. The same can be said of )(* x , since by definition each term of *  is identical to the 

corresponding term of   except for the additional factor )(xn , which is independent of p. Thus, )(* x  can 

be made arbitrarily small, and we chose p in such a way that 
 

1)( ||

1

*
2  



ies
n

i
i

   .                                                           Eqn (10) 

 
 

Finally, we will show that s3 is an integer not divisible by p. To evaluate s3, recall the definition of   
from Eqn (6), 
 

p
n

n
m

p
p
m xxxcx

p

c
x )]())(([

)!1(
)( 21

1
1
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p
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p

x
x )]())(([
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1
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Multiplying out, and combining like terms, we get 
 









np

j

j
j

p

x
p

x
x

1

1

)!1(
)(                                                                     Eqn (11) 

 
where each coefficient γj is a symmetric integral polynomial of the constants cmα1,  cmα2, …, cmαn. For 
example, the lowest-degree coefficient is  
 

p
n

n
m

p
m cc )]0()0)(0([ 21

1
0      

 
            ])()()[()1( 21

1 p
nm

p
m

p
m

p
m

np cccc   . 

 
Again by the Fundamental Theorem of Symmetric Polynomials, γj must be an integer for j = 0, 1, … , np. 
We can thus apply Lemma 1(b) to Eqn (11), so that )(h  is an integer satisfying 
 

) (mod   )(  0 ph   , 

 
that is, 

 

) (mod   ])()()[()1()( 21
1 pcccch p

nm
p

m
p

m
p
m

np   . 

 
Thus, 
 

) (mod   ])()()[()1()( 21
1

3 pcccqchqs p
nm

p
m

p
m

p
m

np   . 

 
Note, then, that p does not divide s3, since we defined the prime in such a way that 
 

|)())((|   ,   , 21 nmmmm cccpcpqp   . 

 
Thus, s3 is not congruent to 0 (mod p). Combining this with Eqn (9) implies that neither is s1 + s3 congruent 
to 0 (mod p). In particular, it cannot be equal to zero: 
 

031  ss , 

 
and so in absolute value, 
 

131  ss . 

 
Combining this with Eqn (7), we get 
 

12  s  

 
12 s , 

 
which contradicts Eqn (10). 
 
Thus, our original supposition that π is algebraic was false, QED. 
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