

Akademia Górniczo – Hutnicza Im. Stanisława Staszica w Krakowie

Wydział Geodezji Górniczej i Inżynierii Środowiska

PROJEKT INŻYNIERSKI

IMIĘ i NAZWISKO: RZESZUTEK MATEUSZ
Nr albumu: 220619
KIERUNEK: INŻYNIERIA ŚRODOWISKA
KATEDRA: KSZTAŁTOWANIA I OCHRONY ŚRODOWISKA
TYTUŁ PROJEKTU: OPTYMALIZACJA WYMIARÓW GEOMETRYCZNYCH EMITORA (WYBRANYM ZAKRESIE)
TYTUŁ PROJEKTU (w języku angielskim): EMITTER GEOMETRY OPTIMIZATION (IN A SELECTED RANGE)
OPIEKUN PROJEKTU: dr inż. ROBERT OLENIACZ

Ocena projektu:

Podpis Opiekuna projektu

Kraków, 2011 r.

Niniejszy projekt wykonałam/-em/ osobiście, nie korzystałam/-em/ ze źródeł innych, niż wymienione w tekście. Przedstawiony projekt nie był wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam, świadoma/-y/ odpowiedzialności karnej za poświadczenie nieprawdy, że zaliczyłam/-em/ wszystkie przedmioty na studiach pierwszego stopnia i uzyskałem/-am/ średnią ocenę z okresu studiów (semestr 1 do 7)

.....

.....

data

czytelny podpis studenta

STRESZCZENIE

Celem niniejszego projektu było dobranie optymalnych wymiarów wysokości i średnicy emitora dla instalacji termicznego przekształcania odpadów komunalnych. Czynnikami decydującymi o wyborze wymiarów emitora są: strumień objętości spalin, wpływ emisji substancji pyłowych i gazowych na jakość powietrza atmosferycznego i liniowe starty ciśnienia w emitorze.

W projekcie wykonano następujące obliczenia: objętość spalin powstających w wyniku prowadzonego procesu, stopnia redukcji emisji zanieczyszczeń gazowych, strumienia objętości spalin, wielkość emisji substancji gazowych i pyłowych, rozprzestrzenia zanieczyszczeń gazowych wybranych substancji, liniowych strat ciśnienia w przewodzie emitora. Na podstawie uzyskanych wyników, stwierdzono, że najlepszym rozwiązaniem dla instalacji unieszkodliwiania odpadów komunalnych jest emitor o wymiarach h = 80 m i d = 2,6 m.

SUMMARY

The aim of this project was match the optimal dimensions of height and diameter of the emitter for the installation of termal transformation of public waste. Determining factors for choosing the dimensions of the emitter are: volume flow of gas, influence of emission dust and gaseous substances on air quality and line trading loss in emitter.

In the project were made the following calculations: exhaust gas volume resulting from the guided process, the flow volume of exhaust emissions, the reduction factor of gaseous missions, amount emission of dust and gaseous substances, spreading of gaseous pollutants selected substances, linear loss of pressure in the emitter. On the basis of the obtained results, it was found that the best solution for disposal installation of public waste would be the emitter with dimensions h = 80 diameter = 2.6 m.

Spis treści

1.	CEI	2 PROJEKTU
2.	CZY	YNNIKI WPŁYWAJĄCE NA WYNIESIENIE GAZÓW
	ODI	LOTOWYCH PONAD WYLOT EMITORA4
3.	ZAł	2.OŻENIA I ZAKRES PROJEKTU9
4.	OBI	LICZENIE OBJĘTOŚCI SPALIN POWSTAJĄCY PODCZAS
	PRO	CESU TERMICZNEGO PRZEKSZTAŁCANIA ODPADÓW
	KO	MUNALNYCH12
	4.1	METODYKA OBLICZANIA OBJETOŚCI SPALIN W WARUNKACH UMOWNYCH 12
	4.2	OBLICZENIA OBJĘTOŚCI SPALIN W WARUNKACH UMOWNYCH 16
5	ORI	Ι ΙΩΖΕΝΙΕ ΟΒΙΕΤΟŚCΙ GAZÓW ΟΒΙ ΟΤΟΨΥCΗ ΡΟ PROCESIE
5.		ZVSZCZANIA SPALIN 17
	UCI	
	5.1	METODYKA WYKONYWANIA OBLICZEŃ OBJĘTOŚCI GAZÓW ODLOTOWYCH PO
		PROCESIE OCZYSZCZANIA SPALIN
	5.2	WYNIKI OBLICZEŃ OBJĘTOŚCI SPALIN OCZYSZCZONYCH 19
6.	OBI	LICZENIE STRUMIENIA OBJĘTOŚCI SPALIN 20
7.	OBI	LICZENIE ŚREDNIEJ PRĘDKOŚCI GAZU W PRZEWODZIE ORAZ
	OK	REŚLENIE WARIANTÓW EMITORA
8.	OK	REŚLENIE EMISJI SUBSTANCJI PYŁOWYCH I GAZOWYCH 24
9	ZES	TAWIENIE I ANALIZA WVNIKÓW OBLICZEŃ
	ROZ	ZPRZESTRZENIANIA SUBSTANCJI GAZOWYCH I PYŁOWYCH
	WP	
	** 1	0 W H2 I K2 U
	9.1	ZESTAWIENIE WYNIKÓW OBLICZEŃ ROZPRZESTRZENIA ZANIECZYSZCZEŃ
		GAZOWYCH I PYŁOWYCH
	9.2	ANALIZA ZMIENNOŚCI MAKSYMALNEGO STĘŻENIA SUBSTANCJI GAZOWEJ W
		POWIETRZU W OKREŚLONEJ SYTUACJI METEOROLOGICZNEJ
	9.3	ANALIZA UZYSKANYCH WYNIKÓW OBLICZEŃ ROZPRZESTRZENIANIA
		ZANIECZYSZCZEŃ SUBSTANCJI PYŁOWYCH I GAZOWYCH W POWIETRZU 40

10.	10. WYZNACZENIE LINIOWYCH STRAT CIŚNIENIA DLA					
	WYI	BRANYCH WARIANTÓW EMITORA 4	17			
	10.1	METODYKA OBLICZANIA LINIOWYCH STRAT HYDRAULICZNYCH	47			
	10.2	WYNIKI OBLICZEŃ ORAZ ANALIZA STRAT CIŚNIENIA ROZPATRYWANYCH				
		WARIANTÓW	49			
11.	POD	SUMOWANIE 5	51			
LIJ	ſERA	TURA:5	53			
PR	OGR	AMY KOMPUTEROWE:5	54			
SPI	IS WY	KRESÓW	55			
SPI	S TA	BEL5	56			
ZA	ŁĄCZ	ZNIKI:	58			

1. Cel projektu

Celem niniejszego projektu było dobranie optymalnych wymiarów geometrycznych emitora dla instalacji termicznego przekształcania odpadów komunalnych. Optymalizacja wymiarów geometrycznych polegała na dobraniu wysokości oraz średnicy emitora. Czynnikami decydującymi o wyborze optymalnych wymiarów emitora są: strumień objętości powstających spalin, wpływ emisji substancji pyłowych i gazowych na jakość powietrza atmosferycznego i liniowe starty ciśnienia w emitorze.

2. Czynniki wpływające na wyniesienie gazów odlotowych ponad wylot emitora

Wyniesienie gazów odlotowych Δ h zależy w głównej mierze od emisji ciepła Q, prędkości wylotowej gazów v oraz prędkości wiatru na wysokości wylotu z emitora u_h. W zależności od wartości emisji ciepła Q oraz prędkości wiatru na wysokości wylotu z emitora przyjmuje się różne metody wykonywania obliczeń wyniesienia gazów odlotowych. W tabeli 2.1 zestawiono wzory, według których przeprowadza się obliczenia wyniesienia gazów odlotowych ponad wylot emitora. Uwzględniono również zakresy emisji ciepła i prędkości wiatru na wysokości wylotu substancji pyłowych i gazowych z emitora. Natomiast obliczenia emisji ciepła Q [kJ/s] wykonuje się na podstawie poniższego wzoru [9]:

$$Q = \frac{\pi d^2}{4} \cdot v \cdot C_p \cdot \frac{273,16}{T} \cdot \left(T - T_0\right)$$
(2.1)

gdzie:

- d średnica wewnętrzna emitora [m],
- v prędkość gazów odlotowych na wylocie z emitora [m/s],
- C_p ciepło właściwe gazów odlotowych przy stałym ciśnieniu
- (w metodyce referencyjnej $C_p = 1,3$) [kJ/(m³·K)],
- T temperatura gazów odlotowych na wylocie z emitora [K],
- T₀ średnia temperatura powietrza dla okresu obliczeniowego [K].

Analiza zestawionych wzorów w tabeli 2.1. wykazuje, że wraz z wzrostem emisji ciepła Q wzrasta wysokość wyniesienia gazów odlotowych. Zależność tą przedstawiono na wykresie 2.1. przy założeniu stałej wysokości emitora h = 120 m, średnicy d = 4 m, prędkości gazów odlotowych v = 10 m/s, temperatury gazów odlotowych T = 100 °C i ciepła właściwego gazów odlotowych $C_p = 1,3$ kJ/(m³·K). Stosunek wysokości wyniesienia gazów odlotowych Δh do wartości emisji ciepła Q ulega zmianie w obrębie stosowania danej formuły obliczeniowej. Wartości ww. stosunku w odniesieniu do równoczesnego wzrostu emisji ciepła i wysokości wyniesienia gazów odlotowych ponad wylot emitora ulega zwiększeniu przy zastosowaniu metody kombinacji formuły Hollanda i CONCAWE. W przypadku zastosowania pozostałych dwóch metod wartość stosunku Δh do Q ulega stopniowemu zmniejszeniu [4, 9].

Wyniesienia gazów odlotowych zależy pośrednio od wartości średniej temperatury powietrza dla okresu obliczeniowego T_0 , temperatury gazów odlotowych na wylocie z emitora T. Wzrost średniej temperatury powietrza dla okresu obliczeniowego powoduje obniżenie wartości emisji ciepła, a w konsekwencji obniżenie wysokości wyniesienia gazów odlotowych. Natomiast wzrost temperatury gazów odlotowych przy wylocie z emitora wykazuje reakcję odwrotną w stosunku do temperatury otoczenia [9].

Tabela 2.1. Zestawienie wzorów, na podstawie których wykonuje się obliczenia wysokości wyniesienia gazów odlotowych ponad wylot z emitora (opracowanie własne na podstawie [9])

Emisja ciepła Q [kJ/s]	Prędkość wylotowa gazów v [m/s]	Wyniesienie gazów odlotowych Δh [m]	Formuła
	$v \le 0,5 u_h$	$\Delta \mathrm{h}=\Delta \mathrm{h_{H}}^{\mathrm{l}}=0$	
$0 \le Q \le$	$0,5 u_h \! \le \! v \! \le \! u_h$	$\Delta h = \Delta h_H = \frac{1.5 \cdot v \cdot d \cdot 0.00974 \cdot Q}{u_h}$	Hollanda
16 000	$v \geq u_h$	$\Delta h = \Delta h_H = \frac{1.5 \cdot v \cdot d \cdot 0.00974 \cdot Q}{u_h} \cdot \frac{v - 0.5u_h}{0.5u_h}$	
Q ≥24 000	-	$\Delta h = \Delta h_{\rm C}^2 = \frac{1,26 \cdot Q^{0.58}}{u_h^{0.7}}$	CONCAWE
$Q > 16\ 000$ i $Q < 24$ 000	-	$\Delta h = \Delta h_H \cdot \frac{24000 - Q}{8000} + \Delta h_C \cdot \frac{Q - 16000}{8000}$	Kombinacja formuł Hollanda i CONCAWE

Kolejnym czynnikiem wpływającym na wyniesienie gazów odlotowych jest stan równowagi atmosferycznej. Zależność pomiędzy wyniesieniem gazów odlotowych i emisją ciepła Q dla wszystkich stanów równowagi atmosferycznej przy założonej prędkości wiatru v = 1 m/s przedstawiono na wykresie 2.1. Stan równowagi atmosferycznej określa się na podstawie parametrów meteorologicznych oraz zakresu prędkości wiatru. W sumie występuje 36 sytuacji meteorologicznych. W tabeli 2.2. zostały zestawione stany równowagi atmosferycznej, odpowiadające im prędkości oraz parametry meteorologiczne. Najwyższe wartości wyniesienie gazów odlotowych Δ h

 $^{^1\,\}Delta h_H$ – wyniesienia gazów odlotowych według formuły Hollanda

 $^{^{2}\}Delta h_{C}$ – wyniesienie gazów odlotowych według formuły CONCAWE

odnotowano dla stanu równowagi atmosferycznej silnie chwiejnej (1). Natomiast najniższe wartości Δ h uzyskano dla stałego (6) stanu równowagi atmosferycznej. Podsumowując, wartości wyniesienia gazów odlotowych ulegają zmniejszeniu wraz z zmianą stanu równowagi w kolejności od (1) do (6) przy założeniu stałej prędkości wiatru na wysokości anemometru, stałej wysokości i średnicy emitora oraz przy stałej prędkości i temperaturze gazów odlotowych [4, 9].

Wykres 2.1. Zależność pomiędzy wyniesieniem gazów odlotowych i emisją ciepła z emitora (h = 120m, v = 10 m/s, Cp = 1,3 kJ/($m^3 \cdot K$), d = 4 m, T = 100°C)

Następnym czynnikiem decydującym o wartości wyniesienia gazów odlotowych jest prędkość gazów odlotowych na wylocie z emitora v. W przypadku gdy prędkość gazów odlotowych jest dwukrotnie mniejsza od prędkości wiatru na wysokości wylotu z emitora przyjmuje się, że wysokość wyniesienia gazów odlotowych ponad wylot z emitora równa się zero. Oznacza to, że w przypadku wystąpienia bardzo silnych wiatrów w strefie wylotu gazów odlotowych, smuga dymu będzie rozprzestrzeniać się na wysokości emitora. Wartość wysokości wylotu spalin z emitora. Zależność pomiędzy wyniesieniem gazów odlotowych i prędkością wylotową gazów przedstawiono na wykresie 2.2. Również w tym przypadku zaobserwowano, że stosunek prędkości gazów przy wylocie z emitora do wyniesienia gazów odlotowych przyjmuje różne

wartości dla różnych zakresów wartości emisji ciepła Q. Dla wartości Q > 24 000 kJ/s ww. zależność wykazuje stopniowy wzrost wartości, natomiast dla zakresu Q od 16 000 do 24 000 kJ/s wartość stosunku v do Δ h stopniowo maleje z jednoczesnym wzrostem wartości emisji ciepła Q. W sytuacji, gdy wartość Q < 16 000 kJ/s wielkość zaproponowanego stosunku przyjmuje stałą wartość w zakresie prędkości od 1,2 m/s do 10,7 m/s. Oznacza to, że zmiana wysokości wyniesienia gazów odlotowych jest wprost proporcjonalny do zmiany prędkości gazów odlotowych przy wylocie z emitora [9].

	Stan równowagi atmosferycznej							
Stała	Silnie	Chwiejna	Lekko	Obojętna	Lekko	Stała		
	chwiejna (1)	(2)	chwiejna (3)	(4)	stała (5)	(6)		
m	0,080	0,143	0,196	0,270	3,363	0,440		
а	0,888	0,865	0,845	0,818	0,784	0,756		
b	1,284	1,108	0,978	0,822	0,660	0,551		
g	1,692	1,781	1,864	1,995	2,188	2,372		
C ₁	0,213	0,218	0,224	0,234	0,251	0,271		
C ₂	0,815	0,771	0,727	0,657	0,553	0,457		
Zakres								
prędkości	1 - 3	1 - 5	1 - 8	1 - 11	1 -5	1 -4		
u _a [m/s]								

Tabela 2.2. Zestawienie stanów równowagi atmosferycznej z odpowiadającymi im stałymi meteorologicznymi i zakresami prędkości wiatru [9]

Czynnikami decydującymi o wartości prędkości gazów odlotowych przy wylocie z emitora są średnica emitora i strumień objętości spalin. Zmniejszenie średnicy wewnętrznej emitora powoduje wzrost prędkości gazów odlotowych v, a w konsekwencji zwiększenie wysokości wyniesienia gazów odlotowych. Natomiast zmniejszenie wartości strumienia objętości spalin spowoduje spadek prędkości gazów odlotowych wywołując obniżenie wysokości wyniesienia gazów odlotowych [9].

Czynnikiem decydującym o wyniesieniu gazów odlotowych jest również prędkość wiatru na wysokości wylotu z emitora u_h . Wraz z spadkiem prędkości wiatru następuje wzrost wartości wyniesienia gazów odlotowych. Prędkość wiatru na wysokości wylotu z emitora oblicza się w zależności od wysokości emitora H. W przypadku gdy H \leq 300 m stosuje się wzór (2.2). Natomiast według wzoru (2.3) prowadzi się obliczenia prędkości wiatru na wysokości wylotu z emitora gdy H > 300 m [9].

$$u_h = u_a \cdot \left(\frac{h}{h_a}\right)^m \tag{2.2}$$

$$u_h = u_a \cdot \left(\frac{300}{h_a}\right)^m \tag{2.3}$$

gdzie:

u_h – prędkość wiatru na wysokości wylotu z emitora [m/s],

ua – prędkość wiatru na wysokości anemometru [m/s],

 h_a – wysokość anemometru (w metodyce referencyjnej h_a = 14) [m].

Wykres 2.2. Zależność pomiędzy wyniesieniem gazów odlotowych i prędkością wylotową gazów (h = 120 m, d = 4 m, $C_p = 1,3 \text{ kJ/(m^3 \cdot K)}, T = 150^{\circ}C, m = 0,08)$

3. Założenia i zakres projektu

W nowopowstającej instalacji termicznego przekształcania odpadów spalane będzie 220 000 Mg odpadów komunalnych w ciągu roku. Proces spalania prowadzony będzie w piecu rusztowym. Instalacja pracować będzie przez 7800 h/rok [5]. Charakterystykę właściwości palnych odpadów komunalnych zestawiono w tabeli 2.1. Właściwości palne odpadów komunalnych zostały opracowane na podstawie [6, 7]. Proces spalania w instalacji unieszkodliwiania odpadów komunalnych odbywa się z nadmiarem powietrza $\lambda = 2,0$. Nadmiar powietrza spalania uwzględnia sumę powietrza pierwotnego i wtórnego dostarczonego do komory paleniskowej. Wilgotność powietrza atmosferycznego dostarczanego do komory spalania wynosi x = 0,014 kg H₂O/kg suchego powietrza. Temperatura gazów odlotowych przy wylocie z emitora wynosi T = 397 K [5].

Pozostałe dane, które wykorzystano w obliczeniach [2, 5, 8]:

- objętość molowa w warunkach normalnych: V_u = 22,4 m3/kmol (p_u = 101,3 kPa; T_u = 273 K),
- średnia roczna temperatura powietrza: 281,5 K,
- współczynnik szorstkości aerodynamicznej podłoża z₀ = 1,0 m,
- ciepło właściwe gazów odlotowych $C_p = 1,3 \text{ Kj/(m^3*K)}.$

Założono, że odpady komunalne ulegać będą całkowitemu i zupełnemu spalenie w piecu rusztowym. Instalacja wyposażona będzie w wielostopniowy system oczyszczania spalin, który zredukuje zawartość zanieczyszczeń substancji pyłowych i gazowych co najmniej do poziomu wymaganego standardami emisyjnymi.

Minimalna wysokość rozpatrywanych wariantów emitora wynosi 60 m, a maksymalna 100 m. Prędkość gazów przepływających przez przewód powinna zawierać się zakresie od 9 do 18 m/s. Liniowe straty ciśnienia powinny być jak najniższe.

Przyjęto, że najwyższe ze stężeń maksymalnych S_{mm} , uśrednione dla jednej godziny i maksymalne stężenia jednogodzinne S_1 w receptorach obliczeniowych nie mogą przekraczać 40 % wartości odniesienia substancji w powietrzu D_1 , uśrednionego dla jednej godziny. Ponadto percentyle (99,726 dla dwutlenku siarki oraz 99,8 dla pozostałych substancji) ze stężeń maksymalnych jednogodzinnych S_p w receptorach obliczeniowych nie mogą przekraczać 20 % wartości odniesienia substancji w

powietrzu D_1 , uśrednionego dla jednej godzimy. Stężenie substancji w powietrzu S_a , uśrednione dla roku w receptorach obliczeniowych nie może przekraczać 10 % wartości odniesienia substancji w powietrzu D_a , uśrednionej dla roku.

Tabela	3.1.	Charakterystyka	właściwości	chemicznych	odpadów	komunalnych
(opraco	wani	e własne na podsta	wie [6, 7])			

Składniki paliwa	Jednostka	Udziały masowe wyrażone w procentach			
Wilgotność	[%]	32,7			
Części palne	[%]	39,2			
Części niepalne	[%]	28,1			
Analiza chemiczna części palnych					
Węgiel C	[%]	19,7			
Wodór H	[%]	4,5			
Azot N	[%]	0,7			
Siarka S	[%]	0,05			
Chlor Cl	[%]	0,25			
Tlen O	[%]	14			

Tabela 3.2. Masy molowe pierwiastków, związków chemicznych wykorzystanych	W
obliczeniach (opracowanie własne)	

Pierwiastek	M [kg/kmol]	Pierwiastek	M [kg/kmol]
Węgiel C	12,01	Dwutlenek węgla CO ₂	44,01
Azot N	14,008	Azot N ₂	28,016
Wodór H	1,008	Woda H ₂ 0	18,016
Siarka S	32,065	Dwutlenek siarki SO ₂	64,066
Chlor Cl	35,457	Chlorowodór HCl	36,465
Tlen O	16	Tlen O ₂	32

W projekcie przeprowadzono następujące obliczenia:

- obliczono objętość spalin powstających w wyniku procesu termicznego przekształcania odpadów,
- wykonano obliczenia objętości gazów odlotowych po procesie oczyszczania spalin,
- wykonano obliczenia strumienia objętości spalin,
- obliczono średnią prędkość gazów w przewodzie i określono wymiary wariantów emitora,
- określono wielkość emisji substancji gazowych i pyłowych do środowiska na podstawie standardów emisyjnych,

- przeprowadzono obliczenia rozprzestrzenia się zanieczyszczeń gazowych i pyłowych w powietrzu,
- wykonano analizę zmienności stężeń S_m³ w zależności od sytuacji meteorologicznych w których występują,
- wykonano obliczenia liniowych strat ciśnienia.

 $^{^3}$ S_m – stężenie maksymalnej substancji gazowej w powietrzu dla określonej sytuacji meteorologicznej [$\mu g/m^3$].

4. Obliczenie objętości spalin powstający podczas procesu termicznego przekształcania odpadów komunalnych

4.1 Metodyka obliczania objętości spalin w warunkach umownych

Objętość powstających spalin obliczono przy założeniu procesu całkowitego i zupełnego spalania części palnych odpadów komunalnych. Ponadto przyjmuje się, że cała wilgoć zawarta w odpadach komunalnych przejdzie w stan pary wodnej. Metodykę opracowano na podstawie literatury [10].

$$V_{s.u.} = V_{co_2} + V_{H_20} + V_{SO_2} + V_{O_2} + V_{N_2} + V_{HCl}$$
(4.1)

$$V_{s.u.} = V_{s.u} - V_{H_2O} \tag{4.2}$$

gdzie:

V'_u – objętość spalin wilgotnych w warunkach umownych [m³/kg paliwa],

 V'_u – objętość spalin suchych w warunkach umownych [m³/kg paliwa],

 V_{CO2} – objętość dwutlenku węgla w spalinach w warunkach umownych [m³ CO₂/kg paliwa],

 V_{H2O} – objętość pary wodnej w spalinach w warunkach umownych [m³ H₂O/kg paliwa],

 V_{SO2} – objętość dwutlenku siarki w spalinach w warunkach umownych [m³ SO₂/kg paliwa],

V₀₂ – objętość tlenu w spalinach w warunkach umownych [m³/kg paliwa],

 V_{N2} – objętość azotu w spalinach w warunkach umownych [m³/kg paliwa],

 V_{HCl} – objętość chlorowodoru w spalinach w warunkach umownych [m³/kg paliwa].

$$V_{CO_2} = \frac{V_u}{M_C} \cdot C^r \tag{4.3}$$

gdzie:

 V_{CO2} – objętość dwutlenku węgla w spalinach w warunkach umownych [m³ CO₂/kg paliwa],

V_u – objętość molowa w warunkach umownych [m³/kmol],

M_C – masa molowa węgla [kg/kmol],

Cr – procentowy udział masowy węgla w spalanym paliwie [%].

$$V_{SO_2} = \frac{V_u}{M_s} \cdot S^r \tag{4.4}$$

gdzie:

 V_{SO2} – objętość dwutlenku siarki w spalinach warunkach umownych [m³ SO₂/kg paliwa],

 V_u – objętość molowa w warunkach umownych [m³/kmol],

M_S – masa molowa siarki [kg/kmol],

S^r – procentowy udział masowy siarki w spalanym paliwie [%].

$$V_{HCl} = 2 \cdot \left(\frac{V_u}{M_{Cl_2}} \cdot Cl^r \right)$$
(4.5)

gdzie:

 V_{HCl} – objętość chlorowodoru w spalinach w warunkach umownych [m³ HCl/kg paliwa],

V_u – objętość molowa w warunkach umownych [m³/kmol],

 M_{C12} – masa molowa chloru [kg/kmol],

Cl^r – procentowy udział masowy chloru w spalanym paliwie [%].

$$V_{H_2O} = V_u \cdot \left(\frac{W_t^r}{M_{H_2O}} + \frac{(H^r - H_{HCl}^r)}{M_{H_2}}\right) + V_{H_2O}^p$$
(4.6)

gdzie:

 $V_{\rm H20}-$ objętość pary wodnej w spalinach w warunkach umownych

 $[m^3 CO_2/kg paliwa],$

V_u – objętość molowa w warunkach umownych [m³/kmol],

W^r_t – wilgotność paliwa [%],

 $M_{H2O}-masa$ molowa wody [kg/kmol],

 M_{H2} – masa molowa wodoru [kg/kmol],

H^r – procentowy udział masowy wodoru w spalanym paliwie [%],

 V_{H2O}^{p} – Objętość pary wodnej wprowadzonej z powietrzem wilgotnym do komory spalania w warunkach umownych [m³ H₂O/kg paliwa],

H^r_{HCl} – Procentowy udział masowy wodoru reagującego z chlorem [%]:

$$H_{HCl}^{r} = \frac{m_{H_{2}} \cdot 100\%}{m_{p}}$$
(4.7)

gdzie:

m_p – masa spalanego paliwa [kg],

 $m_{H_{\gamma}}$ – masa wodoru reagującego z chlorem [kg/kg paliwa]:

$$m_{|H_2} = \left(\frac{0.5 \cdot V_{HCL}}{V_u}\right) \cdot M_{|H_2} \tag{4.8}$$

gdzie:

 V_{HCl} – objętość chlorowodoru w spalinach w warunkach umownych [m³ HCl/kg paliwa],

 V_u – objętość molowa w warunkach umownych [m³/kmol],

M_{H2} – masa molowa wodoru [kg/kmol].

$$V_{H,O}^{p} = 1, 6 \cdot x \cdot V \tag{4.9}$$

gdzie:

 V^{p}_{H2O} – Objętość wody wprowadzona z powietrzem wilgotnym do komory spalania w warunkach umownych [m³ H₂O/ kg paliwa],

x – wilgotność powietrza atmosferycznego [kg H2O/kg powietrza suchego],

V – całkowite powietrze dostarczone do komory spalania w warunkach umownych [m³/kg paliwa]:

$$V = \lambda \cdot V_0 \tag{4.10}$$

gdzie:

 λ – stosunek nadmiaru powietrza,

V₀ – teoretyczna ilość powietrza dostarczona do komory spalania [m³/kg paliwa]:

$$V_0 = \frac{100}{21} \cdot O_t \tag{4.11}$$

gdzie:

 O_t – tlen teoretyczny [m³ O_2 /kg paliwa]:

$$O_{t} = V_{u} \cdot \left(\frac{C^{r}}{M_{c}} + \left(0, 5 \cdot \frac{\left(H^{r} - H^{r}_{HCl}\right)}{M_{H_{2}}}\right) + \frac{S^{r}}{M_{s}} - \frac{O^{r}}{M_{O_{2}}}\right)$$
(4.12)

gdzie:

Ot - tlen teoretyczny [m³ O₂/kg paliwa],

 V_u – objętość molowa w warunkach umownych [m³/kmol],

C^r – procentowy udział masowy węgla w spalanym paliwie [%],

S^r – procentowy udział masowy siarki w spalanym paliwie [%],

H^r – procentowy udział masowy chloru w spalanym paliwie [%],

O^r – procentowy udział masowy tlenu w spalanym paliwie [%],

H^r_{HCl} - procentowy udział masowy wodoru reagującego z chlorem [%],

 M_{H2} – masa molowa wodoru [kg/kmol],

M_S – masa molowa siarki [kg/kmol],

 M_C-masa molowa węgla [kg/kmol].

 M_{O2} – masa molowa tlenu [kg/kmol].

$$V_{O_2} = O_t (\lambda - 1) \tag{4.13}$$

gdzie:

 V_{o_2} - objętość tlenu w spalinach w warunkach umownych [m³ O₂/kg paliwa],

 O_t – tlen teoretyczny [m³ O₂/kg paliwa],

 λ – stosunek nadmiaru powietrza.

$$V_{N_2} = \frac{V_u}{M_{N_2}} \cdot N^r + 0.79 \cdot \lambda \cdot V_0 \tag{4.14}$$

gdzie:

 V_{N2} – objętość azotu w spalinach w warunkach umownych [m³ SO₂/kg paliwa],

V_u – objętość molowa w warunkach umownych [m³/kmol],

M_{N2} – masa molowa azotu [kg/kmol],

N^r – procentowy udział masowy azotu w spalanym paliwie [%],

 λ – stosunek nadmiaru powietrza,

. . .

 V_0 – teoretyczna ilość powietrza dostarczona do komory spalania [m³/kg paliwa].

4.2 Obliczenia objętości spalin w warunkach umownych

.. /

Wyniki wykonanych obliczeń objętości spalin powstających wyniku spalenia jednego kilograma paliwa (odpadów komunalnych) według wyżej opisanej metodyki przedstawiono w tabeli 4.1. Pomocnicze wyniki przeprowadzonych obliczeń zostały zestawione w tabeli 4.2.

1 abela 4.1. Zestawienie	wynikow	obliczen	objętosci s	spaiin (opracowanie	wiasne)

. ..

Skład paliwa	Udziały masowe w [%]	Skład spalin	V _{i.u} [m3/kg paliwa]	V ['] _{s.u} [m3/kg paliwa]	V _{s.u.} [m3/kg paliwa]
С	0,197	CO_2	0,3678		
S	0,0005	SO_2	0,0003496		
Cl	0,0025	HCl	0,001581		
0	0,14	O ₂	0,5198	5,824	4,806
Н	0,045	ЧО	1.018		
W ^r _t	0,007	1120	1,010		
Ν	0,392	N_2	3,917		

Tabela	4.2.	Zestawienie	wyników	pośrednich	obliczeń	objętości	spalin
(opraco	wanie	własne)					

Parametr	Wartość	Jednostka
m _{H2}	0,00007107	kg
H_{cl}^r	0,007107	%
$V_P^{H_2O}$	0,1109	m3/kg
V	4,951	m3/kg
\mathbf{V}_0	2,476	m3/kg
Ot	0,5198	m3/kg

5. Obliczenie objętości gazów odlotowych po procesie oczyszczania spalin

Gazy powstające po procesie termicznego przekształcania odpadów komunalnych przechodzą przez wielostopniowy system oczyszczania spalin [6]. Znajdujące się w nich zanieczyszczenia muszą ulegać redukcji co najmniej do poziomu wymaganego przez *Rozporządzenie Ministra Środowiska z dnia 22 kwietnia 2011 w sprawie standardów emisyjnych z instalacji.* Wyniku redukcji emisji zanieczyszczeń strumień objętości spalin ulegnie zmniejszeniu.

Obliczenia redukcji emisji zanieczyszczeń przeprowadzono dla dwutlenku siarki i chlorowodoru. Standard emisyjny średniodobowy dla dwutlenku siarki w spalinach suchych przy standardowej zawartości tlenu wynosi 50 μg/m3. Natomiast średniodobowy standard emisyjny dla chlorowodoru w spalinach suchych przy standardowej zawartości tlenu wyrażonej w procentach objętościowych wynosi 10 μg/m3 [8].

5.1 Metodyka wykonywania obliczeń objętości gazów odlotowych po procesie oczyszczania spalin

Poniższą metodykę wykonywania obliczeń objętości spalin po procesie oczyszczania gazów odlotowych opracowano na podstawie literatury [2, 4, 8].

$$V_{i.u.o.} = \frac{(100\% - \varphi) * V_{i.u}}{100\%}$$
(5.1)

gdzie:

 $V_{i.u.o}$ – objętość i-tego składnika spalin oczyszczonych w warunkach umownych [m³/kg paliwa],

V_{i.u.} – objętość i-tego składnika gazów warunkach umownych [m³],

 ϕ – stopień redukcji zanieczyszczeń gazowych [%]:

$$\varphi = \left(1 - \frac{S_r}{S}\right) \cdot 100\% \tag{5.2}$$

gdzie:

S – stężenie masowo-objętościowe substancji w spalinach w warunkach umownych przy standardowej zawartości tlenu $[mg/m^3]$,

 S_r – stężenie masowo-objętościowe substancji w spalinach w warunkach umownych przy rzeczywistej zawartości tlenu [mg/m³]:

$$S_r = S \cdot \frac{21 - O_2}{21 - O_1} \tag{5.3}$$

gdzie:

S – stężenie masowo-objętościowe substancji w spalinach w warunkach umownych przy standardowej zawartości tlenu [mg/m³],

 S_r – stężenie masowo-objętościowe substancji w spalinach w warunkach umownych przy rzeczywistej zawartości tlenu [mg/m³],

O1 - standardowa zawartość tlenu w gazach odlotowych [%],

 O_2 – rzeczywista zawartość tlenu w gazach odlotowych [%].

$$S_i = \frac{C_{\% obj.}}{100\%} \cdot \frac{M}{V_u} \tag{5.4}$$

gdzie:

 S_i – stężenie masowo-objętościowe i-tego składnika gazów odlotowych w warunkach umownych [kg/m³],

V_u – objętość molowa gazu w warunkach umownych [m³/kmol],

M – masa molowa substancji [kg/kmol],

 $C_{\% obj.}$ – stężenie objętościowe [%obj]:

$$C_{\% obj.} = \frac{V_{i.u.}}{V_{s.u.}} \cdot 100\%$$
(5.5)

gdzie:

$$\label{eq:Vi.u} \begin{split} V_{i.u.} &- objętość \ i-tego \ składnika \ gazów \ warunkach \ umownych \ [m^3/kg \ paliwa], \\ V_{s.u.} &- objętość \ spalin \ suchych \ warunkach \ umownych \ w \ [m^3/kg \ paliwa]. \end{split}$$

5.2 Wyniki obliczeń objętości spalin oczyszczonych

Na podstawie wyników obliczeń stwierdzono, że zawarte zanieczyszczenia w gazach odlotowych nieznacząco wpływają na objętość spalin. Wyniki stopnia redukcji emisji zanieczyszczeń zestawiono w tabeli 5.1 a w tabeli 5.2 zestawiono wyniki objętości spalin oczyszczonych w warunkach umownych.

Tabela 5.1. Zestawienie wyników obliczeń stopnia redukcji emisji zanieczyszczeń gazowych (opracowanie własne)

Rodzaj spalin	V _{i.u} [m3/kg paliwa]	C _{%obj.s} ⁴ [%]	$S_i [mg/m^3]$	S _r [mg/m ³]	φ [%]
SO ₂	0,0003496	0,007274	207,847	50,921	75,5
HCl	0,00158	0,03289	534,932	10,184	98,1

Tabela 5.2. Zestawienie wyników obliczeń objętości spalin oczyszczonych(opracowanie własne)

Skład spalin	V _{i.u.o} [m ³ /kg paliwa]	V _{s.u.o} [m3/kg paliwa]	C _{%obj.s.0} ⁵ [%]
CO ₂	0,3678		7,654
SO ₂	0,00008565		0,001783
HC1	0,0000301	1 205	0,0006264
O ₂	0,5198	4,005	10,82
H ₂ 0	1,018		-
N_2	3,917		81,523

⁴ C_{%obj.s} – stężenie objętościowe spalin suchych nieoczyszczonych [%obj]

⁵ C_{%obj.s.o} - stężenie objętościowe spalin suchych oczyszczonych [%obj]

6. Obliczenie strumienia objętości spalin

W celu określenia emisji substancji pyłowych i gazowych do środowiska obliczono strumień objętości spalin suchych odniesiony do warunków umownych. Natomiast w celu określenia prędkości przepływu gazów odlotowych w emitorze wykonano obliczenia strumienia objętości spalin wilgotnych w odniesieniu do warunków rzeczywistych. Metodykę wykonywania obliczeń strumienia objętości spalin w odniesieniu do ww. warunków opracowano na podstawie literatury [3, 6].

$$\dot{V}'_{s.rz.o.} = \frac{T \cdot \dot{V}'_{s.u.o}}{T_u}$$
 (6.1)

gdzie:

 $\dot{V}'_{s.rz.o}$ – strumień objętości spalin wilgotnych, oczyszczonych w warunkach rzeczywistych [m³/h],

T - temperatura gazów odlotowych na wylocie z emitora [K],

T_u – temperatura gazów odlotowych w warunkach umownych [K],

 $\dot{V}'_{s.u.o}$ – strumień objętości spalin wilgotnych, oczyszczonych w warunkach umownych [m³/h]:

$$\dot{V}'_{s.u.o} = \dot{m}_{p} \cdot V'_{s.u.o}$$
 (6.2)

$$\dot{V}_{s.u.o} = \dot{m}_p \cdot V_{s.u.o} \tag{6.3}$$

gdzie:

 $\dot{V}_{s.u.o}$ – strumień objętości spalin suchych, oczyszczonych w warunkach umownych [m³/h],

V' $_{s.u.o}$ – objętość spalin wilgotnych oczyszczonych w warunkach umownych $[m^3/kg paliwa]$,

 $V_{s.u.o}$ – objętość spalin suchych oczyszczonych w warunkach umownych [m³/kg paliwa],

 \dot{m}_p – strumień masy spalanych odpadów [kg/h]:

$$\dot{m}_p = \frac{m_p}{\tau} \tag{6.4}$$

gdzie:

m_p – masa spalanych odpadów [kg/rok],

 τ – czas pracy instalacji [h/rok].

Wyniki przeprowadzonych obliczeń według wzorów (6.1 - 6.4) zestawiono w tabelach 6.1 i 6.2. W tabeli 6.1. zestawiono wyniki obliczeń rzeczywistego strumienia objętości spalin, a w tabeli 6.2. zestawiono wyniki obliczeń spalin suchych w warunkach umownych przy rzeczywistej zawartości tlenu.

Tabela 6.1. Zestawienie wyników obliczeń rzeczywistego strumienia objętości spalin (opracowanie własne)

Rodzaj spalin	V _{i.u.o} [m ³ /kg paliwa]	V' _{s.u.o} [m ³ /kg paliwa]	ṁ _p [kg/h]	∇΄ _{s.u.o} [m³/h]	ν΄ _{s.rz.o} [m³/h]	V΄ _{s.rz.o} [m³/s]
CO ₂	0,3678					
SO ₂	0,00008565			164211,006	238797,690	66,333
HCl	0,0000301	5 822	28205 128			
O ₂	0,5198	5,822	20203,120			
H ₂ 0	1,018					
N ₂	3,917					

Tabela	6.2.	Zestawienie	wyników	obliczeń	strumienia	objętości	spalin	suchych	W
warunk	ach	umownych p	orzy rzeczy	wistej za	wartości tle	nu (oprac	owanie	własne)	

Rodza	ij spalin	V _{i.u.o} [m ³ /kg paliwa]	V _{s.u.o} [m ³ /kg paliwa]	ḿ _p [kg/h]	$\dot{V}_{s.u.o}$ [m ³ /h]
C	CO_2	0,3678			
S	O_2	0,00008565			
H	ICI	0,0000301	1 205	20205 120	125512 522
	O_2	0,5198	4,005	20203,120	155512,555
H	H ₂ 0	1,018			
]	N_2	3,917			

7. Obliczenie średniej prędkości gazu w przewodzie oraz określenie wariantów emitora

Obliczenia prędkości gazów odlotowych przeprowadzono według poniższego wzoru (7.1) opracowanego na podstawie literatury [2].

$$w = \frac{\dot{V}'_{s.rz.o}}{\pi \cdot \left(\frac{d}{2}\right)^2}$$
(7.1)

gdzie:

w - średnia prędkość gazu przepływającego przez emitor [m/s],

d - średnica wewnętrzna emitora [m],

 $\dot{V}'_{s.rz.o}$ – strumień objętości gazów odlotowych oczyszczonych w warunkach rzeczywistych [m³/h].

Na podstawie wykonanych obliczeń prędkości gazów odlotowych stwierdzono, że dla wymiarów średnic zawierających się w zakresie od 2,2 m do 3 m jest spełniony warunek założonego zakresu prędkości (9 - 18 m/s). W celu ograniczenia liczby wariantów emitora przyjęto trzy warianty wymiarów średnicy oraz pięć wariantów wysokości emitora. Ustalone warianty geometryczne emitora wraz z odpowiadającymi i prędkościami gazu w przewodzie zestawiono w tabeli 7.1.

Warianty Emitora	h [m]	d [m]	w [m/s]
1.1	60	3	9,384
1.2	60	2,6	12,494
1.3	60	2,2	17,45
2.1	70	3	9,384
2.2	70	2,6	12,494
2.3	70	2,2	17,45
3.1	80	3	9,384
3.2	80	2,6	12,494
3.3	80	2,2	17,45
4.1	90	3	9,384

Tabela	7.1	Zestawienie	wariantów	emitora	oraz	prędkości	gazów	odlotowych
(opraco	wan	ie własne)						

Tabela 7.1 Zestawienie wariantów emitora oraz prędkości gazów odlotowych (ciąg dalszy)

Warianty Emitora	h [m]	d [m]	w [m/s]
4.2	90	2,6	12,494
4.3	90	2,2	17,45
5.1	100	3	9,384
5.2	100	2,6	12,494
5.3	100	2,2	17,45

8. Określenie emisji substancji pyłowych i gazowych

Standardy emisyjne dla nowopowstałych instalacji spalania odpadów oraz niektórych instalacji współspalania zostały określone w załączniku nr 5 do Rozporządzenia Ministra Środowiska z dnia 22 kwietnia 2011 r. w sprawie standardów emisyjnych z instalacji. Standardy emisyjne zestawiono w tabeli 8.1.

Lp.	Nazwa substancji	Standardy emisyjne w [mg/m ³ _u] (dla dioksyn i furanów [ng/m ³ _u] przy 11% zawartości tlenu w gazach odlotowych				
		Średnie	Średnie trzydz	ziestominutowe		
		dobowe	А	В		
1	Pył ogółem	10	30	10		
2	Substancje organiczne w postaci par gazów wyrażone jak całkowity węgiel organiczny	10	20	10		
3	Chlorowodór	10	60	10		
4	Fluorowodór	1	4	2		
5	Dwutlenek siarki	50	200	50		
6	Tlenek węgla	50	100	150^{6}		
7	Tlenek azotu i dwutlenek azotu z istniejących instalacji o zdolności przerobowej większej niż 6 Mg odpadów w ciągu godziny lub z nowych instalacji Tlenek azotu i dwutlenek azotu z istniejących instalacji o zdolności przerobowej do 6 Mg odpadów w	200	400	-		
8	Metale ciężkie i związki wyrażone jako metal Kadm + tal Rtęć Antymon + arsen + ołów + chrom +	Średnie z pról	by o czasie trwar do 8 godzin 0,05 0,05	nia od 30 minut		
	kobalt + miedź + mangan + nikiel + wanad		0,5			
9	Dioksyny i furany	Średnia z pr	óby o czasie trwa godzin 0,1 ⁷	ania od 6 do 8		

[8]

⁶ wartość średnia dziesięciominutowa

⁷ jako suma iloczynów stężeń dioksyn i furanów w gazach odlotowych oraz ich współczynników równoważności toksycznej

Standardy emisyjne stanowią punkt wyjścia w ocenie wielkości emisji dla nowo projektowanych instalacji spalania i współspalania odpadów, a zatem dla najbardziej niekorzystnego wariantu emisyjnego [1]. Standardy emisyjne zestawione w tabeli 8.1 zostały określone w warunkach umownych tj. w temperaturze 273 K, ciśnienie 101,3 kPa oraz w odniesieniu do 11% zawartości tlenu w spalinach [8]. W celu określenia emisji rocznej substancji emitowanych z procesu spalania odpadów komunalnych należy przeliczyć stężenia masowo-objętościowego przy standardowej zawartości tlenu ($O_2 = 11\%$) na stężenie przy rzeczywistej zawartości tlenu w spalinach suchych [4, 8]. Stężenia masowo-objętościowe przy standardowej zawartości tlenu S przeliczono na stężenie tlenu na stężenie przy rzeczywistej zawartości S_r według wzoru (5.3).

W przypadku wykonywania obliczeń emisji danego zanieczyszczenia w gazach odlotowych dla substancji posiadających określony średni 30-minutowy standard emisyjny S_{d30} , wydzielono okres emisji maksymalnej E_1 (na poziomie standardu 30 minutowego). Okres ten nie może trwać dłużej niż 3 % czasu pracy instalacji w roku kalendarzowym. Wydzielono również okres emisji średniej E_2 , trwający co najmniej przez 97 % czasu pracy instalacji w roku kalendarzowym. Wielkość emisji E_2 określono tak, aby średnia emisja roczna E_{sr} którą obliczono na podstawie ww. okresów emisji nie przekraczała średniodobowego standardu emisyjnego S_{d24} [1, 8]:

$$E_{2} = \frac{E_{sr} \cdot (\tau_{1} + \tau_{2}) - E_{1} \cdot \tau_{1}}{\tau_{2}}$$
(8.1)

gdzie:

$$E_{sr.} = S_{d24} \cdot \dot{V}_{s.u.o} \cdot 10^{-6}$$
(8.2)

$$E_{1} = S_{d30} \cdot \dot{V}_{s,u,o} \cdot 10^{-6} \tag{8.3}$$

 E_2 – Emisja standardu średniodobowego S_{d24} pomniejszona o emisję maksymalną E_1 [kg/h],

Esr. – Emisja średnia (na poziomie standardu średniodobowego) [kg/h],

E₁ – Emisja maksymalna (na poziomie standardu 30-minutowego) [kg/h],

 S_{d24} – średnio dobowy standard emisyjny w warunkach umownych przy rzeczywistej zawartości O_2 [mg/m³],

 S_{d30} – średni 30-minutowy standard emisyjny w warunkach umownych przy rzeczywistej zawartości O_2 [mg/m³],

 τ_1 – czas występowania emisji standardu 30-minutowego (3% czasu w roku), τ_2 – czas występowania emisji standardu średniodobowego (97% czasu w roku), $\dot{V}_{su.o}$ – strumień objętości spalin suchych w warunkach umownych przy rzeczywistej zawartości O₂ [m³/h].

Dla tlenku węgla (CO) zostały określone trzy standardy emisyjne tj.: średniodobowy S_{d24} , 30-minutowy S_{d30} , oraz 10-minutowy S_{d10} standard emisyjny. Wartości owych standardów emisyjnych zostały określone w tabeli 8.1. Standard średniodobowy uznaję się za dotrzymany, gdy jego wartość nie jest przekraczana przez 97 % wartości średniodobowych dla czasu pracy instalacji w ciągu roku kalendarzowego. Natomiast standard 30-minutowy uznaje się za dotrzymany, gdy przez maksymalnie 3 % czasu w roku nie jest on przekraczany. Natomiast standard 10minutowy uznaje się za nieprzekroczony, gdy 95 % średnich 10-minutowych stężeń tej substancji w ciągu 24 godzin nie jest przekraczana [8].

Z uwagi na powyższy fakt, emisję średnią roczną $E_{sr,CO}$ można przyjąć na nieco wyższym poziomie niż wartość wynikającą ze standardu średniodobowego. Uwzględniając, że stężenia 10-minutowe i 30-minutowe wynoszą kolejno 150 i 100 μ g/m³, w przeciągu 30 minut dopuszczalne jest wystąpienie co najwyżej dwóch średnich 10-minutowych na poziomie maksymalnym przy założeniu, że trzecia średnia 10 minutowa będzie równa zero. Zatem dla określenia wielkości emisji rocznej dla instalacji termicznego przekształcania odpadów komunalnych, wystarczające jest uwzględnienie w obliczeniach tylko dwóch okresów emisji tj.: emisji ze standardu 30minutowego (S_{d30}) trwające maksymalnie 3 % czasu w roku i emisji ze standardu średniodobowego (S_{d24}) trwające minimum prze 97 % czasu w roku [1].

$$E_{sr.CO} = \frac{\left(S_{d30} \cdot \tau_1 + S_{d24} \cdot \tau_2\right) \cdot \dot{V}_{s.u.o}^{11\%} \cdot 10^{-6}}{\left(\tau_1 + \tau_2\right)}$$
(8.4)

gdzie:

E_{sr.CO} – Emisja średnia tlenku węgla [kg/h],

 S_{d24} – średnio dobowy standard emisyjny w warunkach umownych przy rzeczywistej zawartości O₂ [mg/m³],

 S_{d30} – średni 30-minutowy standard emisyjny w warunkach umownych przy rzeczywistej zawartości O₂ [mg/m³],

 $\dot{V}_{s.u.o}$ – strumień objętości spalin suchych w warunkach umownych przy rzeczywistej zawartości O₂ [m³/h].

Z kolei w przypadku metali ciężkich oraz dioksyn i furanów istniejące standardy emisyjne (jednakowe dla krótszych i dłuższych czasów uśredniania) nie mogą być przekraczane w okresie całego roku, stąd dla najbardziej niekorzystnego wariantu emisyjnego wystarczy przyjąć emisje na poziomie danego standardu, który trwa przez cały rok [1, 8].

Wyniki obliczeń emisji, przeprowadzono według wzorów (8.1 – 8.2) oraz (5.3). Uzyskane wyniki zestawiono w tabeli 8.2.

Substancia	S _{d24}	S _{d30}	E _{sr}	E ₁	E ₂	Erok
Substancju	[mg/m ³]	[mg/m ³]	[kg/h]	[kg/h]	[kg/h]	[Mg/rok]
Pył ogółem	10,18	30,54	1,37	4,139	1,294	10,76
Całkowity węgiel organiczny	10,18	20,36	1,37	2,759	1,337	10,76
HC1	10,18	61,081	1,37	8,277	1,166	10,76
HF	1,018	1,018 4,072 0,138		0,552	0,125	1,076
SO_2	50,901	203,602	6,898	27,591	6,258	53,802
СО	50,901	101,801	7,105	13,795	6,898	55,416
NO ₂	203,602	407,205	27,591	55,181	26,737	215,207
Cd+Ti	0,0509	-	0,006898	-	-	0,0538
Hg	0,0509	-	0,006898	-	-	0,0538
Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V	0,509	-	0,06898	-	-	0,538
Dioksyny i furany	0,0001018	-	0,0000138	-	-	0,0001076

Tabela 8.2. Zestawienie wyników emisji (opracowanie własne)

9. Zestawienie i analiza wyników obliczeń rozprzestrzeniania substancji gazowych i pyłowych w powietrzu

Obliczenia rozprzestrzenia zanieczyszczeń wykonano w programie EK100W. Program komputerowy wykonuje obliczenia w oparciu o referencyjną metodykę modelowania poziomów substancji w powietrzu zawartą w załączniku nr 3 do *Rozporządzenia Ministra Środowiska z dnia 26 stycznia 2010r w sprawie wartości odniesienia dla niektórych substancji w powietrzu*. Przyjęto siatkę obliczeniową o wymiarach 10000 x 10000 m. Emitor usytuowano w środku siatki obliczeniowej. Rozkład stężeń substancji pyłowych i gazowych obliczano w przyjętej siatce obliczeniowej w punktach receptorowych przy powierzchni terenu. W obliczeniach wykorzystano róże wiatrów dla aglomeracji krakowskiej. Za okres obliczeniowy przyjęto rok kalendarzowy.

Obliczenia rozprzestrzenia się zanieczyszczeń wykonano dla każdego rozpatrywanego wariantu emitora i dla następujących substancji: Pył zawieszony PM10, węglowodory alifatyczne – do C_{12} , chlorowodoru, fluoru, dwutlenku siarki, dwutlenku azotu, rtęci i dioksyn. Przyjęto, że obliczoną emisję pyłu ogółem i całkowitego węgla organicznego w obliczeniach rozprzestrzenia zanieczyszczeń traktujemy jako pył zawieszony PM10 i węglowodory alifatyczne do C_{12} . Ponadto na potrzeby przeprowadzenia obliczeń rozprzestrzeniania zanieczyszczeń emisję chlorowodoru przeliczono na emisję fluoru według stosunku mas molowych chloru do chlorowodoru.

Wykonano następujące obliczenia stężeń substancji w powietrzu:

- S_m stężenie maksymalne substancji gazowej w powietrzu w określonej sytuacji meteorologicznej wyrażone w μg/m³,
- S_{mm} najwyższe ze stężeń maksymalnych substancji w powietrzu w $\mu g/m^3$,
- S_1 stężenia maksymalne uśrednione dla godziny w receptorach obliczeniowych wyrażone w $\mu g/m^3$,
- S_p percentyle (99,726 dla SO₂ oraz 99,8 dla pozostałych substancji) ze stężeń maksymalnych jednogodzinnych w receptorach obliczeniowych wyrażone w $\mu g/m^3$,
- S_a stężenie substancji w powietrzu uśrednione dla roku w $\mu g/m^3$.

9.1 Zestawienie wyników obliczeń rozprzestrzenia zanieczyszczeń gazowych i pyłowych

Kompletne zestawienie uzyskanych wyników rozkładu stężeń substancji w powietrzu atmosferycznym przedstawiono w załączniku nr 5 do niniejszej pracy. Najważniejsze wyniki wykonanych obliczeń przedstawiono w tabelach 9.1. – 9.4., w których zestawiono wyniki najwyższych z stężeń maksymalnych substancji (S_{mm}) w powietrzu oraz maksymalne wartości stężeń S_1 (uśrednione dla jednej godziny), S_p (uśrednione dla jednej godziny) , S_a (uśrednione dla roku) obliczonych w punktach receptorowych dla rozpatrywanych wariantów emitora. Poniżej zostawiono oznaczenia wykorzystane w tabelach 9.1. – 9.4.

 $S_{1,max}$ – maksymalne z maksymalnych stężęń S_1 dla danego wariantu emitora [$\mu g/m^3$],

 $S_{p.max}$ – maksymalne z maksymalnych percentyli S_p dla danego wariantu emitora [µg/m³],

 $S_{a.max}$ – maksymalne z maksymalnych stężeń S_p dla danego wariantu emitora [$\mu g/m^3$],

 X_{mm} – odległość od emitora wystąpienia S_{mm} [m],

H_{mm} – efektywna wysokość wyniesienia gazów odlotowych [m],

PCDD – dioksyny wyrażone w [pg/m³],

 $C_{12} - \ we glow odory \ a lifaty czne - do \ C_{12} \ [\mu g/m^3].$

Wariant	h	d	v		S_{mm} [µg/m ³]						X _{mm}	$\mathbf{H}_{\mathbf{mm}}$		
emitora	[m]	[m]	[m/s]	PCDD	HCl	NO ₂	SO ₂	F	Pył	Hg	СО	C ₁₂	[m]	[m]
1.1	60	3	9,384	13,024	15,623	104,153	52,077	0,9894	3,906	0,01302	26,038	5,208	507,7	148,56
1.2	60	2,6	12,494	12,279	14,73	98,199	49,1	0,9329	3,682	0,01228	24,55	4,91	349,35	106,92
1.3	60	2,2	17,45	11,52	13,819	92,129	46,065	0,8752	3,455	0,01152	23,032	4,607	362,69	110,53
2.1	70	3	9,384	11,664	13,992	93,282	46,641	0,8861	3,498	0,01166	23,32	4,664	539,5	156,63
2.2	70	2,6	12,494	10,952	13,138	87,588	43,794	0,8321	3,285	0,01095	21,897	4,379	560,7	161,8
2.3	70	2,2	17,45	10,08	12,092	80,616	40,308	0,7658	3,023	0,01008	20,154	4,031	588,39	168,86
3.1	80	3	9,384	10,473	12,563	83,752	41,876	0,7956	3,141	0,01047	20,938	4,188	572,82	164,99
3.2	80	2,6	12,494	9,875	11,846	78,976	39,488	0,7502	2,962	0,00987	19,744	3,949	593,22	170,6
3.1	80	2,2	17,45	9,139	10,963	73,084	36,542	0,6943	2,741	0,00914	18,271	3,654	621,3	176,99
4.1	90	3	9,384	9,432	11,315	75,433	37,716	0,7166	2,829	0,00943	18,858	3,772	607,39	173,57
4.2	90	2,6	12,494	8,928	10,71	71,4	35,7	0,6783	2,678	0,00893	17,85	3,57	627,67	178,56
4.3	90	2,2	17,45	8,302	9,959	66,393	33,196	0,6307	2,490	0,0083	16,598	3,32	655,57	185,37
5.1	100	3	9,384	8,525	10,226	68,173	34,087	0,6476	2,557	0,00852	17,043	3,409	643,03	182,32
5.1	100	2,6	12,494	8,096	9,712	64,745	32,373	0,6151	2,428	0,00809	16,186	3,237	663,22	187,23
5.3	100	2,2	17,45	7,561	9,07	60,465	30,233	0,5744	2,267	0,00756	15,116	3,023	691	193,95

Tabela 9.1. Zestawienie wyników S_{mm} względem rozpatrywanych wariantów emitora (opracowanie własne)

Wariant	h	d	v				S _{1.ma}	_{ax} [µg/m ³]				
vv ar lant	[m]	[m]	[m/s]	PCDD	HCl	NO ₂	SO ₂	F	Pył	Hg	CO	C ₁₂
1.1	60	3	9,38	13,007	15,603	104,022	52,011	0,9882	3,901	0,013	7,542	1,508
1.2	60	2,6	12,49	12,072	14,482	96,544	48,272	0,9171	3,62	0,01207	7,355	1,471
1.3	60	2,2	17,45	10,815	12,974	86,494	43,247	0,8217	3,244	0,01081	7,098	1,420
2.1	70	3	9,38	11,497	13,792	91,948	45,974	0,8735	3,448	0,01149	7,080	1,416
2.2	70	2,6	12,49	10,612	12,73	84,863	42,432	0,8062	3,182	0,01061	6,901	1,380
2.3	70	2,2	17,45	9,443	11,328	75,521	37,760	0,7174	2,832	0,00944	6,643	1,329
3.1	80	3	9,38	10,01	12,008	80,052	40,026	0,7605	3,002	0,01001	6,594	1,319
3.2	80	2,6	12,49	9,299	11,155	74,364	37,182	0,7064	2,789	0,0093	6,419	1,284
3.1	80	2,2	17,45	8,834	10,597	70,646	35,323	0,6711	2,649	0,00883	6,170	1,234
4.1	90	3	9,38	9,012	10,811	72,071	36,035	0,6846	2,703	0,00901	6,095	1,219
4.2	90	2,6	12,49	8,674	10,406	69,372	34,686	0,659	2,601	0,00867	5,925	1,185
4.3	90	2,2	17,45	8,203	9,84	65,6	32,8	0,6232	2,46	0,00820	5,681	1,136
5.1	100	3	9,38	8,363	10,032	66,883	33,442	0,6354	2,508	0,00836	5,588	1,118
5.1	100	2,6	12,49	8,022	9,624	64,158	32,079	0,6095	2,406	0,00802	5,414	1,083
5.3	100	2,2	17,45	7,544	9,05	60,333	30,167	0,5731	2,263	0,00754	5,178	1,036

Tabela 9.2. Zestawienie maksymalnych z maksymalnych stężeń S_1 względem rozpatrywanych wariantów emitora (opracowanie własne)

Wariant	h	d	v				S _{p.n}	_{nax} [µg/m ³]				
vv ar fairt	[m]	[m]	[m/s]	PCDD	HCl	NO_2	SO ₂	F	Pył	Hg	СО	C ₁₂
1.1	60	3	9,38	11,716	5,038	46,342	11,896	0,3191	1,26	0,01171	11,955	2,317
1.2	60	2,6	12,49	11,088	4,842	44,145	11,098	0,3067	1,211	0,01108	11,241	2,207
1.3	60	2,2	17,45	9,904	4,582	40,983	10,359	0,2902	1,145	0,0099	10,409	2,049
2.1	70	3	9,38	9,906	3,899	40,881	10,344	0,2469	1,07	0,0099	10,546	2,044
2.2	70	2,6	12,49	9,465	3,591	37,618	9,547	0,2274	0,9873	0,00946	9,705	1,881
2.3	70	2,2	17,45	8,824	3,291	34,469	8,479	0,2084	0,8768	0,00882	8,892	1,723
3.1	80	3	9,38	8,798	2,903	35,449	8,397	0,1838	0,9028	0,0088	9,145	1,773
3.2	80	2,6	12,49	8,352	2,848	32,865	8,111	0,1804	0,8387	0,00835	8,479	1,643
3.1	80	2,2	17,45	7,757	2,795	31,012	7,69	0,177	0,7952	0,00776	7,905	1,551
4.1	90	3	9,38	7,783	2,61	30,579	7,643	0,1653	0,8112	0,00778	7,867	1,529
4.2	90	2,6	12,49	7,359	2,549	29,126	7,178	0,1614	0,7808	0,00736	7,514	1,456
4.3	90	2,2	17,45	6,743	2,448	26,763	6,758	0,1551	0,7376	0,00674	6,904	1,338
5.1	100	3	9,38	6,897	2,291	27,341	6,89	0,1451	0,7125	0,0069	7,053	1,367
5.1	100	2,6	12,49	6,451	2,219	26,148	6,47	0,1405	0,6835	0,00645	6,746	1,307
5.3	100	2,2	17,45	5,745	2,163	24,516	6,203	0,137	0,6415	0,00574	6,325	1,226

Tabela 9.3. Zestawienie maksymalnych z maksymalnych percentyli S_p względem rozpatrywanych wariantów emitora (opracowanie własne)

Wariant	h	d	V				S	_{a.max} [µg/m ³]]			
,, ui iuiiv	[m]	[m]	[m/s]	PCDD	HCl	NO ₂	SO ₂	F	Pył	Hg	СО	C ₁₂
1.1	60	3	9,38	0,6238	0,1247	2,494	0,6236	0,01185	0,06236	0,00004	0,6423	0,1247
1.2	60	2,6	12,49	0,5867	0,1173	2,346	0,5865	0,01114	0,05865	0,00003	0,6041	0,1173
1.3	60	2,2	17,45	0,5511	0,1102	2,204	0,5509	0,01047	0,05509	0,00003	0,5675	0,1102
2.1	70	3	9,38	0,4794	0,0959	1,917	0,4793	0,00911	0,04793	0,00003	0,4936	0,09585
2.2	70	2,6	12,49	0,4642	0,0928	1,856	0,464	0,00882	0,0464	0,00003	0,4779	0,0928
2.3	70	2,2	17,45	0,4457	0,0891	1,782	0,4456	0,00847	0,04456	0,00003	0,4589	0,08911
3.1	80	3	9,38	0,4240	0,0848	1,696	0,4239	0,00805	0,04239	0,00003	0,4366	0,08478
3.2	80	2,6	12,49	0,410	0,08195	1,639	0,4097	0,00779	0,04097	0,00003	0,422	0,08195
3.1	80	2,2	17,45	0,3933	0,07864	1,573	0,3932	0,00747	0,03932	0,00003	0,405	0,07864
4.1	90	3	9,38	0,3714	0,07425	1,485	0,3712	0,00705	0,03712	0,00002	0,3824	0,07425
4.2	90	2,6	12,49	0,3584	0,07165	1,433	0,3583	0,00681	0,03583	0,00002	0,369	0,07166
4.3	90	2,2	17,45	0,3437	0,06871	1,374	0,3435	0,00653	0,03435	0,00002	0,3538	0,06871
5.1	100	3	9,38	0,322	0,06438	1,288	0,3219	0,00612	0,03219	0,00002	0,3316	0,06438
5.1	100	2,6	12,49	0,3103	0,06204	1,241	0,3102	0,00589	0,03102	0,00002	0,3195	0,06205
5.3	100	2,2	17,45	0,2973	0,05944	1,189	0,2972	0,00565	0,02972	0,00002	0,3061	0,05944

Tabela 9.4. Zestawienie maksymalnych z maksymalnych stężeń S_a względem rozpatrywanych wariantów emitora (opracowanie własne)

9.2 Analiza zmienności maksymalnego stężenia substancji gazowej w powietrzu w określonej sytuacji meteorologicznej

Na wykresach 9.1. – 9.15. zestawiono zależność pomiędzy maksymalnym stężeniem jednogodzinnym S_m a prędkością wiatru na wysokości anemometru dla każdego wariantu emitora z uwzględnieniem stanów równowagi atmosferycznej.

Wszystkie wykresy zostały zestawione poniżej i oznaczone w tytule numerem wykresu. Druga liczba tytułu określa wysokość emitora, natomiast trzecia średnicę wewnętrzną przewodu. Tytuły wykresów odpowiadające danemu numerowi wykresu wraz z podanymi wariantami wymiarów średnicy i wysokości zostały zestawione w tabeli 9.5. Stany równowagi atmosferycznej zostały określone numerami od (1) do (6) i oznaczone w legendzie wykresu. Zestawienie numerów, nazw stanów równowagi atmosferycznej i odpowiadające im parametry meteorologiczne zawarto w tabeli 2.2.

Wariant Emitora	Nr wykresu	Tytuł wykresu	h [m]	d [m]
1.1	9.1.	W9.1.1	60	3
1.2	9.2.	W9.1.2	60	2,6
1.3	9.3.	W9.1.3	60	2,2
2.1	9.4.	W9.2.1	70	3
2.2	9.5.	W9.2.2	70	2,6
2.3	9.6.	W9.2.3	70	2,2
3.1	9.7.	W9.3.1	80	3
3.2	9.8.	W9.3.2	80	2,6
3.3	9.9.	W9.3.3	80	2,2
4.1	9.10.	W9.4.1	90	3
4.2	9.11.	W9.4.2	90	2,6
4.3	9.12.	W9.4.3	90	2,2
5.1	9.13.	W9.5.1	100	3
5.2	9.14.	W9.5.2	100	2,6
5.3	9.15.	W9.5.3	100	2,2

Tabela 9.5. Zestawienie w	ymiarów geometrycznych	emitora z odpowiadającymi im
numerami wykresów		

Na wyżej zestawionych wykresach zaobserwowano, że dla każdego wariantu emitora maksymalne stężenia S_m występują przy silnie chwiejnym (2) stanie równowagi atmosferycznej, a najniższe wartość stężenia S_m dla stałej równowagi atmosferycznej. Stwierdzono, że stężenie S_m maleje względem stanów równowagi atmosferycznej maleje w kolejności: (2) - chwiejna, (3) – lekko chwiejna, (1) – silnie chwiejna, (4) – obojętna, (5) – lekko stała, (6) – stała. Należy podkreślić, że wraz ze wzrostem wysokości emitora różnica pomiędzy stężeniami stanów równowagi atmosferycznej (1) i (3) ulega znacznemu zmniejszeniu. Natomiast, gdy wysokości emitora h = 100 m (W5.1, W5.2, W5.3) w zakresie prędkości wiatru od 2 do 3 m/s wartości stężenia S_m dla stanu równowagi (1) przyjmują wartości większe od stężeń przy stanie równowagi atmosferycznej (3).

W zakresie wariantów od W2.1 do W5.3 zauważono, że wraz z wzrostem wysokości emitora i prędkości wiatru na wysokości anemometru stężenia dla wszystkich stanów równowagi atmosferycznej ulegają znacznemu zmniejszeniu. W przypadku zmniejszenia wymiarów średnicy dla wyżej wymienionych wariantów stwierdzono, że stężenia w obrębie wszystkich stanów równowagi dla zakresu prędkości od 2 do 11 m/s ulegają wzrostowi względem stężenia dla prędkości wiatru na wysokości anemometru równej 1 m/s. W przypadku wariantów W1.1 – W1.3 zaobserwowano, że najwyższe stężenia S_m w obrębie stanów równowagi atmosferycznej, występują dla prędkości równej 2 m/s. Ponadto wartości stężeń dla prędkości 2 m/s ulegają znacznemu wzrostowi wraz zwiększeniem średnicy wewnętrznej emitora.

Zależność przedstawiona na wykresach 9.1. – 9.15. wykazała, że wraz z zmniejszeniem średnicy oraz wzrostem wysokości emitora maleją stężenia maksymalne substancji gazowej w powietrzu w określonej sytuacji meteorologicznej. Natomiast w przypadku emitorów wyższych niż 70 m stężenia maksymalne każdego stanu równowagi atmosferycznej ulegają spadkowi wraz z wzrostem prędkości wiatru na wysokości anemometru.

9.3 Analiza uzyskanych wyników obliczeń rozprzestrzeniania zanieczyszczeń substancji pyłowych i gazowych w powietrzu

Wartości odniesienia dla niektórych substancji w powietrzu zostały określone w załączniku nr 3 do *Rozporządzenia Ministra Środowiska z dnia 26 stycznia 2010r w* sprawie wartości odniesienia dla niektórych substancji w powietrzu. W tabeli 9.6. zostały zestawione wartości odniesienia D_1 (uśrednione dla jednej godziny) i D_a

(uśrednione dla roku) rozpatrywanych zanieczyszczeń. W tabeli zestawiono kryteria, na podstawie których przeprowadzono dobór optymalnego wariantu emitora.

Nazwa substancji	D ₁ [μg/m ³]	$D_a [\mu g/m^3]$	40%D ₁ [μg/m ³]	20%D ₁ [μg/m ³]	10%D _a [μg/m ³]
Chlorowodór	200	25	80	40	2,5
Dwutlenek azotu	200	40	80	40	4
Dwutlenek Siarki	350	20	140	70	2
Fluor	30	2	12	6	0,2
Pył zawieszony PM10	280	40	112	56	4
Rtęć	0,7	0,04	0,28	0,14	0,004
Tlenek węgla	30 000	-	12000	6000	-
Węglowodory alifatyczne – do C ₁₂	3000	1000	1200	600	100

Tabela 9.6. Zestawienie wartości odniesienia rozpatrywanych substancji gazowychi pyłowych w powietrzu (opracowanie własne na podstawie [9])

Wyniki najwyższych ze stężeń maksymalnych S_{mm} , (uśrednione dla jednej godziny) dla rozpatrywanych wariantów emitorów wykazały, że przekroczenie założonej wartości odniesienia 40% D_1 wystąpiły tylko dla dwutlenku azotu w obrębie wariantów od W1.1 do W3.1. Dla pozostałych substancji nie odnotowano przekroczeń założonej wartości odniesienia w całym zakresie wariantów emitora. Zestawienie stężeń S_{mm} wyrażone w procentach wartości odniesienia 40% D_1 przedstawiono w tabeli 9.7. Zaobserwowano, że dla wszystkich substancji poza NO₂, SO₂ i HCl wartość stężenia S_{mm} wyrażona w procentach 40% D_1 nie przekracza 10% założonego kryterium. Oznacza to, że ich wpływ na jakość powietrza można uznać za pomijalny.

W tabeli 9.8. zestawiono wyniki najwyższych ze stężeń maksymalnych S_1 (uśrednione dla jednej godziny) wyrażone w procentach wartości odniesienia 40% D_1 . Zaprezentowane wyniki ukazują, że przekroczenia wartości odniesienia 40% D_1 wystąpiły dla wariantów w od W1.1 do W3.1. z wyjątkiem wariantu W2.3 dla dwutlenku azotu. Maksymalne wartości z stężeń S_1 obliczone w receptorach obliczeniowych wykazały duże powinowactwo względem stężeń S_{mm} .

W przypadku wyników obliczeń percentyli (99,726 dla dwutlenku siarki oraz 99,8 dla pozostałych substancji) ze stężeń maksymalnych jednogodzinnych S_1 stwierdzono, że określone kryterium w wysokości 20% D_1 zostało przekroczone dla dwutlenku azotu w wariantach od W1.1 do W2.1. Dla pozostałych substancji

Wariant	h	d	V			S _{mm} (wyrażo	ne w [%] w	artości od	niesienia 40	% D 1)		
vv ai iaitt	[m]	[m]	[m/s]	PCDD	HCl	NO ₂	SO ₂	F	PM 10	Hg	CO	C ₁₂
1.1	60	3	9,38	-	19,5%	130,2%	37,2%	8,2%	3,5%	4,7%	0,22%	0,43%
1.2	60	2,6	12,49	-	18,4%	122,7%	35,1%	7,8%	3,3%	4,4%	0,20%	0,41%
1.3	60	2,2	17,45	-	17,3%	115,2%	32,9%	7,3%	3,1%	4,1%	0,19%	0,38%
2.1	70	3	9,38	-	17,5%	116,6%	33,3%	7,4%	3,1%	4,2%	0,19%	0,39%
2.2	70	2,6	12,49	-	16,4%	109,5%	31,3%	6,9%	2,9%	3,9%	0,18%	0,36%
2.3	70	2,2	17,45	-	15,1%	100,8%	28,8%	6,4%	2,7%	3,6%	0,17%	0,34%
3.1	80	3	9,38	-	15,7%	104,7%	29,9%	6,6%	2,8%	3,7%	0,17%	0,35%
3.2	80	2,6	12,49	-	14,8%	98,7%	28,2%	6,3%	2,6%	3,5%	0,16%	0,33%
3.1	80	2,2	17,45	-	13,7%	91,4%	26,1%	5,8%	2,4%	3,3%	0,15%	0,30%
4.1	90	3	9,38	-	14,1%	94,3%	26,9%	6,0%	2,5%	3,4%	0,16%	0,31%
4.2	90	2,6	12,49	-	13,4%	89,2%	25,5%	5,7%	2,4%	3,2%	0,15%	0,30%
4.3	90	2,2	17,45	-	12,4%	83,0%	23,7%	5,3%	2,2%	3,0%	0,14%	0,28%
5.1	100	3	9,38	-	12,8%	85,2%	24,3%	5,4%	2,3%	3,0%	0,14%	0,28%
5.1	100	2,6	12,49	-	12,1%	80,9%	23,1%	5,1%	2,2%	2,9%	0,13%	0,27%
5.3	100	2,2	17,45	-	11,3%	75,6%	21,6%	4,8%	2,0%	2,7%	0,13%	0,25%
	D ₁ [μg/ι	m ³]		-	200	200	350	30	280	0,7	30000	3000
40	\mathbb{W}_{1}	g/m ³]		-	80	80	140	12	112	0,28	12000	1200

Tabela 9.7. Zestawienie wyników stężenia S_{mm} wyrażonego w procentach wartości odniesienia 40% D_1 dla rozpatrywanych wariantów emitora (opracowanie własne)

Wariant	h	d	V		S_1	. _{max} (wyrażor	ne w [%] w	artości od	Iniesienia 4	0%D ₁)		
v v al laitt	[m]	[m]	[m/s]	PCDD	HCl	NO ₂	SO ₂	F	PM 10	Hg	СО	C ₁₂
1.1	60	3	9,38	-	19,5%	130,0%	37,2%	8,2%	3,5%	4,6%	0,063%	0,13%
1.2	60	2,6	12,49	-	18,1%	120,7%	34,5%	7,6%	3,2%	4,3%	0,061%	0,12%
1.3	60	2,2	17,45	-	16,2%	108,1%	30,9%	6,8%	2,9%	3,9%	0,059%	0,12%
2.1	70	3	9,38	-	17,2%	114,9%	32,8%	7,3%	3,1%	4,1%	0,059%	0,12%
2.2	70	2,6	12,49	-	15,9%	106,1%	30,3%	6,7%	2,8%	3,8%	0,058%	0,12%
2.3	70	2,2	17,45	-	14,2%	94,4%	27,0%	6,0%	2,5%	3,4%	0,055%	0,11%
3.1	80	3	9,38	-	15,0%	100,1%	28,6%	6,3%	2,7%	3,6%	0,055%	0,11%
3.2	80	2,6	12,49	-	13,9%	93,0%	26,6%	5,9%	2,5%	3,3%	0,053%	0,11%
3.1	80	2,2	17,45	-	13,2%	88,3%	25,2%	5,6%	2,4%	3,2%	0,051%	0,10%
4.1	90	3	9,38	-	13,5%	90,1%	25,7%	5,7%	2,4%	3,2%	0,051%	0,10%
4.2	90	2,6	12,49	-	13,0%	86,7%	24,8%	5,5%	2,3%	3,1%	0,049%	0,10%
4.3	90	2,2	17,45	-	12,3%	82,0%	23,4%	5,2%	2,2%	2,9%	0,047%	0,09%
5.1	100	3	9,38	-	12,5%	83,6%	23,9%	5,3%	2,2%	3,0%	0,047%	0,09%
5.1	100	2,6	12,49	-	12,0%	80,2%	22,9%	5,1%	2,1%	2,9%	0,045%	0,09%
5.3	100	2,2	17,45	-	11,3%	75,4%	21,5%	4,8%	2,0%	2,7%	0,043%	0,08%
	D ₁ [μ	g/m ³]		-	200	200	350	30	280	0,7	30000	3000
	40%D ₁	[µg/m ³]		-	80	80	140	12	112	0,28	12000	1200

Tabela 9.8. Zestawienie wyników stężenia $S_{1,max}$ wyrażonego w procentach wartości odniesienia 40% D_1 dla rozpatrywanych wariantów emitora (opracowanie własne)

Wariant	h	d	v	v S _{p.max} (wyrażone w [%] wartości odniesienia 20%D ₁)								
vv ai iaiit	[m]	[m]	[m/s]	PCDD	HCl	NO ₂	SO ₂	F	PM 10	Hg	СО	C ₁₂
1.1	60	3	9,38	-	12,6%	115,9%	17,0%	5,3%	2,2%	8,4%	0,20%	0,39%
1.2	60	2,6	12,49	-	12,1%	110,4%	15,9%	5,1%	2,2%	7,9%	0,19%	0,37%
1.3	60	2,2	17,45	-	11,5%	102,5%	14,8%	4,8%	2,0%	7,1%	0,17%	0,34%
2.1	70	3	9,38	-	9,7%	102,2%	14,8%	4,1%	1,9%	7,1%	0,18%	0,34%
2.2	70	2,6	12,49	-	9,0%	94,0%	13,6%	3,8%	1,8%	6,8%	0,16%	0,31%
2.3	70	2,2	17,45	-	8,2%	86,2%	12,1%	3,5%	1,6%	6,3%	0,15%	0,29%
3.1	80	3	9,38	-	7,3%	88,6%	12,0%	3,1%	1,6%	6,3%	0,15%	0,30%
3.2	80	2,6	12,49	-	7,1%	82,2%	11,6%	3,0%	1,5%	6,0%	0,14%	0,27%
3.1	80	2,2	17,45	-	7,0%	77,5%	11,0%	3,0%	1,4%	5,5%	0,13%	0,26%
4.1	90	3	9,38	-	6,5%	76,4%	10,9%	2,8%	1,4%	5,6%	0,13%	0,25%
4.2	90	2,6	12,49	-	6,4%	72,8%	10,3%	2,7%	1,4%	5,3%	0,13%	0,24%
4.3	90	2,2	17,45	-	6,1%	66,9%	9,7%	2,6%	1,3%	4,8%	0,12%	0,22%
5.1	100	3	9,38	-	5,7%	68,4%	9,8%	2,4%	1,3%	4,9%	0,12%	0,23%
5.1	100	2,6	12,49	-	5,5%	65,4%	9,2%	2,3%	1,2%	4,6%	0,11%	0,22%
5.3	100	2,2	17,45	-	5,4%	61,3%	8,9%	2,3%	1,1%	4,1%	0,11%	0,20%
	D ₁ [μ	.g/m ³]		-	200	200	350	30	280	0,7	30000	3000
	20%D ₁	$[\mu g/m^3]$		-	40	40	70	6	56	0,14	6000	600

Tabela 9.9. Zestawienie wyników stężenia $S_{p,max}$ wyrażonego w procentach wartości odniesienia 20% D_1 dla rozpatrywanych wariantów emitora (opracowanie własne)

Wariant	h	d	v		$\mathbf{S}_{\mathbf{a}}$	a.max (wyra	żone w [%] wartośc	i odniesieni	a 20%D _a)	$20\%D_{a}$				
vv ai iaiti	[m]	[m]	[m/s]	PCDD	HCl	NO ₂	SO ₂	F	PM 10	Hg	СО	C ₁₂			
1.1	60	3	9,38	-	5,0%	62,4%	31,2%	5,9%	1,6%	1,00%	-	15,6%			
1.2	60	2,6	12,49	-	4,7%	58,7%	29,3%	5,6%	1,5%	0,75%	-	14,7%			
1.3	60	2,2	17,45	-	4,4%	55,1%	27,5%	5,2%	1,4%	0,75%	-	13,8%			
2.1	70	3	9,38	-	3,8%	47,9%	24,0%	4,6%	1,2%	0,75%	-	12,0%			
2.2	70	2,6	12,49	-	3,7%	46,4%	23,2%	4,4%	1,2%	0,75%	-	11,6%			
2.3	70	2,2	17,45	-	3,6%	44,6%	22,3%	4,2%	1,1%	0,75%	-	11,1%			
3.1	80	3	9,38		3,4%	42,4%	21,2%	4,0%	1,1%	0,75%	-	10,6%			
3.2	80	2,6	12,49	-	3,3%	41,0%	20,5%	3,9%	1,0%	0,75%	-	10,2%			
3.1	80	2,2	17,45	-	3,1%	39,3%	19,7%	3,7%	1,0%	0,75%	-	9,8%			
4.1	90	3	9,38	-	3,0%	37,1%	18,6%	3,5%	0,9%	0,50%	-	9,3%			
4.2	90	2,6	12,49		2,9%	35,8%	17,9%	3,4%	0,9%	0,50%	-	9,0%			
4.3	90	2,2	17,45	-	2,7%	34,4%	17,2%	3,3%	0,8%	0,50%	-	8,6%			
5.1	100	3	9,38	-	2,6%	32,2%	16,1%	3,1%	0,8%	0,50%	-	8,0%			
5.1	100	2,6	12,49	-	2,5%	31,0%	15,5%	2,9%	0,7%	0,50%	-	7,8%			
5.3	100	2,2	17,45	-	2,4%	29,7%	14,9%	2,8%	0,7%	0,50%	-	7,4%			
	D _a [μ	.g/m ³]			25	40	20	2	40	0,04	-	8			
	10%D _a	$[\mu g/m^3]$		-	2,5	4	2	0,2	4	0,004	-	0,8			

Tabela 9.10. Zestawienie wyników stężenia S_{a.max} wyrażonego w procentach wartości odniesienia 10%D_a dla rozpatrywanych wariantów emitora (opracowanie własne)

nie odnotowano wystąpienia przekroczenia, założonej wartości odniesienia.

Uzyskane wyniki dla najwyższych z maksymalnych stężeń S_a (uśrednionych dla roku) wykazały, że dla żadnej substancji w zakresie rozpatrywanych wariantów emitora nie wystąpiły przekroczenia, 10 % wartości odniesienia D_a . Wyniki stężenia $S_{a.max}$ wyrażone w procentach wartości odniesienia 10% D_a zostały zestawione w tabeli 9.10. Przedstawione wyniki ukazują, że w najgorszym przypadku maksymalne stężenie $S_{a.max}$ stanowi 60% założonej wartości odniesienia 10% D_a dla dwutlenku azotu. W przypadku dwutlenku siarki stężenia $S_{a.max}$ stanowią maksymalnie 31 % określonego kryterium. Dla pozostałych substancji stężenia S_a nie przekraczają 6 % wartości 10% D_a . Oznacza to, że ich wpływ na jakość powietrza jest pomijalny.

Rozkład stężeń uzyskanych wyników w siatce obliczeniowej wykazuje, że wraz z wzrostem odległości od emitora stężenia substancji przy powierzchni terenu ulegają znaczącym wzrostowi do osiągnięcia swojego maksimum. Po osiągnięciu swojego maksimum wraz z wzrostem odległości od emitora stężenia substancji ulegają znacznemu spadkowi. W załącznika nr 2-4 ukazano graficzne przedstawienie rozkładu stężeń S₁, S_p i S_a dla dwutlenku azotu wariantu emitora W3.2. Znaczącą role w obrazie rozkładu stężeń w siatce obliczeniowej, odgrywa częstość występowania sytuacji meteorologicznych. Na przykładzie stężeń średniorocznych S_a objawia się to wystąpieniem najwyższych stężeń, w obszarach zgodnych z najczęściej występującymi kierunkami wiatru.

10. Wyznaczenie liniowych strat ciśnienia dla wybranych wariantów emitora

10.1 Metodyka obliczania liniowych strat hydraulicznych

Obliczenia strat hydraulicznych przy przepływie i wypływie gazu z emitora wykonano w oparciu o metodykę, opracowaną na potrzeby niniejszej pracy na podstawie literatury [2, 3].

$$\Delta p = \left(\lambda \frac{h}{d} + 1\right) \frac{w^2}{2} \rho_g \tag{8.1}$$

gdzie:

h, d – wysokość i średnica wewnętrzna przewodu [m] (dla uproszczenia można przyjąć, że h to wysokość emitora),

w – średnia prędkość gazu przepływającego przez przewód (prędkość wylotowa)
 [m/s],

 ho_g – średnia gęstość gazu przepływającego przez przewód w warunkach rzeczywistych [kg/m³],

 λ – współczynnik oporów liniowych (zależny od liczby Reynoldsa); dla przepływu burzliwego (Re > 3000) można obliczyć ze wzoru Blasiusa:

$$\lambda = \frac{0.316}{\text{Re}^{0.25}}$$
(8.2)

gdzie:

Re – liczba Reynoldsa:

$$\operatorname{Re} = \frac{w \cdot d \cdot \rho_g}{\eta_g} \tag{8.3}$$

 η_g – współczynnik lepkości dynamicznej gazu [Pa·s]:

$$\eta_{g} = \frac{\sum_{i=1}^{n} y_{i} \eta_{i} \sqrt{M_{i} T_{k}}}{\sum_{i=1}^{n} y_{i} \sqrt{M_{i} T_{k}}}$$
(8.4)

47

gdzie:

yi – ułamek molowy i-tego składnika gazu [kmol/kmol],

 $\sqrt{M_i T_{ki}}$ – pierwiastek z iloczynu masy molowej oraz temperatury krytycznej i-tego składnika gazu (przyjmowany zgodnie z tabelą 8.1),

 η_i – dynamiczny współczynnik lepkości i-tego składnika gazu [Pa·s]:

$$\eta_i = \eta_{io} \, \frac{273 + C_i}{T + C_i} \left(\frac{T}{273}\right)^{3/2} \tag{8.5}$$

gdzie:

 η_{io} – dynamiczny współczynnik lepkości i-tego składnika gazu w temperaturze 273 K i pod ciśnieniem 0,1 MPa (przyjmowany w Pa·s zgodnie z tabelą 8.1), C_i – stała Sutherlanda i-tego składnika gazu (przyjmowana w K zgodnie z tabelą 8.1),

T – temperatura gazu [K].

$$y_i = \frac{n_i}{n} \tag{8.6}$$

gdzie:

yi – ułamek molowy i-tego składnika gazu,

n – suma moli wszystkich składników mieszaniny gazów w warunkach umownych [kmol],

n_i – liczba moli i-tego składnika gazu w warunkach umownych [kmol]:

$$n_i = \frac{V_{i.u.o.}}{V_u} \tag{8.7}$$

gdzie:

 $V_{i.u.o}$ – objętość i-tego składnika spalin oczyszczonych w warunkach umownych[m³/kg paliwa],

 V_u – objętość molowa gazu w warunkach umownych [m³/kmol].

$$\rho_g = \frac{\sum m_i}{V'_{s.rz.o}} \tag{8.8}$$

gdzie:

 ho_g – średnia gęstość gazu przepływającego przez przewód w warunkach rzeczywistych [kg/m³],

V'_{s.rz.o} – Objętość spalin oczyszczonych w warunkach rzeczywistych [m³], m_i – masa i-tego składnika gazu [kg]:

$$m_i = n_i \cdot M_i \tag{8.9}$$

gdzie:

n_i – liczba moli i-tego składnika gazu w warunkach umownych [kmol],

M_i – Masa molowa i – tego składnika gazu [kg/kmol].

Tabela10.1.Wybraneparametryrozpatrywanychskładnikówgazów(opracowanie własne na podstawie [3])

Parametr	CO ₂	SO ₂	H ₂ O	N_2	O ₂	HCl
Stała C [K]	254	416	650	104	125	362
$\sqrt{M_i T_{ki}}$	115,5	166	108	59,5	70,2	108,8
$\mathbf{\eta}_{io} \cdot 10^{-5} [Pa \cdot s]$	1,39	1,17	0,9	1,7	1,89	2,85

10.2 Wyniki obliczeń oraz analiza strat ciśnienia rozpatrywanych wariantów

Uzyskane wyniki obliczeń ukazują, że największe straty ciśnienia wystąpiły w wariancie 5.1, tj. dla najwyższego emitora (h = 100m) oraz najmniejszej średnicy (d = 2,2 m) i wynoszą one 181,07 Pa. Natomiast najmniejsze liniowe starty ciśnienia wystąpiły dla wariantu 1.3 (h = 60 m, d = 3 m) i wynoszą one 44,47 Pa. Wykonane obliczenia wykazały, że wraz z spadkiem wysokości nieznacznie maleją straty ciśnienia. Natomiast zaobserwowano, że wraz z wzrostem wartości średnic wewnętrznej d emitora, następuje znaczący spadek liniowych start ciśnienia. Wyniki liniowych strat ciśnienia zostały zestawione w tabeli 10.4. Natomiast w tabeli 10.2. przedstawiono wyniki obliczeń współczynnika lepkości dynamicznej gazu, a w tabeli 10.3. zestawiono wyniki obliczeń gęstości gazu w warunkach rzeczywistych.

Tabela 10.2. Zestawienie wynikó	w obliczeń	dynamicznego	współczynnika	lepkości
gazu (opracowanie własne)				

Rodzaj spalin	V _{i.u.o} [m ³ /kg paliwa]	n _i [kmol]	Уi	η _i ·10 ⁻⁵ [Pa·s]	η _g ·10 ⁻⁵ [Pa·s]
CO ₂	0,3678	0,0164	0,06317	1,973	
SO ₂	0,00008565	0,0000382	0,00001471	1,739]
HCL	0,0000301	0,000001342	0,000005169	4,181	2.018
O ₂ 0,5198		0,02319	0,08929	2,527	2,010
H ₂ 0	1,018	0,04538	0,1748	1,391	
N ₂	3,917	0,1747	0,6728	2,243	
suma	4,805	0,2433	1	-	-

Tabela 10.3. Zestawienie wyników obliczeń gęstości gazu w warunkach rzeczywistych (opracowanie własne)

Rodzaj spalin	m _i [kg]	$\sum m_i [kg]$	V' _{s.rz.o} [m ³ /kg paliwa]	$\rho_g [kg/m^3]$
CO ₂	0,7219			
SO ₂	0,0002447		8,466	0,8476
HCL	0,00004895	7 176		
O_2	0,742	7,170		
H ₂ 0	0,8176			
N_2	4,8945			

Tabela	10.4.	Zestawienie	wyników	obliczeń	liniowych	strat	ciśnienia		
rozpatrywanych wariantów emitora (opracowanie własne)									

Warianty emitora	h [m]	d [m]	w [m/s]	Re	λ · 10 ⁻³	Δp [Pa]
1.1	60	3	9,384	1182006	9,584	44,475
1.2	60	2,6	12,494	1363853	9,247	80,269
1.3	60	2,2	17,45	1611826	8,869	160,261
2.1	70	3	9,384	1182006	9,584	45,667
2.2	70	2,6	12,494	1363853	9,247	82,622
2.3	70	2,2	17,45	1611826	8,869	165,463
3.1	80	3	9,384	1182006	9,584	46,859
3.2	80	2,6	12,494	1363853	9,247	84,974
3.3	80	2,2	17,45	1611826	8,869	170,665
4.1	90	3	9,384	1182006	9,584	48,051
4.2	90	2,6	12,494	1363853	9,247	87,327
4.3	90	2,2	17,45	1611826	8,869	175,867
5.1	100	3	9,384	1182006	9,584	49,244
5.2	100	2,6	12,494	1363853	9,247	89,68
5.3	100	2,2	17,45	1611826	8,869	181,069

11. Podsumowanie

Podsumowując uzyskane wyniki obliczeń w niniejszej pracy, stwierdzono, że w przypadku określenia optymalnych wymiarów geometrycznych emitora dla instalacji termicznego przekształcania odpadów ze względu na jego wpływ na jakość powietrza wystarczające jest rozpatrywanie wyników stężeń substancji w powietrzu wyłącznie dla dwutlenku azotu. Ponieważ uzyskane wyniki przeprowadzonych oblicze stężeń S_{mm}, S₁, S_p i S_a wykazały, że najbardziej niekorzystnie wpływającą substancją na jakość powietrza jest dwutlenek azotu, gdyż tylko dla stężeń tej substancji w rozpatrywanych wariantach emitora wystąpiły przekroczenia założonych wartości odniesienia. Ponadto można stwierdzić, że wpływ na jakość powietrza pozostałych substancji jest znikomy, a w niektórych przypadkach nawet pomijalny. W tabeli 11.1. Zestawiono wyniki obliczeń maksymalnych stężeń dwutlenku azotu i liniowych strat ciśnienia względem rozpatrywanych wariantów emitora.

Warianty Emitora	h [m]	d [m]	Δp [Pa]	S _{mm} [µg/m ³]	S _{1.max} [μg/m ³]	S _{p.max} [µg/m ³]	S _{a.max} [µg/m ³]
1.1	60	3	44,475	104,153	104,022	46,342	2,494
1.2	60	2,6	80,269	98,199	96,544	44,145	2,346
1.3	60	2,2	160,261	92,129	86,494	40,983	2,204
2.1	70	3	45,667	93,282	91,948	40,881	1,917
2.2	70	2,6	82,622	87,588	84,864	37,619	1,856
2.3	70	2,2	165,463	80,616	75,521	34,469	1,782
3.1	80	3	46,859	83,752	80,052	35,449	1,696
3.2	80	2,6	84,974	78,977	74,364	32,865	1,639
3.3	80	2,2	170,665	73,084	70,646	31,012	1,573
4.1	90	3	48,051	75,433	72,071	30,579	1,485
4.2	90	2,6	87,327	71,4	69,372	29,126	1,433
4.3	90	2,2	175,867	66,393	65,6	26,763	1,374
5.1	100	3	49,244	68,173	66,883	27,341	1,288
5.2	100	2,6	89,68	64,746	64,158	26,148	1,241
5.3	100	2,2	181,069	60,465	60,334	24,516	1,189
40%D ₁ [μg/m ³]			80	80	-	-	
20%D ₁ [µg/m ³]				-	-	40	-
$10\% D_{a} [\mu g/m^{3}]$				-	-	-	4

Tabela 11.1. Zestawienie wyników obliczonych stężeń dwutlenku azotu i liniowych strat ciśnienia (opracowanie własne)

Wyniku uzyskany obliczeń rozprzestrzenia się zanieczyszczeń ukazują, że wartości stężeń substancji maleją wraz z wzrostem wysokości oraz z zmniejszeniem średnicy emitora.

Najwyższe z stężeń maksymalnych S_{mm} w rozpatrywanych wariantach emitora występują przy prędkością wiatru na wysokości anemometru równych 1 m/s i 2 m/s tylko dla chwiejnego stanu równowagi atmosferycznej. Częste występowanie wymienionej sytuacji meteorologicznej na danym obszarze powoduje pogorszeniem jakości powietrza.

Stwierdzono że, wraz z wzrostem odległości od emitora stężenia substancji w powietrzu ulegają wzrostowi do momentu osiągnięcia swojego maksimum. Stężenia po osiągnieciu swojego maksimum ulegają stopniowemu zmniejszeniu wraz z zwiększeniem odległości od emitora.

Przestrzenny rozkład maksymalnych stężeń średniorocznych ukazuje, że najwyższe wartości stężeni usytuowane, są zgodnie z częstością występowania danych kierunków i prędkości wiatru.

Liniowe starty ciśnienia maleją wraz z wzrostem średnicy emitora, oraz rosną wraz z zwiększeniem wysokości emitora.

Na podstawie powyższych wniosków, oraz wyników przeprowadzonych obliczeń stwierdzam, że najbardziej optymalne wymiary wysokości i średnicy emitora dla rozpatrywanego przypadku wynoszą odpowiednio 80 m i 2,6 m. Ponieważ dla wariantów o niższej wysokości i większej średnicy nie zostały spełnione założone warunki wartości odniesienia substancji w powietrzu. Wybranie wariantu o wyższej wysokości i większej średnicy skutkowałoby, znacznym podniesieniem kosztów inwestycyjnych. Natomiast wybranie wariantu o tej samej wysokości i mniejszej średnicy zaowocowałoby zmniejszeniem kosztów inwestycyjnych. Jednak wyższe straty ciśnienia w przewodzie emitora, spowodują nadmierne podniesienie kosztów eksploatacyjnych. Ponadto, w przypadku zmniejszenia średnicy wzrasta prędkość gazów odlotowych w świetle emitora, a wyniku wzrasta uciążliwość obiektu, z względu na hałas.

Literatura:

- [1] III Konferencja z cyklu Instrumenty Zarządzania Ochroną Środowiska na temat Oceny oddziaływania na środowisko na szczeblu krajowym i regionalnym, Uczelniane Wydawnictwo Naukowo – Dydaktyczne, Kraków 2005, str. 327 – 336.
- [2] Kuropka J., Oczyszczanie gazów odlotowych z zanieczyszczeń gazowych: obliczenia, tabele, materiały pomocnicze, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1996.
- [3] Kuropka J., *Oczyszczanie gazów odlotowych z zanieczyszczeń gazowych; Procesy podstawowe*, Wydawnictwo Politechniki Wrocławskiej, Wrocław 1988.
- [4] Mazur M., Systemy ochrony powietrza, Wydawnictwo AGH, Kraków 2004.
- [5] Plan Gospodarki Odpadami, Program Ochrony Środowiska i Stanowiący Jego Element Plan Gospodarki Odpadami Dla Miasta Krakowa (plan na lata 2005 – 2007 z uwzględnieniem zadań na lata 2008 – 2011), tom II, Załącznik do Uchwały Nr LXXV/737/05, Rada Miasta Krakowa z dnia 13.04. 2005 r.
- [6] Raport o oddziaływaniu przedsięwzięcia na środowisko dla Przedsięwzięcia "Budowa zakładu Termicznego Przekształcania Odpadów przy ul. Giedroycia w Krakowie" jako element projektu "Program gospodarki odpadami komunalnymi w Krakowie", Warszawa, październik 2009.
- [7] Rosik Dulewska Cz., *Podstawy gospodarki odpadami*, Wydawnictwo Naukowe PWN, Warszawa 2006.
- [8] Rozporządzenie Ministra Środowiska z dnia 22 kwietnia 2011 r. w sprawie standardów emisyjnych z instalacji, Dz. U. z 2011 r. Nr 95, poz. 558.
- [9] Rozporządzenie Ministra Środowiska z dnia 26 stycznia 2010 r. w sprawie wartości odniesienia dla niektórych substancji w powietrzu, Dz. U. z 2010 r. Nr 16, poz. 87.
- [10] Słupek S., Nocoń J., Buczek A., *Technika Cieplna*, skrypt AGH nr 1646, Kraków 2002.

Programy komputerowe:

- 1. AUTO CAD 2011
- 2. EK100W firmy ATMOTERN S.A
- 3. Surfer firmy GOLDEN SOFTWARE

Spis wykresów

- Wykres 2.1. Zależność pomiędzy wyniesieniem gazów odlotowych i emisją ciepła z emitora (h = 120m, v = 10 m/s, Cp = 1,3 kJ/(m³·K), $d = 4 m, T = 100^{\circ}C$)
- Wykres 2.2. Zależność pomiędzy wyniesieniem gazów odlotowych i prędkością wylotową gazów (h = 120 m, d = 4 m, $C_p = 1,3 \text{ kJ/(m^3 \cdot K)},$ T = 150°C, m = 0,08)
- Wykres 9.1.–9.15. Zestawienie zależność pomiędzy stężeniem S_m , a prędkością wiatru na wysokości anemometru dla każdego wariantu emitora (W1.1 W5.3)

Spis tabel

- Tabela 2.1. Zestawienie wzorów, na podstawie których wykonuje się obliczenia wysokości wyniesienia gazów odlotowych ponad wylot z emitora (opracowanie własne na podstawie [9]).
- Tabela 2.2.Zestawienie stanów równowagi atmosferycznej z odpowiadającymi im
stałymi meteorologicznymi oraz zakresami prędkości wiatru [9]
- Tabela 3.1. Charakterystyka właściwości chemicznych odpadów komunalnych(opracowanie własne na podstawie [6, 7])
- Tabela 3.2.Masy molowe pierwiastków, związków chemicznych wykorzystanych w
obliczeniach (opracowanie własne)
- Tabela 4.1. Zestawienie wyników obliczeń objętości spalin (opracowanie własne)
- Tabela 4.2.
 Zestawienie wyników pośrednich obliczeń objętości spalin (opracowanie własne)
- Tabela 5.1. Zestawienie wyników obliczeń stopnia redukcji emisji zanieczyszczeń gazowych (opracowanie własne)
- Tabela 5.2. Zestawienie wyników obliczeń objętości spalin oczyszczonych (opracowanie własne)
- Tabela 6.1.
 Zestawienie wyników obliczeń rzeczywistego strumienia objętości spalin (opracowanie własne)
- Tabela 6.2.Zestawienie wyników obliczeń strumienia objętości spalin w warunkach
umownych przy rzeczywistej zawartości tlenu (opracowanie własne)
- Tabela 7.1Zestawieniewariantówemitoraorazprędkościgazówodlotowych(opracowanie własne)
- Tabela 8.1. Standardy emisyjne z instalacji spalania i współspalania odpadów [8]
- Tabela 8.2. Zestawienie wyników emisji (opracowanie własne)
- Tabela 9.1.Zestawienie wyników Smm względem rozpatrywanych wariantów emitora
(opracowanie własne)
- Tabela 9.2.Zestawienie wyników maksymalnych z maksymalnych stężeńS1względem rozpatrywanych wariantów emitora (opracowanie własne)

- Tabela 9.3. Zestawienie wyników maksymalnych z maksymalnych percentyli S_p względem rozpatrywanych wariantów emitora (opracowanie własne)
- Tabela 9.4.Zestawienie wyników maksymalnych z maksymalnych stężeń Sawzględem rozpatrywanych wariantów emitora (opracowanie własne)
- Tabela 9.5.Zestawienie wymiarów geometrycznych emitora z odpowiadającymi im
numerami wykresów (opracowanie własne)
- Tabela 9.6.Zestawienie wartości odniesienia rozpatrywanych substancji gazowych ipyłowych w powietrzu (opracowanie własne na podstawie [9])
- Tabela 9.7. Zestawienie wyników stężenia S_{mm} wyrażonego w procentach wartości odniesienia 40% D_1 dla rozpatrywanych wariantów emitora (opracowanie własne)
- Tabela 9.8. Zestawienie wyników stężenia S₁ wyrażonego w procentach wartości odniesienia 40%D₁ dla rozpatrywanych wariantów emitora (opracowanie własne)
- Tabela 9.9. Zestawienie wyników stężenia S_p wyrażonego w procentach wartości odniesienia 20%D₁ dla rozpatrywanych wariantów emitora (opracowanie własne)
- Tabela 9.10. Zestawienie wyników stężenia S_a wyrażonego w procentach wartości odniesienia 10%D_a dla rozpatrywanych wariantów emitora (opracowanie własne)
- Tabela 10.1. Wybrane parametry rozpatrywanych składników gazów (opracowanie własne na podstawie [3])
- Tabela 10.2 Zestawienie wyników obliczeń dynamicznego współczynnika lepkości gazu (opracowanie własne)
- Tabela 10.3
 Zestawienie wyników obliczeń gęstości gazu w warunkach rzeczywistych (opracowanie własne)
- Tabela 10.4Zestawienie wyników obliczeń liniowych strat ciśnienia rozpatrywanych
wariantów emitora (opracowanie własne)
- Tabela 11.1Zestawienie wyników obliczonych stężeń dwutlenku węgla i liniowych
strat ciśnienia (opracowanie własne)

Załączniki:

- Załącznik 1 Roczna róża wiatru dla rejonu Krakowa
- Załącznik 2Przestrzenny rozkład stężeń maksymalnych 1-jednogodzinnych NO2 $[\mu g/m^3)$ na powierzchni terenu dla wariantu emitora W3.2 (poziom
dopuszczalny $D_1 = 200 \ \mu g/m^3$)
- **Załącznik 3** Przestrzenny rozkład stężeń NO₂ na poziomie 99,8% percentyla ze stężeń 1-godzinnych NO₂ [μ g/m³] na powierzchni terenu dla wariantu emitora W3.2 (poziom dopuszczalny D₁ = 200 μ g/m³)
- Załącznik 4Przestrzenny rozkład stężeń średniorocznych NO2 [$\mu g/m^3$) na
powierzchni terenu dla wariantu emitora W3.2 (poziom dopuszczalny
 $D_a = 40 \ \mu g/m^3$)
- Załącznik 5 Dołączony do pracy w formie elektronicznej

Spis zawartości załącznika 5

- 6.1 Wyniki obliczeń stężeń (S_m) substancji gazowej w powietrzu w wszystkich sytuacjach meteorologicznych dla rozpatrywanych wariantów emitora plik Sm.ods
- 5.2 Wyniki Obliczeń stężeń substancji S_1 (uśrednione dla godziny), S_a (uśrednione dla roku), percentyli S_p (uśrednione dla godziny) w receptorach obliczeniowych dla wszystkich rozpatrywanych wariantów emitora plik Zestawienie_wyników.ods

Załącznik 2Przestrzenny rozkład stężeń maksymalnych 1-jednogodzinnych
dwutlenku azotu $[\mu g/m^3]$ na powierzchni terenu dla wariantu
emitora W3.2 (poziom dopuszczalny $D_1 = 200 \ \mu g/m^3$)

Załącznik 3 Przestrzenny rozkład stężeń NO₂ na poziomie 99,8% percentyla ze stężeń 1-godzinnych NO₂ [μ g/m³] na powierzchni terenu dla wariantu emitora W3.2 (poziom dopuszczalny D₁ = 200 μ g/m³)

Załącznik 4 Przestrzenny rozkład stężeń średniorocznych NO₂ [μ g/m³] na powierzchni terenu dla wariantu emitora W3.2 (poziom dopuszczalny $D_1 = 40 \ \mu$ g/m³)

