

Crystal Growth by Floating Zone Technique

Mylène Sage (m.sage@rug.nl) Rijksuniversiteit Groningen Solid State Chemistry Laboratory Nijenborgh 4, 9747AG Groningen The Netherlands

Outline

- Introduction to Crystal Growth Techniques
 - Polycomponents
 - Monocomponent
- Liquid-Solid Monocomponent Growth Techniques
- Floating-Zone Technique
 - Description of the Equipment
 - Sample Preparation
 - Growth Preparation
 - Sample Growth
- Characterization
 - Crystallinity
 - Determination of composition
- Bibliography
- Conclusions

Crystal Growth Techniques (1)

- Polycomponents
 - Solid-Solid
 - Precipitation from solid solution
 - Liquid-Solid
 - Growth from solution (evaporation, slow cooling, temperature differential)
 - Growth by reaction (same media, temperature change, concentration change)
 - Gas-Solid
 - Growth by reversible reaction (temperature change, concentration change)
 - Growth by irreversible process (epitaxial process)

Crystal Growth Techniques (2)

- Monocomponent
 - Solid-Solid
 - Strain annealing
 - Devitrification
 - Polymorphic-phase change
 - Gas-Solid
 - Sublimation / Condensation
 - Sputtering
 - Liquid-Solid (melt)
 - Directional solidification
 - Cooled seed
 - Pulling
 - Zoning
 - Verneuil

}	Conservative
}	Non-conservative

Melt Growth (1)

Advantages

•Growth from free surface

•Growth of large *oriented* single crystals

•Convenient chemical composition

Control of atmosphere

Limitations

- •High vapor pressure materials
- •Liquid phase encapsulation
- •Possible contamination of the melt by the crucible
- •No reproducibility of the crystal shape

Melt Growth (2)

Advantages

- •Simple technique
- •Control of vapor pressure
- •Containers can be evacuated and sealed
- •Control of shape and size of crystals
- •Stabilization of thermal gradients

Limitations

•Confinement

- •Thermal expansion container vs crystal
- •Crystal perfection is not better than the one of the seed
- No visibility

Melt Growth (3)

Zone-melting

- Traveling Zone
- T Gradient close to the growth interface
- Pfann (1952), purification technique

Advantages

- Control of impurities while growth
- Reduce contamination of the melt by the crucible
- Less heater power
- Uniform doping obtained by zonerefining
- Increase of grain size by zone refining

Limitations

- Contamination from crucible
- Thermal and Volume expansion

Float Zone Technique (FZT) FZT (1)

Setup

4-mirror furnace			
Halogen lamps (Uniform heating, better spatial definition of the hot zone)	Xenon HP lamp (Uniform radial illumination; very well defined vertical power profile)		
Power: 800 – 6000 W (2200°C)	Power: 5.4 kW (2800°C)		
Max. Pressure = 10 atm ——> Growth of materials with higher vapor pressures.			
Max grown size: 150 mm length, 10 mm diameter (more for Xe-lamp)			
Growth rates: From 0.1 to 20 mm/hr			
Turbo pump — Vacuum down to 10 ⁻⁶ mbar			

Sample chamber can be filled with inert, reductive, oxidizing atmospheres

FZT (3)

Sample Preparation

- Starting material:
 - $\approx 20g$ of thoroughly ground powder
 - Raw compound ($RTiO_3$)
 - Annealed material (RMnO₃)
 - Partially annealed material (RVO₃)
- Feed rod preparation:

- Fill a rubber tube of desired diameter with the powder
- Slightly tight the end of the tube, make sure the diameter of the rod is constant
- Pump (progressively) the air remaining in the tube
- Seal the rubber tube
- Press the rod with an isostatic press (500 \sim 600 bar)
- Remove the rubber band

FZT (4)

Sample Preparation

- Seed preparation:
 - Single crystal from a previous growth
 - Polycrystal from a previous growth
 - Part of the feed
 - Single crystal from a similar compound
 - Necking
- Rods of seed and feed are mounted in the furnace so as to be perfectly aligned.
- A very clean work environment for the preparation of the rods, the mounting in the furnace, the mirrors, the lamps, the quartz tube is extremely important

FZT (5)

Growth Preparation

- Evacuation of the sample chamber (10⁻⁶ mbar)
- Choice of atmosphere and pressure
 - RTiO₃: 2 atm 95% Ar, 5%H₂
 - $RMnO_{3 hex}$: 1 atm air + 0.5 atm O_2
 - $RMnO_{3 \text{ orth}}$: no evacuation, no flushing
 - RVO₃: 1.5 atm Ar
 - $TbMn_2O_5$: 6 atm O_2 .
- Sintering
 - $RTiO_3$: 80% of growth power
 - $RMnO_{3 hex}$: 80% of growth power
 - RMnO_{3 orth}: 60-75% of growth power
 - RVO_3 : 60% Power
 - TbMn₂O₅: 60% of growth power

FZT (6)

Growth Preparation

• Fast scanning (~30 mm/hr):

FZT (7)

Crystal Growth

- Equilibrium in crystal growth
 - The crystal grown must be thermodynamically stable at T and P of crystallization.
 - Dependence of the melting point on pressure:

$$\frac{dP}{dT} > 0 \quad if \quad \Delta V > 0 \quad and \quad \Delta S > 0 \quad for \ a \ melting \ process$$
From $\Delta H = T\Delta S$, $\Delta H > 0 \Rightarrow Melting \ is \ endothermic$
At equilibrium, $\Delta G = 0 \Rightarrow T_{eq} = \frac{\Delta H}{\Delta S}$

Melting point unique for any given pressure

- Superheating is not possible
- Very slight supercooling required for growth

FZT (8)

Crystal Growth

Distribution coefficient

$$k_0 \equiv \frac{a_{s(eq)}}{a_{l(eq)}} \equiv \frac{C_{s(eq)}}{C_{l(eq)}}$$

- $\cdot k_0 \sim$ equilibrium constant if the crystal is neither growing nor dissolving
- a_{s(eq)}:Equilibrium activity in the solid
- •a_{I(eq)}:Equilibrium activity in the liquid

During growth,
$$k_{eff}$$
 =effective distribution coefficient
Try to reach k_{eff} =1!!!
 $k_{eff} = \frac{C_{s(act)}}{C_{l(act)}}$
 $c_{i(act)}$
 c_{i

FZT (9)

Control of the solvent in Traveling Solvent Float Zone technique:

Solvent used for lowering the melting point, or reduce incongruent melting....

Goal: keep the solvent all along the growth

If $k_{eff} > 1$

- Depletion of the solvent concentration close to the growing crystal
- Bulk of melt richer in solvent than growth region

FZT (10)

Crystal Growth

• Stability conditions (Heywang-1956).

Include:

- ✓ surface tension,
- ✓ gravitational field,
- $\checkmark\,$ melt wetting the solid completely,
- ✓ negligible volume change

$$\lambda = l \sqrt{\frac{dg}{\sigma}} \quad and \ \rho = r \sqrt{\frac{dg}{\sigma}} \quad \stackrel{\text{I= maximum zone length}}{\bullet r = rod \ diameter} \quad \stackrel{\text{\circg$= gravitational field}}{\bullet \sigma = surface \ tension}$$

As $r \nearrow \lambda$ approaches 2.7 If I > r : difficult to control melt zone

FZT (11)

Crystal Growth

- Stirring
 - Function of the melt viscosity
 - Rotation of the feed > seed (20 vs 15 mm/hr)
- Stability of the solid phase
 - Is the crystal to be grown the most stable phase?
 - Is the melting congruent?

YVO₃: incongruent melting when doped with Calcium

TbMn₂O₅: decomposes in TbMnO₃ and Mn₃O₄

 $BiFeO_3$: $Bi_2Fe_4O_9$ and $Bi_{25}FeO_{40}$ stable phases

Observation of the phase diagram

XRD of the melt and of the solid phase

FZT (13)

- Vapor pressure
 - Increase the pressure of the sample chamber
 - Excess of the compound with the highest vapor pressure
- Power control and overflow
- Nucleation
 - Heterogeneous nucleation (seed polycrystalline, or monocrystalline neighbor material)

Nucleation ~~particles aggregation

Precursors of nuclei large enough to grow are formed by association of particles in the system.

```
For a nucleating material A: mA \leftrightarrow A_m
```

For large m and equilibrium constants: growth of nucleation!

FZT (14)

Crystal Growth

- Formation of cells
- Growth rate
 - $RTiO_3$: 5 mm/hr
 - RMnO_{3 orth}: 10 mm/hr
 - RMnO_{3 hex.}: 4 mm/hr ; 1.5 mm/hr if doped with Ca.
 - RVO_3 : 2 mm/hr
 - TbMn₂O₅: 1.5mm/hr

(1)

- Crystallinity
- Back-reflection Laue method.
- Diffracted beams form arrays of spots.
- Bragg angle fixed for every set of planes in the crystal.
- The positions of the spots on the film depend on the orientation of the crystal relative to the incident beam.
- Determine crystallinity, orientation and perfection, from size and shape of spots.

(2)

- Find a good simulation match
- Index hkl's, simulate rotations in order to get the desired orientation for the crystal
- Take another Laue picture after necessary changes
- Check the validity of the orientation by same process

- Input supposed crystal structure
- Input coordinates (manually or by scanning the film)
- Chose the most important coordinates
- Simulate a Laue pattern

- Composition
 - Powder X-Ray diffraction
 - Crushed single crystal → use of sieve

(3)

- Evidence for extra crystalline phases
- Structural refinements
- Single Crystal X-Ray diffraction
 - Size dependence
 - Evidence for extra crystalline phases
 - Evidence for twinning
 - Orientation
 - Structural refinements

– Energy / Wavelength dispersive X-Ray analysis (EDX / WDX)

- Electron beam energy up to 40 keV
- Area : from 0.5 microns
- Depth: 0.5 to 2 microns → Not surface technique!
- Detector

WDX

- Classifies and counts impinging X-Rays of characteristic wavelengths
- Tuned for a single wavelength at a time

Advantages

- Very high energy resolution,
- Better accuracy
- Lower background noise: more accurate quantification

Limitations

- Very high time consumption
- Chamber contamination because of high beam current
- Very high costs

(6)

Quantification

Standard

- No ZAF algorithm
- Comparison to standard files
- •Standard files taken in EXACT same conditions
- •Better in case of overlapping peaks or trace elements

Standard less

- •Calculation of the area under each peak
- Accounts for acceleration voltage
- Sensitivity factors that convert area into weight/ atomic %

•Gaussian fit + ZAF algorithm

Conclusions

- Melt growth is one of the most controllable process
- FZT / TSFZT

Advantages

- No crucible contamination
- Shape control
- Impurity control
- Surface tension control
- Vapor pressure control
- Atmosphere control
- Large growth rates
- Large grown crystals

Limitations

- High melting compounds
- Expensive technique
- Incongruent melting
- Phase separation and stability
- Sensitivity of control parameters
- Overflows

Widely available and powerful characterization techniques

Bibliography

- W. Bardslay, D.T.J. Hurle, J.B. Mullin, Crystal Growth: a tutorial approach, North Holland, (1979)
- P. Hartman, Crystal growth: an introduction, North Holland, (1973)
- J.C. Brice, The growth of Crystals from the melt, North Holand, (1965)
- Laudise, The growth of single crystals, Prentice Hall, (1970)
- W.G. Pfann, Zone melting, John Wiley & sons, (1966)
- P.H. Keck, M.J.E. Golay, Crystallization of silicon from a floating liquid zone, PRL89, 6, (1953)
- W. Heywang, Zeitschrift für Naturforschung A11, 3, (1956)
- Laue diffraction software [Orient Express]: http://www.ccp14.ac.uk/ccp/web-mirrors/Imgp-laugierbochu/orientex.zip

Acknowledgments

- SCOOTMO
- Agung Nugroho
- Thom Palstra & Graeme Blake
- Nandang Mufti & Gwilherm Nénert