Complete n-closure for pancyclism being disclosed

Zdzisław Skupień
Faculty of Applied Mathematics, AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: skupien@agh.edu.pl

November 12, 2007

Abstract

A short and detailed proof, found in 2000, shows that a condition for an n-vertex graph G to be pancyclic implies completeness of the Bondy-Chvátal's n-closure of G. This simplifies the original proof of hamiltonicity of G.

Theorem 1 (Flandrin et al. [4]) Let $G=(V, E)$ be a 2-connected graph on n vertices with minimum degree δ and such that for any two vertices x and y if $\delta=d_{G}(x)<n / 2$ and $d_{G}(y)<n / 2$ then $x y \in E$. Then $K:=\operatorname{cl}_{n}(G)=K_{n}$.

Proof. Suppose that $K \neq K_{n}$. Then $2 \leq \delta<n / 2$ whence $n \geq 5$. Let X and Y be sets of vertices whose degrees in G are δ and in the interval $[\delta+1, n / 2)$, respectively. Let $|X|=i(i>0)$ and $|Y|=j$. Then $i+j \leq \delta+1$ because each vertex x of degree δ in G is adjacent to all vertices in $Y \cup X \backslash\{x\}$. Since, moreover, $\delta+1 \leq(n+1) / 2 \leq n-2$, the complement of $Y \cup X$ in V comprises two or more vertices and induces in K a complete subgraph, say Q, whose all vertices z have degrees $d_{Q}(z)=n-1-i-j$. Hence $\delta \leq i+j$ because otherwise $K=K_{n}$. Suppose $i+j=\delta$. Then the set $V \backslash X$ is a clique in K with vertex degrees $\geq n-1-i$ which are $\geq n-\delta$ if $j>0$, whence $K=K_{n}$, a contradiction. Thus $i=\delta(\geq 2)$ and $j=0$. Then each of i vertices x in X has in G exactly one neighbour belonging to $V \backslash X$. However, because of 2-connectivity, in G there are two (or more) neighbours z_{p} of the set X in the set $V \backslash X, p=1,2$. Then $d_{K}\left(z_{p}\right) \geq d_{Q}\left(z_{p}\right)+1=n-\delta$. Hence each $x \in X$ is adjacent in K to both z_{p} 's, a contradiction.

Therefore $i+j=\delta+1$. Then all neighbours in G of any $x \in X$ are in $X \cup Y$. Because of 2-connectivity of $G,|Y|=j \geq 2$ and there are two or more neighbours z_{p} of Y in the set $V \backslash(Y \cup X)$. Therefore $d_{K}\left(z_{p}\right) \geq d_{Q}\left(z_{p}\right)+1=n-1-\delta$ whence each z_{p} is adjacent in K to all vertices of Y. Hence $d_{K}\left(z_{p}\right) \geq d_{Q}\left(z_{p}\right)+|Y| \geq n-\delta$. Consequently, $x z_{p} \in E(K)$ for all z_{p} 's and all $x \in X$ whence $d_{K}(x) \geq \delta+2$. Therefore the set $V \backslash Y$ is a clique in K with minimum degree $\geq n-1-j \geq n-1-\delta$ whence $K=K_{n}$, a contradiction.

References

[1] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[2] H. Broersma, Z. Ryjáček, and I. Schiermeyer, Closure concepts: a survey, Graphs Combin. 16 (2000) 17-48.
[3] R. Faudree, O. Favaron, E. Flandrin, and H. Li, The complete closure of a graph, J. Graph Theory, 17 (1993) 481-494.
[4] E. Flandrin, A. Marczyk, H. Li, and M. Woźniak, A note on a new condition implying pancyclism, Discuss. Math. Graph Theory 21 (2001) 137-144.
[5] R.Y. Zhu, On maximal circuits in 2-connected graphs [Chinese], Qufu Shiyuan Xuebao 1983, no. 4, 8-9; MR 86k:05072.
[6] L. Zhenhong, G. Jin, and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combin. 35 (1993) 281-290.

