Complete n-closure for pancyclism being disclosed

Zdzisław Skupień

Faculty of Applied Mathematics, AGH University of Science and Technology al. Mickiewicza 30, 30–059 Kraków, Poland e-mail: skupien@agh.edu.pl

November 12, 2007

Abstract

A short and detailed proof, found in 2000, shows that a condition for an *n*-vertex graph G to be pancyclic implies completeness of the Bondy-Chvátal's *n*-closure of G. This simplifies the original proof of hamiltonicity of G.

Theorem 1 (Flandrin et al. [4]) Let G = (V, E) be a 2-connected graph on n vertices with minimum degree δ and such that for any two vertices x and y if $\delta = d_G(x) < n/2$ and $d_G(y) < n/2$ then $xy \in E$. Then $K := \operatorname{cl}_n(G) = K_n$.

Proof. Suppose that $K \neq K_n$. Then $2 \leq \delta < n/2$ whence $n \geq 5$. Let X and Y be sets of vertices whose degrees in G are δ and in the interval $[\delta + 1, n/2)$, respectively. Let |X| = i (i > 0) and |Y| = j. Then $i + j \leq \delta + 1$ because each vertex x of degree δ in G is adjacent to all vertices in $Y \cup X \setminus \{x\}$. Since, moreover, $\delta + 1 \leq (n+1)/2 \leq n-2$, the complement of $Y \cup X$ in V comprises two or more vertices and induces in K a complete subgraph, say Q, whose all vertices z have degrees $d_Q(z) = n - 1 - i - j$. Hence $\delta \leq i + j$ because otherwise $K = K_n$. Suppose $i + j = \delta$. Then the set $V \setminus X$ is a clique in K with vertex degrees $\geq n - 1 - i$ which are $\geq n - \delta$ if j > 0, whence $K = K_n$, a contradiction. Thus $i = \delta (\geq 2)$ and j = 0. Then each of i vertices x in X has in G exactly one neighbour belonging to $V \setminus X$. However, because of 2-connectivity, in G there are two (or more) neighbours z_p of the set X in the set $V \setminus X$, p = 1, 2. Then $d_K(z_p) \geq d_Q(z_p) + 1 = n - \delta$. Hence each $x \in X$ is adjacent in K to both z_p 's, a contradiction.

Therefore $i + j = \delta + 1$. Then all neighbours in G of any $x \in X$ are in $X \cup Y$. Because of 2-connectivity of G, $|Y| = j \ge 2$ and there are two or more neighbours z_p of Y in the set $V \setminus (Y \cup X)$. Therefore $d_K(z_p) \ge d_Q(z_p) + 1 = n - 1 - \delta$ whence each z_p is adjacent in K to all vertices of Y. Hence $d_K(z_p) \ge d_Q(z_p) + |Y| \ge n - \delta$. Consequently, $xz_p \in E(K)$ for all z_p 's and all $x \in X$ whence $d_K(x) \ge \delta + 2$. Therefore the set $V \setminus Y$ is a clique in K with minimum degree $\ge n - 1 - j \ge n - 1 - \delta$ whence $K = K_n$, a contradiction.

References

- [1] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
- [2] H. Broersma, Z. Ryjáček, and I. Schiermeyer, Closure concepts: a survey, Graphs Combin. 16 (2000) 17–48.

- [3] R. Faudree, O. Favaron, E. Flandrin, and H. Li, The complete closure of a graph, J. Graph Theory, 17 (1993) 481–494.
- [4] E. Flandrin, A. Marczyk, H. Li, and M. Woźniak, A note on a new condition implying pancyclism, Discuss. Math. Graph Theory 21 (2001) 137–144.
- [5] R.Y. Zhu, On maximal circuits in 2-connected graphs [Chinese], Qufu Shiyuan Xuebao 1983, no. 4, 8–9; MR 86k:05072.
- [6] L. Zhenhong, G. Jin, and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combin. 35 (1993) 281–290.