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On Meximal non-Hamiltonian Graphs

m.n.-H.(maximal non-Hamiltonian) graphs are partially charact-
erized and generating those graphs of small orders is rgpor-
ted.

T3 & ion

The problem of finding both elegant and useful characteriza-
tion of Hamiltonian (or non-Hamiltonian) graphs seems to be
the most exciting open problem in graph theory, more particu-
larly as the Four Colour Hypothesis has been announced /1,
/2/ to be confirmed. However, desplte efforts of many specia-
lists, the problem is far from the satisfactory solution. For
instance, the Dirac’g condition "&(G} * n/2" is only suffi-
cient for a graph G to be Hamiltonian. Note, however, that
there are two different formulas for the number, say h(G), of
Hamiltonian circuits in G, due to Lihtenbaum /11/ and Vrba
/20/, respectively. Both of those formulas involve adjacency
matrix A of G. Obviously, both corresponding conditions "h(G)
£ 0" can be regarded as non-trivial necessary and sufficient
conditions for a graph G to be Hamiltonian. Nevertheless, each
of them is too complicated and therefore useless in general
case.

Therefore it would be interesting to find a characterization
{or the lists] of m.n.-li, graphs [of order n for small n at
least]. Notice also that having a description of m.n.-H,
graphs one could be in position to formulate and to test
hypothesea about Hamiltonian graphs.

This note only contributes to the problem of characterizing
m.n.-H, graphs. Namely, the class Mn of m.n.-nt. graphs Gn of
order n is partitioned into three (possibly empty) subclasses.
One of those subclasses, 1, consists of m.n.-H, graphs G,
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with the scattering number ngn) = 1. Those graphs are preci-
sely described and counted. In particular, lIn} is expressed
by means of numbers of partitions of some integers into cer-
tain numbers of parts.

Remaining m.n.-H, graphs are partially characterized. Namely,
the second subclass, Tn’ conagists of m.n.-H., homogeneously
traceable graphs Gn which are non-trivially non-Hamiltonian,
i.e., with n * 3 vertices. Then T #@ iff n 29, T, contains
many hypohamiltonian graphs and if G € T then A(G) € n-4 and
8(G) ¢ 0. Now remaining m.n.-H. graphs G, form the subclass
J,» have A(G) = n-1, 8(G) € O and exist iff either n < 2 or
n 2 7. Moreover, a method of generating all 2-connected m.n.-
H. graphs G from the set of all minimal blocks of order n is
sketched, all m.n.~H, graphs of order n € 7 are listed, and
using a computer for generating m.n.-H. graphs of order n with
n ¢ 10 is reported.

2, Notation and terminology

For the sake of completeness, we recall basic names and deno-
tation. Throughout the note, G = Gn = (V,E) denotes a gimple
graph with the yertex set V(G) = V and the edge set E(G) = E
of order |V| = n and gize |E!. The degree of a vertex x €V is
denoted by d(x,G). The symbols &(G),A(G),»G), and k(G) denote
the minimum degree and the maximum degree among vertices of G,
the connectivity, and the number of components of G, respecti-
vely. A factor and a counterfactor of G are a subgraph and a
supergraph, respectively, both with the same vertex set V(G).
Symbols K;(n 2 1), Kn(n ® 2), C,(n > 3), and P (n > 1) denote
the complete graph, the totally disconnected graph, the cir-
guit, and the path of order n each. K; stands for the complete
counterfactor of G. G is called Hamiltonian if Cn is a factor
of G, Then Cn is a Hamiltonien circuit of G.

A graph G is called m.n.-H. (meximal non-Hamiltonian) graph
if it is non-Hamiltonian but, for any new edge e, i.e.,

Ye €E(K;) - E(G), the graph Gue is Hamiltonian. Thus, m.n.-H.
graphs can be also defined as maximal elements in the class of

¥

[}
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non-Hamiltonian graphs, ordered by the relation "isg a factor

of", where two graphs are considered equal if they are isomo-
;;;ic. K will stand for the class of n-vertex m.n.-H, graphs.
Following Jung /9/, the scattering number 8(G) of G is defined

ag follows.
8(G) = max {k(G-3) - ISl: S £ V(G) and k(6-5) # 1}.
For instance,
s(K)) = - n, and if n * 2 then s(K)) = n. (2.1)

The star % denotes the operation of join on disjoint graphs
with the convention that

P G¥H = Fx% GuG % H.

Following Skupied /17/, a graph G is called homogeneously
traceable if, for each vertex x, there is a Hamiltonian path

beginning at x.

3. General propertieg of m.n.-H, graphs

The m.n.-H. graphs, named "ready for a Hamiltonlan cycle" by
Bondy /3/ and “"hypertortuoug' by Nash-¥illiams /12/, have the
following property which follows easily “from Theorem 1 of Ore
/13/ (see also /12/).

Theorem 3.1: If G is an n-vertex m.n.-H. graph then the sum

of degrees of any two non-adjacepnt vertices is less than u.

The following result, formulated by Ore /14/, was proved by
Bondy /3/ and next by ChvAtal /5/ (a generalization can be
found in /19/).

Theorem 3,2: If G with n > 2 is a m.n.-H. graph of meximum
size then either G = K, » K, ¥ K, or additionally

Gn=Kj

Observe that each of those extremal graphs Gn has the scatte-~
ring number a(Gn) = 1. Note also that if, for an S £ V(G},
k(G-S) > ISl 4+ 1 then adding to G an edge connecting different

* K2 if n = 5.
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components of G-S gives a counterfactor of G which is still
non-Hamiltonian. Hence we have

Lemma 3.1: If G is an n-vertex m.n.-H. graph then g(G) £ 1.

Hence, each m.n.-H. graph G is connected. lLoreover, we have

Lemma 3.2: If G is an n-vertex m.n.-H. graph then it is connec-
ted and, for n = 3, 1€ ®(G) £ (n-1)/2.

Note that the given upper bound for x(G) is implied by Dirac's
sufficient condition for G to be a Hamiltonian graph.

In what follows the class M of n-vertex m.n.-H. graphsg %s di-
vided into three mutually disjoint (possibly empty) subclas-
ses In’ T and Jn where

n’
I = {GeM: s(G) = ¥
T o= {G-GMn: G 1is homogeneously traceable} for n 2 3,
n ') for n £ 2,
Jn = Mn - In -

4. Characterizing and counting graphs of the class I_

Recall that In consists of m.n.-H. graphs G of order n with
the scattering number s(G) = 1. It is clear tnat X, and K,
are the only m.n.-H. graphs of order 1 and 2, respectively.
By (2.1), their scattering numbers are both negative. There-
fore,

I = g for n £ 2,

Definition 4.1: We let I (%) denote the subclass of I consis-
ting of graphs G with connectivity »(G) =X.

For any n » 3, graphs belonging to In can be easily listed.
For instance,
Iy = I3(1) = {Py = XK %K, ],

: i
I, = I,(1) = (KK K.},
I = {KytKq¥Ky, Kp¥K #Kp, K3~x2], (4.1)

Tg = {KgEq*Kqs Ky#Eeeky, K K #K, ).
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4
v {K "Kz*zz' K 2**‘2} {Ky*Es) -
1:(1 (4.2)

The structure of graphs belonging to In is fully described in
the following theorem.

Theorem 4,1: Assume that n > 3, Then G¢I iff Ix: GeI (x)

with 1 € »* € (n-1)/2, or equivalently, there is an integer X
with 1 £ X £ (n-1)/2, there are X+1 positive integers n,
where n,

I;= I,()vI (2)vI7(3) { K ¥K ¥K,, K ¥K K, K34K1*K3}

2 1, and there are X+2 disjoint

w
B

Y >
- i nx+1

complete graphs Kg and Ki

(4 = 1525040, X+1) such that the

nonincreasing sequence (ni) is a partition of n-X into X+1

a and

(4.3)

where 2 _ denotes the union of disjoint graphs.

Proof: Sufficiency. Il (4.3) is true then clearly X(G)=X

and 8(G) = 1. Consequently, G is non-Hamiltonian since Hamil-
tonian graphs have non-positive scattering numbers. Note that
if e eE(KG) - E(G) then end- vertices of e belong to two dif-
ferent graphs K =~ with i > 1, Hence Gve has a Hamiltonian

circuit which includes % paths forming a factor of

evE Ki . Consequently, GeI (X), q.e.d.
i= i

Necessity. Assume that G€I . llence s8(G)=1. Consegquently,
there ig S € V(G) with |S| =: X such that 1# k(G-S) = X+1.
Let K (1 € 1<% X+ 1) be complete counterfactors of compo-
nents iof G - 35, ordered in such a way that (ni) is a nonin-
creasing sequence and let

<°xE 1\1 where V(K9) = S.
o X
Thus G is a factor of H and the graph H is non-Hamiltonian

because clearly s(H) = 1. Hence G = H because of the maxi-
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mality of G, Moreover, X is the connectivity of G. Hence,
by Lemma 3.2, X satisfies the desired inequalities, q.e.d.

Remark: Theorem 4.1 resembles those of /15/ and /16/. The
above proof is very similar to that given in /15/. Conse-
quently, the cardinality tInl of In can be found by a
similar method as that used in /16/.

Recall (cf. /6/) the following

Definition 4.2: A partition of a positive integer s into r
parts is a nonincreasing sequence of r positive integers

Ag By @ eee (D 1) whose sum is s. Let p(s,r) denote the
number of those partitions. Moreover, p(0,0): = 1.

Corollary 4.1: There ig 8 one-to-one correspondence between
;Pixz and the class of partitions of n-X into X+ 1 parts.
Consequently,

|I,(0] = p(n=x, X+1) for n =3 and 1 <X $ (n-1)/2. (4.4)

Theorem 4,2 (counting graphs belonging to In): For positive
integers n and X with n 2 3,

(n-1)/2]
7,0 = CER o), (4.5)
1. ()] = Wn-1/2], (4.6)
[1,00] = [T _o0x=1)] + |1, ()] 1if w2 2, (4.7)
]In(X)I =0if X > (n-1)/2, n 2 0. (4.8)

Proof: (4.5) follows from Lemma 3.2. (4.6) is an easy conse-
quence of (4.4) end Definition 4.2. As it is well-known from
the additive number theory (cf. /6/),

p(s,r) = p(s-1, r-1) + p(s-r, r)
with the initial conditions p(s,r) = 1 if 8 = 0 = r and
p(s,r) = O if neither 8 = O = r nor 1 € r < s.

Hence, by (4.4), both (4.7) and (4.8) follow, q.e.d.
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5. m.n.-H. graphs with non-positive scattering number

m.n.-H. graphs are precisely those graphs which are non-Hamil-
tonian and contain Hamiltonian paths between each pair of non-
adjacent vertices. Consequently, homogeneously traceable gra-
rhs among m.n.-H, graphs Gn with n 2 3 are precisely those Gn
with A(G ) < n-1. Hence we obtain

Lemma 5,1: GETu iff GedM, and A(G) < n-1.
Theorem 5.1: If G ETu then A(G) £ n-4.

A more general result is proved independently in /4/ and /18/.
The simple proof given in /18/ is suggested by Lemma presented
in /10/. Also the following theorem follows from a result
found independently by the three authors of /4/ and the pre-
sent author.

Theorem 5.2: T, # g iff n 2 9.

Skupies proved that \T9l = 1. The unique element of T9 con-
gists of three mutually disjoint triangles with 6 new edges
which form two disjoint triangles. So if G €T9 then A(G) = 4.
Theorem 5.1 can be improved.

Theorem 5.3 (Skupiefi): There is GeT with AG) = n-4 iff
n > 10,

————

From Theorem 4.1 it follows that A(G) = n-1 if G €I . Hence,
owing to Lemmas 5.1 and 3.1, and definitions of In, Tn,
we obtain

Theorem 5.4: Classes In' Tn’ and Jn are mutuallxvdisjoint.
Moreover, if G €M then A(G) = n-1 iff Gel v J ag well
as s(G) £ 0 iff GéTnUJn. Furthermore,

J, = {GeM: 8(G) 0 and A(G) = n-1}.
Definition 5.1: Let K;B dencte the complete graph Kn together
with 3 independent hanging edges (n 2 3).

and Jn,

. 43
Lemma 5.2: If n * 7, the graph F : = h1*hn_4 belongs to J .

In fact, it is easily seen that Fne b, A(Fn) = n-1, and
Fn¢ Ino
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6. Generating 2-connected m.n.-H. graphs

Lemma 6.1: If G is & 1-connected m.n.-H. graph and G # K2 then

GeTl .
—=n
Proof: In fact, then s(G) = 1.

Since graphs of the class In have been completely described,
only 2-connected m.n.-H. graphs (which do not belong to In)

are of interest. Obviously, if X(G) ® 2 then G contains a mi-
nimal block as a factor. Gonsequently, all 2-connected m.n.-H.
graphs G, can be obtained from the catalog of all minimal non-
Hamiltonian blocks of order n by adding new edges. Since such
catalogs do exist /7/, therefore this idea led the present
author to the following results which together with formulas
(4.1), (4.2) and Definition 5.1 gave lists of G €M  with n £ 7.

Moo= J, = {K} if 1<n¢<2,
Mn = In if 3emn <6, a
My = Ipvd, with J., = {K, *K37}.

To produce such lists for bigger n, a computer was used /8/.
Results are summarized in the following table. The numbers
marked by the star * are due to /8/.

o
=
:j—

19,

1 1 - - 1
2 1 - - 1
3 1 1 - -
4 1 1 - -
5 3 3 - -
6 3 3 - -
7 7 6 - 1
8 9% 1 2%
9 18" 11 1 6"
10 3% .13 A Vi
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