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Abstract

For a given structure D (digraph, multidigraph, or pseudodigraph) and an integer r large
enough, a smallest inducing r-regularization of D is constructed. This regularization is an
r-regular superstructure of the smallest possible order with bounded arc multiplicity, and
containing D as an induced substructure. Sharp upper bound on the number, ρ, of necessary
new vertices among such superstructures for n-vertex general digraphs D is determined, ρ

being called the inducing regulation number of D. For ∆̃(D) being the maximum among
semi-degrees in D, simple n-vertex digraphs D with largest possible ρ are characterized if
either r ≥ ∆̃(D) or r = ∆̃(D) (where the case r = ∆̃ is not a trivial subcase of r ≥ ∆̃).

1 Introduction

Different notions of regulation of a simple graph have been considered by a number of authors.
Regulation of a graph consist in embedding the graph into a regular graph or a regular multigraph.
We are interested in so-called inducing regulation in which a given structure (a general graph or
a general digraph) is embedded as an induced substructure.

Let G be a given structure. A result of regulation of G is called a regularization of G. For
an integer r large enough, an r-regular superstructure containing G as an induced substructure
is called an inducing r-regularization (or simply inducing regularization) of G. Thus inducing
regularization involves additional new vertices such that each new line (edge or arc) is necessarily
incident to a new vertex. This contrasts with Berge’s notion of regularisable graphs [4, 5, 6] (see
also Jaeger and Payan [14]) wherein only old edges can be multiplied (replaced by parallel edges)
in order to produce a regular spanning supermultigraph.

Another variant of regulation of a simple graph G with maximum degree ∆ is studied in
[1, 2, 8]. In this case not only new vertices but also new edges joining old nonadjacent vertices
are allowed in order to construct a smallest ∆-regular simple supergraph of G. Then the number
r(G) of new vertices which must be added to G is studied under the name of regulation number

of G in Akiyama and Harary [2]. An algorithm for determining r(G) is also mentioned there.
The sharp upper bound on r(G) is found in Akiyama et al. [1]. Namely, for graphs G with given
∆ = ∆(G), either r(G) ≤ ∆ + 2 if ∆ is odd or r(G) ≤ ∆ + 1 if ∆ is even. Algorithmic aspects of
determining both r(G) and the smallest ∆-regular supergraph of G are presented in Bodlaender
et al. [8] (without quoting [2]). If r(G) = 0 then G is called ∆-regularizable [8] and this notion is
in opposition to regularisable graphs in the sense of Berge. The two notions are totally unrelated
(no one or its negation implies or excludes the other). For example, the path P3 is 2-regularizable
and is not regularisable, the join 2K1 ? (K1 ∪K2) is regularisable and is not 3-regularizable, the
complete bipartite graph K2,3 is neither regularisable nor 3-regularizable, and the graph obtained
from the cycle C6 by adding a diagonal is both regularisable and 3-regularizable.

When dealing with regulation, one can impose extra requirements on regular superstruc-
ture. In case of an inducing regulation of a given simple graph it is especially restrictive to require

1



that a regular superstructure be strongly regular. This kind of superstructure (namely, inducing

strong regularization in our language) is studied in several articles (e.g. [7, 15]) and Jajcay and
Mesner [15] have succeeded in providing a construction which is polynomial for all given simple
graphs. Namely, inducing strong regularization based on Desarguesian affine plane geometries
in [15] has O(n4) vertices for any n-vertex graph. Moreover, it is noted in [15] that a smaller
inducing strong regularization, if any, can be obtained only by using another family of strongly
regular graphs.

Inducing regulation of multigraphs is originated by König [16, 17] as early as 1916. Spec-
ification for simple graphs appears in Chartrand and Lesniak’s book [9]. Optimal (i.e., the
smallest) inducing graphical regularization (within simple graphs) with a fixed maximum degree
is characterized by Erdős and Kelly’s theorem [10, 11], found about 40 years ago. Their result
is a straightforward corollary in our paper [12]. The most general results on optimal inducing
regulation of graphs, multigraphs and pseudographs are presented in [12].

In this paper it is proved that the smallest number of new vertices among all inducing
r-regularizations of a general n-vertex digraph D with a fixed upper bound p on arc multiplicity
is at most max{dr/pe, n}. Moreover, the smallest inducing r-regularization F (D), i.e. inducing
r-regularization with minimum number of vertices, is constructed. Next all n-vertex simple
digraphs D with largest number n+max{r, n} of vertices in the smallest inducing r-regularization
of D are characterized. Similarly, all of digraphs D are characterized in case when a smallest
regularization preserves the maximum, ∆̃, among semi-degrees in D and the number of new
vertices necessarily is the largest possible (and is n or n − 1 depending on ∆̃). The latter
characterization (for r = ∆̃) is thus not a special case of the former one (for r ≥ ∆̃), which rather
trivially is not a surprise.

2 Inducing regulation number

Digraphs are finite and simple, multidigraphs without loops, and pseudodigraphs may contain
loops and multiple arcs. Similarly we differentiate between graphs, multigraphs, and pseudo-
graphs. Our special symbol Ko

n stands for a complete pseudograph on n vertices (with edge
multiplicity 1). For undefined terminology and notation we refer to Chartrand and Lesniak [9].

Speaking about a general structure (general graph or general digraph), we have in mind a
P-structure (pseudostructure, with loops allowed) or an M-structure (multistructure, loopless).
Therefore we possibly speak about an X-structure where X is a variable, X ∈ {M, P}. In fact,
we shall use names X-graph and X-digraph. Define Xp

r to be the class of X-structures F where
r is an upper bound on maximum degree (in case of graphs F ) and maximum semi-degree (in
case of digraphs F ), p being the upper bound on line multiplicity in F . Hence Xp

r stands for Mp
r

or Pp
r . Given an X-structure G and large enough integers r and p, an r-regular Xp

r -structure
F is called Xp

r -regularization (or inducing regularization within Xp
r ) of G if F contains G as an

induced substructure. We define the Xp
r -regulation number (or inducing regulation number) of

G, in symbols ρ(G,Xp
r ), to be the smallest number of new vertices among all Xp

r -regularizations
of G. We have tacitly assumed that lines of G, if exist, determine whether Xp

r -regularization of
G is to be graphical or digraphical. If G = Kn, the notion of Xp

r -regularization of G in case
r > 0 is ambiguous. Therefore we then use symbols ~ρ and ρ in order to differentiate between
respectively digraphical and graphical regularization of Kn, e.g., ~ρ(K2n,M1

2n+1) = 2n + 1 and

ρ(K2n,M1
2n+1) = 2n+2 can be seen. Using the variable symbol X enables us to state our results

jointly on M-structures and on P-structures.
Our new results are very much like the former ones on undirected general graphs.

Theorem 0 ([12]) Given an X-graph G on n vertices with minimum and maximum degrees δ
and ∆, let p and r be integers such that r ≥ ∆ and p is an upper bound on the maximum edge

multiplicity in G. The inducing regulation number ρ(G,Xp
r ) of G is the least nonnegative integer

t such that, for σ =
∑

v∈V (G) (r − degG(v)),
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(i‘ ) tr ≥ σ;

(ii‘ ) pt ≥ r − δ;

(iii‘ ) (t + n)r is an even integer;

(iv‘ ) either pt2 − (r + p)t + σ ≥ 0 if X = M or pt2 − (r − p)t + σ ≥ 0 if X = P.

Moreover, ρ(G,Xp
r ) ≤











dr/pe + 1 if both r and dr/pe + n are odd,

dr/pe > n, and δ < r + p − p dr/pe,

max{dr/pe, n} otherwise.

The order and size of an X-digraph are the number of vertices and that of arcs, respectively.
The ordered pair (odD(v), idD(v)) of semi-degrees of a vertex v (the outdegree, odD(v), followed
by the indegree, idD(v)) is called the degree pair of v. Note that the sum of outdegrees and
that of indegrees over all vertices of an X-digraph coincide. An X-digraph is called diregular

or r-diregular if all its vertices have the same degree pair (r, r) (r = 0, 1, 2, . . .). The number
of arcs from vertex v to vertex u is called the arc multiplicity of the ordered vertex pair (v, u).
Notice that if an r-diregular X-digraph with any arc multiplicity bound p has n vertices then
r ≤ p(n − 1) if X = M and r ≤ pn if X = P. Let pDKn (resp. pDKo

n) be the complete
n-vertex M-digraph (P-digraph) with arc multiplicity p; DKn and DKo

n stand for 1DKn and
1DKo

n, respectively.
Let D be an X-digraph of order n such that the maximum and minimum among semi-

degrees in D are ∆̃ and δ̃, respectively. Assume that V = {v1, v2, . . . , vn} is the vertex set of D.
Given any integer r ≥ ∆̃, the differences

a+
i := r − odD(vi) and a−

i := r − idD(vi)

are the r-semi-deficiencies (called r-out-deficiency and r-in-deficiency, respectively) of the ith
vertex vi in D. Then r − δ̃ is the maximum r-semi-deficiency among vertices of D. Let

σ+ =
∑

i

a+
i

be the sum of r-out-deficiencies, which clearly is the sum, say σ−, of r-in-deficiencies; σ+ = σ−.
Given a parameter ξ of D (e.g., ξ = δ̃, ∆̃, σ+) we replace ξ by ξ(D) in case we want to avoid
ambiguity.

Theorem 1 Let D be an X-digraph of order n, with vertex semi-degrees at most r (r ≥ ∆̃)
and with arc multiplicity at most p. The inducing regulation number ρ(D,Xp

r ) of D is the least

nonnegative integer t such that

(i) tr ≥ σ+;

(ii) pt ≥ r − δ̃

(iii) either

(M) pt2 − (r + p)t + σ+ ≥ 0 if X = M or

(P ) pt2 − rt + σ+ ≥ 0 if X = P

where δ̃ = δ̃(D), σ+ = σ+(D). The following bound is sharp.

ρ(D,Xp
r ) ≤ max{dr/pe, n}.
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3 Proof of the main result

Proof of Theorem 1. Let F be a smallest Xp
r -regularization of D, D ⊆ F . Then F = D if D

is r-diregular, that is, if σ+ = 0. On the other hand, for σ+ = 0, t = 0 satisfies all requirements
of Theorem 1. Consider the case σ+ > 0. Let H = F − V (D) and let t = |V (H)|.

Necessity. The total number of arcs in F with terminal vertices in the sub-X-digraph H is tr
and cannot be smaller than the number of arcs, σ+, from D to H, i.e., (i) follows. On the other
hand, the number tr does not exceed σ+ + t(t − 1)p for X = M and σ+ + t2p for X = P where
t(t − 1)p and t2p are the maximum numbers possible of arcs in H itself for X = M and for
X = P, respectively. This gives (M) and (P ). The largest semi-deficiency at a vertex of D,
which is equal to r − δ̃, forces condition (ii). So all three conditions are necessary.

Sufficiency. Let t be the least positive integer satisfying conditions (i)–(iii). Assume that
V = {v1, v2, . . . , vn} = V (D). Let U be a set of t extra vertices u1, u2, . . . , ut. Let B be a
bipartite V –U multidigraph which, for each vi, comprises a+

i arcs from vi to U as well as a−

i

arcs from the set U to the vertex vi. Thus 2σ+ is the number of all V –U arcs. Define a digraph
F to be the arc-disjoint union of X-digraphs D, B and H where H is induced by the set U .
Assume that V –U arcs make up a sequence A such that each arc directed from V precedes each
arc directed to V . Moreover, for each i (≤ n − 1), arcs directed from vi+1 follow all those from
vi, and similarly, arcs directed to vi precede all those to vi+1. In order to establish incidence of
V –U arcs with vertices of U , consider the auxiliary sequence of vertices (ũ1, ũ2, . . . , ũt, . . . , ũ2σ+),
where ũj = uk if j ≡ k (mod t) for j = 1, . . . , 2σ+ and k = 1, . . . , t. Assume that the jth vertex
ũj is made incident to the jth arc of A. Thus arcs of B both those from any v ∈ V to U and
ones oppositely directed, are evenly distributed among vertices in U . This fact together with
condition (ii) imply that arc multiplicities in B do not exceed p. Furthermore, F = D ∪ B if
equality holds in condition (i). For instance, this is the case if both t = 1 and X = M.

Otherwise strong inequality holds in (i), tr > σ+, and additionally t > 1 if X = M. Then
H must contain some U–U arcs. If t = 1 and X = P, then we add r − σ+ (≤ p by (P )) loops
to the vertex u1 in order to get a required H. Assume that t ≥ 2 and X ∈ {M,P}. We define
nonnegative integers h and s,

h :=

⌊

σ+

t

⌋

, s := σ+ − ht

whence σ+/t = h+s/t where s < t. Hence h < r because strong inequality in (i) is assumed. Then
idB(uj) = h + 1 for j = 1, 2, . . . , s; otherwise idB(uj) = h. On the other hand, odB(uk) = h + 1
for all s consecutive vertices in the auxiliary sequence ũht+s+1 (= us+1), ũht+s+2, . . . , ũht+2s.
This is clearly the s-subsequence us+1, us+2, . . . , u2s of (uk)k=1,...,t if s ≤ t/2. Otherwise, if
2s > t, those vertices uk make up the terminal (t− s)-section us+1, . . . , ut of (uk) and the initial
(2s − t)-section u1, u2, . . . , u2s−t. For the remaining vertices uk, odB(uk) = h.

Table 1: Distribution of degree pairs in B among vertices uk in U

degree pair for 2s > t for 2s ≤ t

(h + 1, h + 1) k = 1, . . . , 2s − t k ∈ ∅
(h, h + 1) k = 2s − t + 1, . . . , s k = 1, . . . , s
(h + 1, h) k = s + 1, . . . , t k = s + 1, . . . , 2s
(h, h) k ∈ ∅ k = 2s + 1, . . . , t

In order to construct a required X-digraph H we shall refer to Table 1. By definitions of h and
s, and by condition (iii),

r − h − s/t = r − σ+/t ≤

{

(t − 1)p if X = M,

tp if X = P.
(1)
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Because 0 ≤ s/t < 1 and remaining terms in (1) are integers, one has r − h ≤ (t− 1)p if X = M
and r − h ≤ tp if X = P. Hence the greatest remaining semi-deficiency r − h among vertices uk

in B can be covered up in H.
Recall that the complete symmetric loopless digraph DKt can be decomposed into t − 1

(1,1)-factors of which all are Hamilton dicycles unless t is even and t ≥ 4, and then precisely one
(1,1)-factor is (t/2) DK2. The existence of such a decomposition follows easily from the well-
known solution to Kirkman’s problem on packing Hamilton cycles into complete (undirected)
graph Kt, cf. Berge [3]. The (rotational) solution presented in Berge appears already in Lucas
[18] of 1883 wherein no reference to Kirkman is made. Recall that the packing in question is
an edge decomposition of Kt if t is odd and that of Kt minus a perfect matching if t is even.
Then, while passing on from Kt to DKt, (1,1)-factors of the digraph arise if each nonloop edge
is split into two opposite arcs and each Hamilton cycle of Kt is split into the union of two
arc-disjoint Hamilton dicycles of DKt. Moreover, the involved perfect matching of Kt for even
t is transformed into (1,1)-factor (t/2) DK2. Additionally, replacing each loop in the complete
pseudograph, denoted Ko

t , by a single directed loop transforms each 2-factor made up of all loops
in Ko

t into a (1,1)-factor made up of all directed loops in DKo
t .

The following decompositions will be useful.

pDKt = L1 ⊕ . . . ⊕ Lp,
pDKo

t = Lo
1 ⊕ . . . ⊕ Lo

p

where Li and Lo
i are isomorphic to DKt and DKo

t , respectively, i = 1, 2, . . . , p. Define

a :=

{

⌊

r−h
t−1

⌋

for X = M,
⌊

r−h
t

⌋

for X = P,
b :=

{

r − h mod t − 1 for X = M,

r − h mod t for X = P.

Hence, by (1), a ≤ p if b = 0 and a + 1 ≤ p if b > 0.
Case s = 0. Then all vertices uk have the same degree pair (h, h) in the digraph B, see Table 1.
If b = 0, we put

H =

{

L1 ⊕ . . . ⊕ La for X = M,

Lo
1 ⊕ . . . ⊕ Lo

a for X = P.

Otherwise we let Wj and W o
j be arc-disjoint (1,1)-factors of La+1 and Lo

a+1, respectively, i =
1, . . . , b. That many (1,1)-factors, namely b, exist because b is small enough. Then we put

H =

{

L1 ⊕ . . . ⊕ La ⊕ W1 ⊕ . . . ⊕ Wb for X = M,

Lo
1 ⊕ . . . ⊕ Lo

a ⊕ W o
1 ⊕ . . . ⊕ W o

b for X = P.

Case s > 0. Let H̃ stand for H constructed above in Case s = 0. Thus H̃ comprises r − h
arc-disjoint (1,1)-factors of pDKt or pDKo

t (depending on X). Therefore each semi-degree h + 1
of any uk listed in Table 1 becomes r + 1 in F̃ := D ∪ B ∪ H̃. We can assume that one of
the (1,1)-factors in question is a specified Hamilton dicycle, say W̃ . We claim that the required
digraph H is obtainable from H̃ by removal of s arcs of a W̃ . We specify W̃ as follows. In case
2s > t, we only assume that W̃ contains a matching comprising t − s arcs u2s−t+j → us+j with

j = 1, 2, . . . , t − s. Let 2s ≤ t. Then we assume that W̃ includes both a matching comprising
s − 1 arcs uj → us+j with j = 1, 2, . . . , s − 1 and the disjoint dipath (with t − 2s + 1 arcs)
us → u2s+1 → u2s+2 → · · · → ut → u2s, the dipath reduces to the single arc us → u2s if t = 2s.
Due to Table 1, removing from H̃ all s arcs of W̃ which are not specified above really gives the
required H.

The upper bound and its sharpness. Recall the assumption σ+ > 0. Then, for n = 1, t = dr/pe ≥
1. Let n ≥ 2.

Claim 1 Condition (M) holds for t ≥ n if r ≤ 2pn, otherwise for t ≥ dr/pe + 1 − n.
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Proof. Let L(t) stand for the left-hand side of the inequality (M). Then L(n) ≥ 0 because
L(n) = (σ+ − n(r − ∆̃)) + n((n − 1)p − ∆̃) is the sum of two nonnegative summands . Hence
(M) holds for t = n. Assume that r ≤ 2pn and note that L(t) is the quadratic trinomial in t,
which attains its minimum at τ := (r/p + 1)/2 ≤ n + 1/2. Therefore for any integer t ≥ n + 1,
L(t) > L(n) ≥ 0. Otherwise r > 2pn whence τ > n + 1/2. Therefore L(t) ≥ 0 for t ≤ n. Hence,
since L(t) is symmetrical with respect to t = τ > n, L(t) ≥ 0 for each t ≥ n+2(τ−n) = r/p+1−n.

2

Claim 2 Conditions (i)–(iii) hold for t ≥ max{dr/pe, n}.

Proof. Since σ+ ≤ nr, the condition (i) holds for t ≥ n. Moreover, both conditions (ii) and (P )
hold for t ≥ dr/pe. This together with Claim 1 proves Claim 2. 2

It remains to prove sharpness. The following n-vertex X-digraphs D show that the upper
bound on Xp

r -regulation number is sharp. For any X and any p, let D be an X-digraph with at
most r − 1 arcs if r/p ≤ n, otherwise let δ̃(D) < r + p − p dr/pe. Then ρ(D,Xp

r ) = n if r/p ≤ n,
otherwise ρ(D,Xp

r ) = dr/pe if r/p > n. The proof is complete. 2

Remark 1 Given an X-digraph D, one of the smallest Xp
r -regularizations of D is constructed

in the sufficiency part of the above proof.

4 Digraphs with largest inducing regulation number

Throughout this section, D stands for a simple digraph. Let DK−m
n denote a digraph obtained

from the complete symmetric digraph DKn by removal of any m arcs. Recall that ∆̃ and δ̃ stand
for the maximum and minimum semi-degrees in D.

Theorem 2 Use notation of Theorem 1 with exception that D is a simple digraph (on n vertices).
Then, for r > 0, the (inducing) M1

r-regulation number of D is the largest possible, ρ(D,M1
r) =

max{r, n}, if and only if any of the following four conditions (α)–(δ) holds.

(α) n ≤ r and δ̃ = 0.

(β) n = r ≥ 4, δ̃ > 0, and D = DK−m
n where 1 ≤ m ≤ n − 3 (∆̃ = n − 1).

(γ) n = r + 1 ≥ 3 and D = DK−m
n where 1 ≤ m ≤ n − 2 (∆̃ = n − 1).

(δ) n > r > ∆̃ and D has at most r − 1 arcs.

Proof. We refer to conditions (i), (ii), and (M) in Theorem 1, with p = 1.

Sufficiency. If (α) holds then t ≥ r ≥ n by (ii). If (δ) holds then σ+ > (n − 1)r and therefore
t ≥ n by (i).

Claim A Condition (M) with p = 1 holds for t ≥ r + 1 − j as well as for t ≤ j and does not

hold for t ∈ [j + 1, · · · , r − j] if and only if

j(r + 1 − j) ≤ σ+ < (j + 1)(r − j) (2)

where r > 0, j = 0, 1, · · · ,
⌈

r
2

⌉

− 1.

Proof. Notice that condition (M), t(t − r − 1) + σ+ ≥ 0, is satisfied for t = r + 1 − j if and
only if it is satisfied for t = j. Moreover, (M) is satisfied for t = r + 1− j and is not satisfied for
t = r − j exactly if inequalities (2) hold. Since (M) is a quadratic inequality in t, the rest of the
proof is easily seen. 2

If (β) holds then r + 1 ≤ σ+ < 2r − 2. Hence t ≥ 2 by (i) and then condition (M) forces
t ≥ r = n due to Claim A (with j = 1). If (γ) holds then 0 < σ+ < r and therefore t ≥ r +1 = n
is forced by (M) due to Claim A (with j = 0).
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Necessity. Let D be a simple digraph with M1
r-regulation number ρ = max{r, n}. If δ̃ = 0 and

r ≥ n then condition (ii) forces t ≥ r which implies (α). Suppose that r > n ≥ 2 and δ̃ > 0.
This leads to ρ < r, a contradiction, because conditions (i), (ii), and (M) (due to Claim 1 in
proof of Theorem 1) are satisfied for t ≥ r − 1 (≥ n).

It remains to assume that n ≥ 2, r ≤ n, and δ̃ > 0 if r = n. Notice that condition (i)
forces t ≥ n if and only if σ+ > (n − 1)r or—equivalently—D is a digraph with at most r − 1
arcs. Hence ∆̃ ≤ r − 1. Moreover, since D has less than n arcs, δ̃ = 0 whence n > r. Therefore
condition (δ) is satisfied. It remains to identify requirements under which t ≥ n is forced by (M).

Claim B If n ≥ r and σ+ > 0, then condition (M) with p = 1 holds for

t ≥

{

r if ∆̃ < r,

∆̃ + 1 otherwise (r = ∆̃).

Proof. For r > ∆̃,
σ+ ≥ (r − ∆̃)n ≥ r − ∆̃ + n − 1

whence σ+ ≥ r. Therefore condition (M) can be seen to hold for t = r. By Claim A (with j = 0)
condition (M) is satisfied for t ≥ r + 1. Hence, if r = ∆̃ then (M) holds for t ≥ ∆̃ + 1. 2

Due to Claim B, condition (M) can force t ≥ n only when either r = n (and δ̃ > 0)
or r = n − 1 = ∆̃. Hence, due to Claim A (with j = 0, 1), t ≥ n can be forced whenever
n = r ≤ σ+ < 2r−2 and δ̃ > 0 or σ+ ≤ n−2 (< r) and r = n−1 = ∆̃. Since σ+ > 0 necessarily
holds, the last case is equivalent to (γ) because σ+(DK−m

n ) = m. Consider the former case and
assume that r = n, δ̃ > 0, and n ≤ σ+ < 2n− 2. Then σ+ > n because otherwise D = DKn and
all three conditions (i), (ii) and (M) are satisfied for t = 1. Moreover, if σ+ > n then t 6= 1 by
condition (i). Thus condition (β) holds. 2

Let Rr(n) denote the largest inducing regulation number ρ(D,M1
r) among n-vertex simple

digraphs D with ∆̃(D) = r.

Corollary 3 For n ≥ 2 and r > 0, Rr(n) ≤ n. The only n-vertex simple digraphs D with

∆̃(D) = r and ρ(D,M1
r) = n are those satisfying condition (γ) above, that is, D = DK−m

n where

n ≥ 3 and 1 ≤ m ≤ n − 2 whence ∆̃(D) = n − 1. 2

Note that, for n = 2, R1(2) = ρ( ~P2,M
1
1) = 1.

Theorem 4 Assume that n ≥ 3 and 0 < r ≤ n − 2. Then Rr(n) = n − 1. Moreover, D is an

(extremal) n-vertex digraph with ∆̃(D) = r and ρ(D,M1
r) = n − 1 if and only if either

(α∗) D has m arcs where r ≤ m ≤ 2r − 1 and there are r and not more than r of those arcs

which are directed either to or from a vertex of D or

(β∗) D = DK−m
n where n ≥ 4, n + 1 ≤ m ≤ 2n − 3, and (1, 1)-factor of DKn is formed of n

from among m removed arcs.

Proof. We refer to conditions (i), (ii), and (M) with p = 1 in Theorem 1.

Necessity. Notice that condition (ii) holds for t ≥ n− 2 ≥ r. Hence t ≥ n− 1 has to be forced by
(i) and (M) only. Moreover, σ+ ≤ (n − 1)r for all digraphs D with ∆̃(D) = r whence condition
(i) holds for t ≥ n−1. Then (i) forces t ≥ n−1 if and only if σ+ > (n−2)r or—equivalently—D
is a digraph with at most 2r − 1 (and at least r) arcs. Therefore condition (α∗) holds.

Due to Claim B, condition (M) forces t ≥ n− 1 only when r = n− 2. Hence, due to Claim
A (with j = 0), t ≥ n − 1 can be forced by (M) if σ+ ≤ n − 3 (< r). Since σ+ > 0 necessarily
holds, condition (β∗) is satisfied.

Sufficiency. If (β∗) holds then ∆̃(D) = r = n − 2, 0 < σ+ ≤ n − 3 < r, and therefore
condition (M) forces t ≥ r + 1 = n − 1 due to Claim A (with j = 0). If (α∗) holds then
(n− 2)r < σ+ ≤ (n− 1)r and t ≥ n− 1 is forced by (i). Hence Rr(n) = n− 1 since, by Corollary
3, Rr(n) is not larger. 2
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5 Concluding remarks

Some remarks on complexity of our main results, presented in Theorem 1 and Section 3, follow.
We assume that a representation of an Xp

r -digraph D together with corresponding parameters
δ̃, ∆̃, σ+ which fit to constants r, p are included in the input. Therefore the complexity of
determining the inducing regulation number ρ = ρ(D,Xp

r ) reduces to the time complexity of a
few operations solving inequalities (i)–(iii). The only problem is that possibly large numbers,
e.g. σ+, are involved. However, some simplifications are possible. For instance, the inequality
(iii) holds in case σ+ ≥ (r + p)2/4p or σ+ ≥ r2/4p (depending on X = M or P ).

Due to Remark 1, in order to estimate the time complexity of constructing a smallest
(inducing) Xp

r -regularization, say F , of D we refer to the sufficiency part of the related proof,
see Section 3. Recall that F = D ∪ B ∪ H. It can be seen that the number of steps which are
required to construct digraphs B and H is proportional to 2σ+ (with σ+ ≤ nr) and rρ − σ+,
respectively. Hence the construction can be completed in time proportional to (n + ρ)r, the size
of the output.

The construction of the analogous X-structure H in case of the undirected X-graph G (see
Theorem 0) is a bit simpler. Details are presented in [13].
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