
Parallel Computing of Kernel Density Estimates
with MPI

Szymon ÃLukasik

Department of Automatic Control, Cracow University of Technology,
ul. Warszawska 24, 31-155 Cracow, Poland

Szymon.Lukasik@pk.edu.pl

Abstract. Kernel density estimation is nowadays a very popular tool for
nonparametric probabilistic density estimation. One of its most impor-
tant disadvantages is computational complexity of calculations needed,
especially for data-based bandwidth selection and adaptation of band-
width coefficient. The article presents parallel methods which can signif-
icantly improve calculation time. Results of using reference implemen-
tation based on Message Passing Interface standard in multicomputer
environment are included as well as a discussion on effectiveness of par-
allelization.

Key words: kernel density estimation, plug-in method, least squares
cross-validation, adaptive bandwidth, parallel algorithms, MPI

1 Introduction

Nonparametric methods find increasing number of applications in data mining
problems. One of its main tools is kernel density estimation (KDE) introduced
by Rosenblatt in 1956 [1] and Parzen in 1962 [2]. It has been successfully used in
various applications like image processing [3], medical monitoring [4] and market
analysis [5]. Theoretical and practical aspects of the estimation itself are covered
in detail in numerous publications, e.g. popular monographs [6] and [7].

For n-dimensional probabilistic variable X with sample xi of length m, kernel
K and bandwidth h, the kernel density estimation evaluated for x is defined as
a function:

f̂(x) =
1

mhn

m∑

i=1

K

(
x− xi

h

)
. (1)

It can be seen that computation of KDE is of complexity O(nm). Thus, long
samples and large number of points p for which kernel density estimates are
calculated can seriously influence the estimation time. The evaluation of density
estimates can be made even more resource exhausting when one wishes to use
bandwidth variation as suggested by Abramson [8]. Computational complexity
of additional calculations is O(nm2) in this case.



2 S. ÃLukasik

Methods of data-based optimal bandwidth calculation have also high com-
putational demands. Second order plug-in method [9], which involves estimating
second derivative of density function from given sample, is of O(nm2) complex-
ity. Also least squares cross-validation method (LSCV) [10, 11], where selecting
optimal bandwidth is based on minimizing objective function g(h), has the same
polynomial time complexity.

Few approximation techniques have been proposed to deal with the problem
of time-consuming calculations of kernel density estimates. The first of them,
proposed by Silverman [12], uses fast Fourier transform (FFT). The other one
applies Fast Gauss Transform (FGT) as suggested by Elgammal [13].

An alternative to those methods could use parallel processing for obtaining
density function estimates. The pioneer paper in this subject is due to Racine
[14]. It proves the usability of parallel computations for kernel density estimation
but covers in detail only the estimation itself. Parallelization is done by dividing
set of points where estimator is to be evaluated. Each processor obtains the
density function estimation for approximately p

c points (where c denotes number
of CPUs involved).

The aim of this paper is to verify how parallel processing can be applied for
kernel estimation, bandwidth selection and adaptation. All presented algorithms
have been implemented and tested in a multicomputer environment using MPI
(Message Passing Interface) [16]. A possibility of parallelization at the sample
level, by distributing the sample and calculating approximately m

c sums in (1)
separately on each of the c CPUs for every evaluated point x, is also discussed.

2 Parallelization methods

Following subsections will briefly present routines for obtaining kernel density
estimates using parallel processing. All algorithms will be included in the form
of pseudo-code with group operations treated as collective ones.

In the presented code listings subsequent notation was used: proc rank is cur-
rent processor number (including 0 as a root/master processor), proc no - overall
number of processors involved c, sample[k] - kth sample element, sample length
- sample length m, x eval[k] - kth evaluation point, f[k] - the estimator value for
x eval[k] and ev points - the overall number of points p where estimator is to be
evaluated.

2.1 Kernel Density Estimation

Parallelization of estimation process can be achieved either by dividing set of
evaluation points or sample data. Both of suggested parallelization schemes were
presented using code attached below:

Parallel KDE at evaluation level

Broadcast(sample);

shift:=proc_rank*ev_points/proc_no;



Parallel Computing of KDE with MPI 3

/* evaluation of KDE for x[k+shift] using all sample elements */

for k:=1 to ev_points/proc_no do

f[k+shift]:=Compute_KDE(x[k+shift],sample,1,sample_length);

Gather_at_root(f);

return f;

Parallel KDE at sample level

Scatter(sample);

shift:=proc_rank*sample_length/proc_no + 1;

/* evaluation of KDE for x[k] using sample starting from element

sample[shift] to element indexed by shift+sample_length/proc_no */

for k:=1 to ev_points do

f[k]:=Compute_KDE(x[k],sample,shift,shift+sample_length/proc_no);

Aggregate_at_root(f);

return f;

In the first case (presented already in [14]) whole sample should be distributed
among processors taking part in calculations. In the end evaluated kernel esti-
mator values should be gathered at the master machine. The alternative is to
implement parallel model at the sample level - each CPU calculates all esti-
mator values but considering only the part of a sample. Results are globally
aggregated at the master machine. In this version of the algorithm there is no
need to broadcast all sample points.

2.2 Bandwidth Selection Using Plug-in Method

Let us consider commonly used two-stage direct plug-in method of Sheather-
Jones [7]. Proposed parallel algorithm for plug-in bandwidth selection with par-
allelization at the sample level is introduced below:

Parallel plug-in bandwidth selection

Broadcast(sample);

shift:=proc_rank*sample_length/proc_no + 1;

/* estimation of plug-in psi functional of order i using sample starting

from element sample[shift] of length sample_length/proc_no */

for i:=6 and 4 do

psi[i]:=Compute_SJF(i,sample,shift,shift+sample_length/proc_no);

Aggregate_at_all(psi[i]);

h=Select_Bandwidth_at_root();

return h;

2.3 Bandwidth Selection Using Least Squares Cross-Validation
Method

The problem of minimizing score function g(h) can be approached using direct
evaluation of the function in selected range with a required step or by applying
some optimization technique. Underlying evaluation of the score function can be



4 S. ÃLukasik

easily parallelized at the sample level. Due to lack of space, only the algorithm of
direct parallel minimization of g(h) will be presented here. Experimental results
were obtained using golden section rule [15].

Parallel LSCV bandwidth selection

Broadcast(sample);

shift:=proc_rank*sample_length/proc_no + 1;

g_min:=infinity, h_min:=0;

for h:=h_start to h_stop do

/* calculation of g(h) using sample starting from

element sample[shift] of length sample_length/proc_no */

g:=Compute_G(h,sample,shift,shift+sample_length/proc_no);

Aggregate_at_root(g);

if g<g_min then g_min:=g, h_min:=h;

return h_min;

2.4 Adaptive Bandwidth

In order to reduce computational burden of bandwidth modifying coefficients
calculation using Abramson method [8] parallel processing can be applied as
presented below:

Parallel bandwidth adaptation

Broadcast(sample);

shift:=proc_rank*sample_length/proc_no;

/* first obtain unmodified estimates for sample points

taking into consideration all sample elements */

for k:=1 to sample_length/proc_no do

f[k+shift]:=Compute_KDE(sample[k+shift],sample,1,sample_length);

Gather_at_all(f);

/* then calculate geometric mean of estimates using

sample_length/proc_no KDE values starting from f[1+shift] */

mean=Compute_Mean(f,1+shift,1+shift+sample_length/proc_no);

Product_at_all(mean);

/* obtain modifying coefficients */

for k:=1 to sample_length/proc_no do

s[k+shift]:=(f[k+shift]/mean)^(-0.5);

Gather_at_all(s);

return s;

Modifying coefficients si can be easily incorporated into variable bandwidth
parallel kernel density estimation (with hi = h · si) similarly as it was presented
in Section 2.1.

3 Experimental Results

Reference implementation of proposed parallel algorithms was prepared to ex-
amine their efficiency. As a measure of parallelization performance following



Parallel Computing of KDE with MPI 5

efficiency function was chosen:

E(c) =
T (c)
T (1)

1
c
100% . (2)

where: T (c), T (1) are computation times for c CPUs and one CPU accordingly.
Presented results were obtained for multiple execution of algorithms in Ethernet
standard computer network of 6 Pentium R©4 machines with MPICH-2 library
used as a parallelization tool. The estimation was performed with radial normal
kernel function for randomly generated one-dimensional samples. Some sample
lengths correspond to those considered in [14], the others were chosen to create
broader view on an average parallel estimation execution time (given in seconds).
Due to space limitations only selected results were presented - full set can be
obtained from author’s web site (http://www.pk.edu.pl/~szymonl).

3.1 Parallel Kernel Density Estimation

First, the performance of two proposed parallelization schemes were tested for
varying sample size and number of evaluation points. During the testing proce-
dure m = p was assumed (like in [14]). Obtained results (presented in Fig. 1)
include, for reference, computation times for sequential (c = 1) version of the
KDE.

m=p

5000 10000 15000

T
(c

) 
[s

]

0

10

20

30

40

50

60

70

80

90

100

Sequential KDE, c=1
Parallel KDE (evaluation level), c=2,...,6
Parallel KDE (sample level), c=2,...,6

5000 10000 15000

E
(c

) 
[%

]

50

55

60

65

70

75

80

85

90

95

100

Fig. 1. Execution times and efficiency of parallel kernel density estimation methods

It can be seen that results for small sample lengths are not encouraging,
taking into consideration both calculation time and efficiency. The overhead,
which include times of communication, synchronization and input/output op-
erations, has a significant influence on effectiveness of multicomputer parallel



6 S. ÃLukasik

system. Nevertheless, increasing problem size leads to speed-up which close to
linear.

Parallelization at the evaluation level in most cases performs better than the
scheme with distribution of sample elements. The time cost of global aggrega-
tion (using MPI Reduce) in the multicomputer environment dominates the gain
achieved by distributing smaller amount of data at the first phase of estimation.
The proposed parallelization scheme can be applied successfully when m À p,
though. The difference between performances of the presented methods is under
these assumptions neglectable. For instance, if m = 50000, p = 5000 and c = 3
algorithm using parallelization at the sample level is only 0.3 s slower (which is
a fraction of 107.8 s processing time for c = 1).

3.2 Parallel Bandwidth Selectors

Observing high computational complexity of data-based bandwidth selectors
leads to preliminary conclusion, that parallel processing in the case of both
plug-in and LSCV methods will give significant improvement in calculation time.
Results of test performed for variable sample lengths presented in Fig. 2 confirm
it. When ruling out cases where too many CPUs were assigned to a very small
task, relatively high parallelization effectiveness can be also noticed. Advantage
of using parallel processing is in case of least squares cross validation more
considerable - it is a direct effect of substantial computational demands raised
by this method.

m

5000 10000 15000

T
pl

ug
in

(c
) 

[s
]

0

50

100

150

200

250

300

350

400

450

500

T
LS

C
V

(c
) 

[s
]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Sequential plug-in, c=1
Sequential LSCV, c=1

5000 10000 15000

E
(c

) 
[%

]

86

88

90

92

94

96

98

100

Parallel plug-in, c=2,...,6
Parallel LSCV, c=2,...,6

Fig. 2. Execution times and efficiency of parallel plug-in method and parallel least
squares cross-validation



Parallel Computing of KDE with MPI 7

3.3 Parallel Bandwidth Adaptation

Finally parallelized routine for bandwidth adaptation was under investigation.
The test was conducted with m = p. Considered scheme of algorithm involved
also parallelizing the density estimation itself at evaluation level. Results of the
test are enclosed in Fig. 3.

m=p
5000 10000 15000

T
(c

) 
[s

]

0

50

100

150

200

250

300

350

Sequential KDE with bandwidth adaptation, c=1
Parallel KDE with bandwidth adaptation, c=2,...,6

5000 10000 15000

E
(c

) 
[%

]

80

85

90

95

100

Fig. 3. Execution times and efficiency of parallel KDE with bandwidth adaptation

In contrast to parallel kernel estimation with fixed bandwidth, performing
parallel bandwidth adaptation can be judged as highly effective, even when rel-
atively small sample is under consideration. The obtained speed-up of computa-
tion, with increasing CPUs number, is in this case close to linear.

4 Conclusion

The article positively verifies the possibility of applying parallel algorithms for
speeding up time-consuming process of kernel density estimation. Beneficial ef-
fects of parallelization, already proved for KDE [14] itself, were also confirmed for
popular data dependent bandwidth selectors and bandwidth adaptation. More-
over, for fixed sample size, gain of using parallel calculation is in those cases
more significant.

The option of using the alternative parallelization scheme for kernel density
estimation - at the sample level - was also under consideration. Empirical studies
proved that the proposed method is, in general case, not as effective as parallel
evaluation of density estimates.

As in every parallel processing application it is important to note, that proper
care has to be taken of granularity of calculation if one wishes to obtain effective
use of engaged resources. Parallel bandwidth selectors and bandwidth adaptation



8 S. ÃLukasik

involve substantial number of collective operations executed between calculation
cycles so it would be also advisable to use load-balancing in order to eliminate
overhead generated by MPI tasks synchronization routine (MPI Barrier).

Acknowledgments. I would like to thank Prof. Zbigniew Kokosiński for his
support and comments on an earlier version of this paper. I’m also grateful for
valuable suggestions of anonymous reviewers.

References

1. Rosenblatt, M.: Remarks on Some Nonparametric Estimates of a Density Function.
Annals of Mathematical Statistics 27 (1956) 832–837

2. Parzen, E.: On Estimation of a Probability Density Function and Mode. Annals of
Mathematical Statistics 33 (1962) 1065–1076

3. Mittal, A., Paragios, N.: Motion-Based Background Subtraction Using Adaptive
Kernel Density Estimation. IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition 2 (2004) 302–309

4. Cerrito, P.B., Barnes, G.R.: The Use of Kernel Density Estimators to Monitor
Protocol Compliance. Proceedings of the Twenty-Fifth Annual SAS R©Users Group
International Conference SUGI25 (2000) paper no. 273

5. Donthu N., Rust, R.T.: Estimating Geographic Customers Densities using Kernel
Density Estimation. Marketing Science 8 (1989) 191–203

6. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London (1986)

7. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, London (1995)
8. Abramson, I.: On Bandwidth Variation in Kernel Estimates - a Square Root Law.

The Annals of Statistics 10 (1982) 1217-1223
9. Sheather, S.J., Jones, M.C.: A Reliable Data-Based Bandwidth Selection Method

for Kernel Density Estimation. Journal of the Royal Statistical Society. Series B.
Methodological 53/3 (1991) 683–690

10. Rudemo, M.: Empirical Choice of Histograms and Kernel Density Estimators.
Scandinavian Journal of Statistics 9 (1982) 65-78

11. Bowman, A.W.: An Alternative Method of Cross-Validation for the Smoothing of
Density Estimates. Biometrika 71 (1984) 353–360

12. Silverman, B.W.: Algorithm AS 176: Kernel Density Estimation Using the Fast
Fourier Transform. Applied Statistics 31/1 (1982) 93–99

13. Elgammal, A., Duraiswami, R., Davis, L.S.: Efficient Kernel Density Estima-
tion Using the Fast Gauss Transform with Applications to Color Modeling and
Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25/11
(2003) 1499–1504

14. Racine, J.: Parallel distributed kernel estimation. Computational Statistics and
Data Analysis 40/2 (2002) 293–302

15. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press,
London (1981)

16. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra J.: MPI: The Com-
plete Reference. The MIT Press, Cambridge (1996)


