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Abstract

Data clustering constitutes at present a commonly
used technique for extracting fuzzy system rules from
experimental data. Detailed studies in the field have
shown that using above-mentioned method results in
significantly reduced structure of fuzzy identification
system, maintaining at the same time its high modelling
efficiency. In this paper a clustering algorithm, based
on a kernel density gradient estimation procedure
applied for fuzzy models synthesis, is presented. It
consists of two stages: data elements relocation and
their division into clusters. The method is automatic,
unsupervised, and does not require any assumptions
concerning the desired number of fuzzy rules. The
results of experimental evaluation show that the algo-
rithm under consideration achieves relatively high per-
formance when compared to the standard techniques
frequently applied in similar class of problems.

1. Introduction

Fuzzy modelling (or fuzzy identification), intro-
duced by Takagi and Sugeno [1], is currently a very
popular method of capturing a system’s behaviour
using its available measurable characteristics. This
approach has been successfully applied in several multi
disciplinary problems i.e. prediction tasks [2], con-
trollers’ design [3] or systems analysis [4]. Inference
by means of fuzzy modelling is based on employing
a set of fuzzy if–then rules, which reflects the input-
output relationship of the modelled system. Usually
typical Takagi-Sugeno rules are used, where the con-
sequent part is described by non-fuzzy equations with
the input variables, for example: if error is high
and error derivative is low then control=α·error +
β·error derivative.

The problem of extracting rules from data has been
approached using different techniques, such as genetic
algorithms [5], neuro-fuzzy methods [6] or criteria

based on information theory [7]. Since one wishes to
find the compact representation of a fuzzy relationship,
clustering is also used often, either as a stand-alone
procedure or as part of another method. The most
classic approach is subtractive clustering developed by
Chiu [8], although some other promising techniques,
such as evolving clustering [9] or Gustafson-Kessel
clustering [10] were also applied.

The aim of the paper is to present an alternative
method of obtaining rules’ prototypes by means of
clustering based on nonparametric density gradient
estimation. A detailed description of the clustering
procedure can be found in work [11] and preliminary
study on its application in fuzzy modelling was pre-
sented in [12].

The estimation is performed using kernel density
estimators (KDE) [13], [14]. The kernel estimator of
unknown density function f for the n-dimensional
probabilistic variable U with the sample u1, u2, ... , um,
kernel K and bandwidth (smoothing parameter) h, is
defined as the following function:

f̂(u) =
1

mhn

m∑
i=1

K

(
u − ui

h

)
. (1)

For the kernel function K introduced in the above
definition one can use either radial

K(u) = c κ(||u||) (2)

or product kernel

K(u) = c

n∏
j=1

κ(uj) . (3)

In the latter case each one-dimensional kernel κ is
associated with the individual bandwidth hj with j =
1, ..., n, and consequently hn in formula (1) is equal
to

∏n
j=1 hj . Furthermore the factor c normalises the

integral of the kernel K to 1.
Applying radial kernel ensures a relatively higher

estimation quality. The drawback of this approach



is the need to perform linear transformation of data
with differently-scaled dimensions; furthermore the
calculation of bandwidth has to be performed using
least-squares cross-validation, not so suitable from
the applicational point of view. Moreover, although
estimation based on the product kernel suffers from
slightly lower effectiveness, it profits from the use
of the simple and automatic plug-in method of the
selection of the bandwidths hj , and also much easier
integration and differentiation procedures. For above
mentioned reasons in the further part of this paper the
product kernel will be considered and applied. More
detailed information about the practical issues of KDE
methods and usage examples can be found in [14],
[15].

The clustering algorithm being considered here will
use the gradient ∇f estimation. The idea of the pro-
posed concept is based on the Fukunaga method [16],
but the rule extraction from clusters centers is similar
to the one used in standard subtractive clustering.

This paper is organised as follows. The second sec-
tion is devoted to the short description of the clustering
algorithm based on KDE considered in this paper. It
includes as well the explanation of fuzzy rules con-
struction process based on obtained clusters centers.
The subsequent section contains results of the com-
putational experiments and performance comparisons
with existing methods. Finally, some concluding re-
marks on the clustering technique under investigation,
its effectiveness, applicational issues and directions for
future work are presented.

2. Fuzzy identification with kernel density
estimation clustering

2.1. Algorithm description

The algorithm is based on the natural assumption
that each cluster can be represented by the local maxi-
mum of the kernel estimator of the probability density
function f̂ , obtained for the considered n-dimensional
data elements u1, u2, ... , um. However, instead of the
direct analysis of a density function, its gradient is used
here. The algorithm consists of two stages: relocation
of data elements and their division into clusters.

In the first phase of the algorithm each element is
moved along a direction defined by the gradient ∇f̂ ,
according to the following equation:

u
(k+1)
i = u

(k)
i +b

∇f̂(u(k)
i )

f̂(u(k)
i )

for i = 1, 2, ... ,m (4)

taking the original data set as a procedure starting
point, i.e.

u
(0)
i = ui for i = 1, 2, ... ,m . (5)

The parameter b = [b1, b2, ... , bn]T, with bj > 0,
defines the “speed” of data movement:

bj =
h2

j

3
. (6)

The first phase of the KDE clustering algorithm ends
if the following stop condition is fulfilled:

||D(k) − D(k−1)||
D(0)

≤ 0.001 , (7)

where D(k) =
∑m

i=1,j=i d
(k)
ij with d

(k)
ij = ||u(k)

i −
u

(k)
j ||2 constitutes a sum of distances in each of k

algorithm’s iterations.
The second stage of the KDE clustering algorithm

starts when condition (7) is found to be true. First, a
sample consisting of elements’ distances d

(k)
ij for i =

1, 2, ... ,m and j = i, i + 1, ... ,m is constructed.
For large data sets it is advised to use at this stage
some data condensation algorithm (e.g. [17]). Then, the
smallest argument dmin for which the KDE function,
calculated for the sample, assumes its local minimum
(excluding possible minimum in zero) should be iden-
tified. The value dmin serves as a cluster distinction
parameter, i.e. two points ui and uj belong to the same
cluster if d

(k)
ij ≤ dmin. The last step of this algorithm

consist of mapping points to proper clusters according
to the above-formulated rule. Details of the clustering
procedure can be found in paper [11].

2.2. Rules base construction

Now assume that the data set under consideration
represents input x1, x2, ..., xm and y1, y2, ..., ym output
values. As a result data dimension n = nx + ny ,
where nx denotes a dimension of inputs space and
ny - dimension of outputs space. Using presented
clustering procedure one obtains centers of gravity for
C clusters i.e. ucj

= {xcj1, ... , xcjnx
, ycj1, ... , ycjny

}
with j = 1, 2, ..., C. Those centers can then serve as a
basis for the rule generation process as shown in [8].

Therefore each cluster represents a fuzzy rule with
membership function which, for given input vector x,
is defined by:

µcj
(x) = e

− 4
r2

a
||x−xcj

||2
. (8)

The parameter ra > 0 used in (8) allows the designer
to control the generalisation ability of a resulting fuzzy
inference system. One can adjust it to his needs, it was



observed however that in most cases satisfactory results
were obtained for ra = 1

C .
The output of fuzzy modelling system is defined

consequently as:

y =

∑C
j=1 µcj

(x)ycj∑C
j=1 µcj

(x)
. (9)

Furthermore, as shown in paper [8] significantly better
accuracy of fuzzy modelling can be achieved if one
allows each output cluster in formula (9) to be a linear
function of input variables. Given the set of training
data it adds only a relatively easy-to-solve simple linear
least-squares estimation problem to the process of rules
set construction. Obtained consequents with associated
membership functions (8) and C rules base constitute
a complete fuzzy modelling system.

To conclude, presented method, when applying any
standard bandwidth selection procedure, offers auto-
matic definition of the number of clusters directly
resulting model complexity. However one can adjust
it to one’s needs by altering bandwidth value – its
increasing implies stronger density smoothing and
smaller number of clusters obtained, with the opposite
result when this value is decreased.

The next section is devoted to the experimental
verification of the method investigated in this paper
using some standard benchmark examples presented
already in the literature.

3. Results of experimental evaluation

The algorithm was tested on several data sets rep-
resenting various engineering problems where fuzzy
modelling was perceived as an appropriate solving
tool. Here, the examples of function approximation
and synthesis of fuzzy PD controller will be presented.
Moreover, the results of comparison with popular sub-
tractive clustering and ANFIS methods will be given
as well. All algorithms were used in their MATLAB R©

implementations.

3.1. Function approximation

At first, the matter of interest was a problem of fuzzy
modelling of the following function

y =
20
x

sin
( x

20

)
(10)

presented already in [10]. The training set consisted
of 100 data pairs {x, y} for x ∈ [1, 200] generated
with uniform distribution and rounded to the nearest
integer. Additionally, normal distributed random noise

with zero mean and 0.02 variance was added to this
data set.

The modelling error was defined as root mean
square error (RMSE) between the noise-free testing
curve y(x), where x = 1, 2, ..., 200, and data ob-
tained from the models synthesised using tested fuzzy
identification techniques. For each method a set of
parameter’s values were tested. Subtractive clustering
was invoked with ra = {0.1, 0.2, ..., 1.0}, KDE clus-
tering with bandwidth varying from optimal in range
hj = {0.5hjopt

, 0.6hjopt
, ..., 1.4hjopt

} and ANFIS
with initial rules number r from 2 to 11. Experiments
were repeated 10 times, with different random number
generator’s seed. Average rules number and root mean
square errors (with its standard deviation) for com-
pared methods are reported in Tab. 1. Best algorithms’
configurations (in terms of obtained average RMSE)
are shown in Tab. 2.

Table 1. Average performance of fuzzy modelling
methods for function (10) approximation.

Method Rules RMSE σRMSE

Subtractive 5.42 0.152 0.135
ANFIS 6.50 0.058 0.009
KDE-based 3.78 0.058 0.012

Table 2. Average performance of best fuzzy
modelling methods’ configurations.

Method Config. Rules RMSE
Subtractive ra = 0.5 3.0 0.038
ANFIS r = 3 3.0 0.043
KDE-based hj = 0.9 hjopt 4.2 0.050

It can be seen that introduced KDE-based clustering
technique is the best one in terms of average perfor-
mance and stability to the choice of the algorithm’s
parameters. One should notice however that when this
choice is done conveniently, other methods can be
found fractionally superior.

3.2. Fuzzy PD controller synthesis

In paper [18] subtractive clustering was effectively
applied for the rules set reduction of the fuzzy logic
PI (FPIC) and PD (FPDC) feedback controllers. Input-
output data obtained from a controller consisting of 49
rules were used as training values for a cluster analysis
algorithm which generated a less complex model of the
considered system. Furthermore, the reduced controller
was shown to maintain almost the same level of
performance as the original one.



The same approach will be under consideration
here, with difficult to control marginally stable process,
described by following transfer function:

G(s) =
1

s(s + 1)
. (11)

Using the reference, properly tuned fuzzy logic PD
controller, with rules base consisting of 49 elements,
a set of training data was created. It consists of
525 {∆eN , eN , un} triplets representing control sys-
tem input-output signal values for the square wave
reference r. The fuzzy modelling algorithms were
performed on a part of this set – 105 points sampled
at regular intervals. Then the resulting models were
evaluated with the same reference signal. The test
was conducted for introduced KDE-based clustering
technique (with default settings), subtractive cluster-
ing and ANFIS. For both referenced methods two
configurations with approximately the same number
of rules were under consideration. Results obtained
during methods’ experimental evaluation, taking into
account RMSE, settling time ts,5% and overshoot OV ,
are presented in Tab. 3. The response characteristics of
synthesised fuzzy logic controllers are shown on Fig.
1.

Table 3. Performance of methods for fuzzy PD
controller rules base reduction.

FPDC Rules RMSE ts,5%[s] OV[%]
Initial 49 0.371 7.168 0.0

Subtractive
3 0.134 8.000 0.0
9 0.137 9.204 0.0

ANFIS
4 0.121 7.205 10.1
9 0.147 7.000 36.0

KDE-based 5 0.114 5.924 7.7
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Figure 1. Comparison of selected fuzzy logic
controllers’ time responses.

Reducing initial complex structure of fuzzy PD

controller brings positive effects in all considered ex-
amples. Reduced controllers offer smaller root mean
square modelling error, quicker settling time, with the
application of compact set of fuzzy rules. Here, con-
sidering obtained results, investigated KDE clustering
technique was found to be superior - it offers the
smallest RMSE, the quickest settling time (with a little
overshoot though) and a small, 5 fuzzy rules base. It
is worth to mention that the same encouraging remark
can be made for the outcome of experiments with fuzzy
PI controllers.

4. Conclusion and directions for further
work

The aim of this paper was to present a novel ap-
proach to fuzzy rules synthesis via cluster analysis. The
concept is based on the nonparametric kernel density
estimation. The procedure consists of two phases:
points relocation and their assignment into appropriate
clusters. The method under investigation allows to
determine a set of rule prototypes, without arbitrary
assumption concerning their number and also a need to
select any user-defined parameters. Moreover, the high
computational burden of calculations needed can be
easily and effectively reduced, with parallel processing,
as shown in paper [19].

The proposed method was tested on various fuzzy
modelling cases and was shown to achieve similar
or even better level of performance as other popular
modelling techniques. Further research in the subject
could concern the customisation of the rule construc-
tion process (e.g. by automatic preselection of the
generalisation factor ra) to the specific features of the
kernel density estimation.
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