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Abstract. The paper describes an application of Parallel Simulated An-
nealing (PSA) for solving one of the most studied NP-hard optimization
problems: Graph Coloring Problem (GCP). Synchronous master-slave
model with periodic solution update is being used. The paper contains
description of the method, recommendations for optimal parameters set-
tings and summary of results obtained during algorithm’s evaluation. A
comparison of our novel approach to a PGA metaheuristic proposed in
the literature is given. Finally, directions for further work in the subject
are suggested.
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1 Introduction

Let G = (V, E) be a given graph, where V is a set of |V | = n vertices and E set
of |E| = m graph edges. Graph Coloring Problem (GCP) [1, 2] is defined as a
task of finding an assignment of k colors to vertices c : V → {1, . . . , k} , k ≤ n ,
such that there is no conflict of colors between adjacent vertices, i.e. ∀(u, v) ∈ E :
c(u) 6= c(v) and number of colors k used is minimal (such k is called the graph
chromatic number χ(G)).

A number of GCP variants is used for testing printed circuits, frequency
assignment in telecommunication, job scheduling and other combinatorial opti-
mization tasks. The problem is known to be NP–hard [3]. Intensive studies of
the problem resulted in a large number of approximate and exact solving meth-
ods. GCP was the subject of Second DIMACS Challenge [4] held in 1993 and
Computational Symposium on Graph Coloring and Generalizations organized in
2002. The graph instances [5] and reported research results are frequently used
in development of new coloring algorithms and for reference purposes.

Most algorithms designed for GCP are iterative heuristics [11], such as genetic
algorithms [6], simulated annealing [7, 8], tabu or local search techniques [9],
minimizing selected cost functions. At the time of this writing, the only parallel
metaheuristic for GCP is parallel genetic algorithm [10, 12–15].
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The purpose of the paper is to present a new algorithm capable of solving
GCP, developed on the basis of Parallel Simulated Annealing (PSA) method
[16]. Recent years brought a rapid development of PSA techniques. Classical
Simulated Annealing [17] was transformed into parallel processing environment
in various ways: most popular approaches involve parallel moves, where single
Markov chain is being evaluated by multiple processing units calculating possible
moves from one state to another. The other method uses multiple threads for
computing independent chains of solutions and exchanging the obtained results
on a regular basis. Broad studies of both techniques can be found in [18, 19]. The
PSA scheme for GCP, proposed by the authors, includes above strategies with
the rate of current solution update used as a distinctive control parameter.

The paper is organized as follows. Next section is devoted to the descrip-
tion of the proposed PSA algorithm. Besides its general structure, details of
cooling schedule and cost function being used as well as neighborhood solution
generation procedure are given. Subsequent part of the paper presents results
of algorithm’s experimental evaluation. Final part of the contribution gives gen-
eral comments on the performance of PSA algorithm, and possible directions for
future work in the subject.

2 Parallel Simulated Annealing

PSA algorithm for GCP introduced in this paper uses multiple processors work-
ing concurrently on individual chains and agreeing about current solutions at
fixed iteration intervals. The aim of the routine is to minimize chosen cost func-
tion, with storing the best solution found. The coordination of the algorithm
is performed in master–slave model – one of processing units is responsible for
collecting solutions, choosing the current one and distributing it among slave
units.

The exchange interval ei is a parameter which decides which PSA scheme is
being used. Setting ei = 1 is equivalent to producing single chain of solutions
using multiple moves strategy. Increasing the interval ei leads to creating semi-
independent chains on all slave processors starting at each of concurrent rounds
with the same established solution. Setting ei to infinity results in performing
independent simulated annealing runs.

The general scheme of the algorithm is presented below:

Parallel Simulated Annealing for Graph Coloring Problem

if proc=master
best_cost:=infinity;

if proc=slave
// generate initial solution randomly at each slave
solution[proc]:=Generate_Initial_Solution();

for iter:=1 to iter_no do
if proc=slave

// each slave generates a new solution
neighbor_solution[proc]:=Generate_Neighbor_Sol(solution[proc]);
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// and accepts it as a current one according to SA methodology
solution[proc]:=Anneal(neighbor_solution[proc],solution[proc],T);

// all solutions are then gathered at master
Gather_at_master(solution[proc]);
if proc=master

current_cost:=infinity;
// find solution with minimum cost and set it as a current one
for j:=1 to slaves_no do

if Cost(solution[j])<current_cost
current_solution:=solution[j];
current_cost:=Cost(solution[j]);

// update best solution found (if applicable)
if current_cost<best_cost

best_solution:=current_solution;
best_cost:=current_cost;
// if stop condition fulfilled - end main loop
if best_cost<=target_cost

break;
// distribute periodically current solution among all slaves
if iter mod e_i = 0

solution[proc]:=Distribute(current_solution);
// update annealing temperature if appropriate
T:=Update_Temperature(T);

if proc=master
return best_solution;

Detailed information about our Simulated Annealing algorithm like cooling
scheme, representation of the solution, method for generation of neighborhood
and cost calculation will be given in following subsections.

2.1 Cooling Schedule

Choosing proper temperature schedule is crucial for algorithm based on Sim-
ulated Annealing methodology since it influence the acceptance probability of
positive transitions (i.e. when a cost difference ∆cost,i between generated neigh-
bor and initial solution is positive) given by Metropolis [20]:

P (∆cost,i) = e
−∆cost,i

Ti . (1)

As a result of intensive studies in this area multiple cooling strategies were
developed [21]. The cooling schedule used here is the exponential one:

Ti+1 = αTi , (2)

where α is the cooling rate (usually set at 0.80–0.99 level [22]) for each cool-
ing step. Every SA step consists of Mi iterations. For the exponential schedule
following holds:

Mi+1 = βMi . (3)



4 S. Łukasik, Z. Kokosiński, G. Świętoń

In order to extend gradually SA runs at lower temperature levels constant β is
chosen usually from the range [1.01, 1.20].

In addition to proper cooling schedule one has to choose correct initial tem-
perature T0. The authors used the most common method that involves calculat-
ing average cost difference ∆cost,0 from a set of pilot runs consisting of positive
transitions from an initial state. Preliminary temperature assuring desired initial
acceptance probability P (∆cost,0) can be calculated afterwards from equation:

T0 = − ∆cost,0

ln P (∆cost,0)
. (4)

The alternative approach could follow a universal method for initial temper-
ature selection introduced in [23].

2.2 Solution Representation and Neighborhood Generation

A graph coloring c is represented by a sequence of natural numbers
c =< c[1], . . . , c[n] >, c[i] ∈ {1, . . . , k}, which is equivalent to set partition
representation with exactly k non–empty blocks.

A rule for generation of a neighbor solution can be selected out of a wide
range of existing methods [24]. For the purpose of the presented algorithm the
following form of restricted 1-exchange neighborhood is used:

Restricted 1-exchange neighborhood for Graph Coloring Problem

// check for vertices with color conflicts
conflict_vertices:=Find_Conflicting_Vertices(c);
if sizeof(conflict_vertices)>0 do

// if conflicts were found choose a random conflicting vertex
vertex_to_change:=random(conflict_vertices);
// and replace its color randomly with one of the colors {1, ... ,k+1}
c[vertex_to_change]:=random(k+1);

else
// if no conflicts are found choose random vertex
vertex_to_change:=random(n);
// and replace its color randomly with one of the colors {1, ... ,k}
c[vertex_to_change]:=random(k);

return c;

2.3 Cost Assessment

As a quality measure of a selected coloring c the following cost function was used
[13]:

f(c) =
∑

(u,v)∈E

q(u, v) + d + k , (5)

where q – is a penalty function:

q(u, v) =
{

2 when c(u) = c(v)
0 otherwise

(6)
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d – is a coefficient for solution with conflicts:

d =
{

1 when
∑

(u,v)∈E q(u, v) > 0
0 when

∑
(u,v)∈E q(u, v) = 0 (7)

and
k – is the number of colors used.

3 Experimental Evaluation

For testing purposes an implementation of the algorithm based on Message Pass-
ing Interface was prepared. All experiments with simulated parallelism were
carried out on Intel R© XeonTM machine. As test instances standard DIMACS
graphs, obtained from [5], were used. For experiments following values of SA
control parameters were chosen: α = 0.95 and β = 1.05. Initial temperature
was determined from a pilot run consisting of 1% (relative to overall iteration
number) positive transitions. The termination condition was either achieving the
optimal solution or the required number of iterations.

Due to space limitations only most representative results are presented in
the paper. The full set of simulation data can be found on the first author’s web
site (http://www.pk.edu.pl/~szymonl).

3.1 SA Parameters Settings

At first, the optimal values of SA parameters were under investigation. Essential
results of those experiments are gathered in Table 1.

Table 1. Influence of Simulated Annealing parameters on algorithm’s performance

Graph P (∆cost,0) Tf k0

G(V,E) Description Results Best P Results Best Tf Results Best k0

anna, χ(G) = 11 best f(c) 11.12 70% 11.00 0.04 · T0 11.12 χ(G)
|V | = 138 avg. f(c) 11.32 11.14 11.17
|E| = 493 σf(c) 0.29 0.21 0.05

queen8_8, χ(G) = 9 best f(c) 11.33 60% 10.60 0.06 · T0 11.33 χ(G)
|V | = 64 avg. f(c) 11.46 11.84 11.41
|E| = 728 σf(c) 0.10 1.26 0.05

mulsol.i.4, χ(G) = 31 best f(c) 38.23 80% 31.03 0.2 · T0 37.63 χ(G)− 5
|V | = 197 avg. f(c) 38.66 33.65 38.22
|E| = 3925 σf(c) 0.46 1.64 0.36

myciel7, χ(G) = 8 best f(c) 12.95 60% 8.00 0.2 · T0 11.38 χ(G)− 5
|V | = 191 avg. f(c) 13.22 9.47 12.93
|E| = 2360 σf(c) 0.34 1.60 0.96

Opening set of 500 runs with final temperature Tf = 0.1, iter_no = 10000,
randomly generated initial solution with k = χ(G) and the initial probability
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changing within the range 10%–90% proved that the best algorithm’s perfor-
mance, measured primarily by minimum average cost function (the second cri-
terion was the iteration number), is achieved for high initial probabilities with
an optimum found at about 60%–80%. It was observed, however, that the exact
choice of P (∆cost,0) in this range is not very significant for the overall algorithm’s
performance. Obtained results confirmed a hypothesis that for more complex
problems it is advisable to use higher values of initial temperature.

In the next experiment the optimal final temperature (relative to T0) was
under examination. For fixed P (∆cost,0) = 70%, iter_no = 10000 and k = χ(G)
the best results were obtained for Tf ∈ [0.01, 0.2]·T0. Again, higher solution qual-
ity for more complex graph instances was achieved with increased temperature
ratios.

The influence of initial number of colors k0 on the solution quality was also
determined experimentally. The range [χ(G)− 5, χ(G) + 5] was under considera-
tion with P (∆cost,0) = 70%, Tf = 0.05·T0 and iter_no = 10000. It was observed
that using initial color number slightly different than chromatic number do not
affect significantly the algorithm’s performance. For some graph instances it is
even recommended to start with colorings with k0 lower than χ(G).

In the end it should be noted that above presented statements are to be
treated as overall guidelines for SA parameters settings obtained from a relatively
small set of graphs. The exact values for those parameters depend largely on the
considered class of graph instances.

3.2 Influence of Parallelization Schemes

The second stage of the computing experiments involved examination of algo-
rithm’s performance with different parallelization schemes and comparison with
results obtained with sequential Simulated Annealing algorithm. For PSA the
configurations with ei = {1, 2, 4, 6, 8, 10,∞} and slaves number from 2 to 18,
were tested with various graph instances. To examine the effect of paralleliza-
tion on the processing time the same number of iterations iter_no = 100000 was
set for both sequential SA and PSA algorithms (in PSA each slave performs only
iter_no/slaves_no iterations). For the temperature schedule following settings
were applied: P (∆cost,0) = 70% and Tf = 0.05 · T0.

Obtained results include mean values of the cost function, the number of
conflict–free/optimal solutions, the number of iterations needed to find an op-
timal coloring (if applicable), and algorithm’s execution time t[s] (until best
solution has been found). The summary of the results is presented in Table 2.
Best and worst parallel configurations, in terms of average f(c) and processing
time, with the obtained results are reported. As a reference average performance
of the algorithm is given as well.

PSA clearly outperforms the sequential Simulated Annealing in terms of
computation time. Moreover, applying parallelization improves the quality of
the obtained solution. It can be seen though that it is important to select a
proper configuration of the PSA algorithm to achieve its high efficiency. For most
problem instances it is advisable to use multiple moves strategy with optimal,
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relatively small, number of slaves. There exists one exception to the presented
statement - for the class of mulsol.i graphs significantly better results were
obtained with fully independent SA runs.

The worst results of using Parallel Simulated Annealing were obtained when
a high number of slaves was involved in the computations and parallelization
scheme was far from the optimal one.

Table 2. Experimental evaluation of the PSA algorithm for GCP

Graph SA PSA Results PSA Config.
G(V,E) Description Results Best Worst Average Best Worst

games120 avg. f(c) 9 9 9 9 7 slaves 18 slaves
χ(G) = 9 c.–f. c /opt. c 100/100 100/100 100/100 100/100 ei = 1 ei = ∞
|V | = 120 avg. iter. /opt. c 477 78 258 176
|E| = 638 avg. t[s] /best c 0.72 0.05 0.40 0.14

anna avg. f(c) 11 11 11.32 11.02 4 slaves 18 slaves
χ(G) = 11 c.–f. c /opt. c 100/100 100/100 100/72 100/98 ei = 1 ei = 1
|V | = 138 avg. iter. /opt. c 5821 199 1177 462
|E| = 493 avg. t[s] /best c 1.31 0.08 1.73 0.31
myciel7 avg. f(c) 8 8 8.66 8.05 3 slaves 18 slaves

χ(G) = 8 c.–f. c /opt. c 100/100 100/100 100/43 100/95 ei = 1 ei = 1
|V | = 191 avg. iter. /opt. c 7376 797 1524 1539
|E| = 2360 avg. t[s] /best c 1.85 0.20 1.83 1.03
miles500 avg. f(c) 20 20 20.1 20.01 6 slaves 17 slaves

χ(G) = 20 c.–f. c /opt. c 100/100 100/100 100/90 100/98 ei = 1 e1 = 1
|V | = 128 avg. iter. /opt. c 38001 544 422 2842
|E| = 1170 avg. t[s] /best c 4.71 0.21 0.58 1.06
mulsol.i.4 avg. f(c) 31.04 31.19 38.24 34.74 2 slaves 17 slaves

χ(G) = 31 c.–f. c /opt. c 100/96 100/81 100/0 100/1 ei = ∞ ei = 1
|V | = 197 avg. iter. /opt. c 19007 15908 - 13451
|E| = 3925 avg. t[s] /best c 4.30 1.83 2.64 2.08
queen8_8 avg. f(c) 9.97 9.81 10.05 9.97 5 slaves 16 slaves
χ(G) = 9 c.–f. c /opt. c 100/3 100/19 100/0 100/3 ei = 1 ei = ∞
|V | = 64 avg. iter. /opt. c 66488 8831 - 8820
|E| = 728 avg. t[s] /best c 1.66 0.64 3.82 1.65
le450_15b avg. f(c) 18.58 17.39 21.79 18.71 9 slaves 18 slaves
χ(G) = 15 c.–f. c /opt. c 100/0 100/0 100/0 100/0 ei = 1 ei = ∞
|V | = 450 avg. iter. /opt. c - - - -
|E| = 8169 avg. t[s] /best c 42.88 3.54 6.47 4.99

3.3 Comparison with Parallel Genetic Algorithm

The last stage of the testing procedure involved comparison of time efficiency
of the PSA algorithm and Parallel Genetic Algorithm introduced in [12]. The
implementation of the PGA for GCP used in [13] was applied. Both algorithms
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were executed on the same machine for selected DIMACS graph instances and
computation time needed to find optimal coloring was reported. PGA was exe-
cuted with 3 islands, subpopulations consisting of 60 individuals, migration rate
5, migration size 5 with the best individuals being distributed, initial number
of colors 4 and operators: CEX crossover (with 0.6 probability), First–Fit mu-
tation (with 0.1 probability). For PSA 3 slaves were used, P (∆cost,0) = 70%,
Tf = 0.05 · T0, iter_no = 300000 (for instance mulsol.i.1 to find optimal solu-
tion runs of length 1500000 iterations were needed). For most instances multiple
moves strategy was applied. One exception was mulsol.i class of graphs where,
according to earlier observations, independent SA runs were executed.

Results of the experiments, enclosed in Table 3, clearly demonstrate that
PSA performance is comparable to the one achieved by the PGA. For some graph
instances, like book graphs and miles500, the proposed algorithm was found to
be superior. On the other hand, there exist a group of problems relatively easy to
solve by PGA and, at the same time, difficult to solve by PSA (like mulsol.i.1).

Table 3. Comparison of time efficiency of PGA and PSA algorithms applied for GCP

Graph t[s] Graph t[s]
G(V,E) PSA PGA G(V,E) PSA PGA

anna, χ(G) = 11 0.23 0.35 mulsol.i.4, χ(G) = 31 2.89 1.99
|V | = 138, |E| = 493 |V | = 185, |E| = 3946

myciel7, χ(G) = 8 0.34 0.25 mulsol.i.1, χ(G) = 49 14.9 4.47
|V | = 191, |E| = 2360 |V | = 197, |E| = 3925

miles500, χ(G) = 20 0.48 18.0 games120, χ(G) = 9 0.20 0.34
|V | = 128, |E| = 1170 |V | = 120, |E| = 638

4 Conclusion

In the paper a new Parallel Simulated Annealing algorithm for GCP was intro-
duced and evaluated.

First experiments revealed that its performance depends on choosing a cool-
ing schedule and generation of the initial coloring suitable to the considered
problem. Some general guidelines were derived for the algorithm’s settings that
ensure a better solution quality. Further research in the subject could concern
adaptive cooling schedules and generation of initial solution by means of an
approximate method.

Choosing an optimal number of processing units and parallelization scheme
for the PSA was also under consideration. We found that problem specification
essentially influence the proper choice of these elements. However, it can be
stated as a general remark that the highest efficiency of the master–slave PSA
algorithm is achieved for optimal, relatively small number of slaves.

During the performance evaluation the PSA algorithm was proved to be an
effective tool for solving Graph Coloring Problem. The experiments showed that
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it achieves a similar performance level as PGA. The comparison results of both
methods showed that none of them is superior. It encourages efforts for devel-
opment of a new hybrid metaheuristics which would benefit from advantages of
both PGA and PSA approaches. The overall concept of a hybrid algorithm could
implement the idea presented in [25] and include some other improvements of
the standard PSA scheme as proposed in [26].
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