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Data-Driven Fuzzy Modeling and Control  

with Kernel Density Based Clustering Technique 

Abstract  

Deriving parameters and structure of fuzzy model for a dynamical system by means of a 

clustering procedure is a very popular and frequently applied technique in fuzzy 

identification. The aim of the paper is to present a novel method of fuzzy model formulation 

based on this approach. Introduced algorithm is based on clustering method employing 

nonparametric kernel density gradient estimation. Proposed technique is automatic and attains 

functionality free from arbitrary assumptions concerning "shapes" of data samples, the 

number of rules and any other user defined parameters. Illustrative results of computer 

simulations using MATLAB scientific environment are enclosed. The outcome of such 

experimental verification demonstrates high efficiency of proposed technique in fuzzy 

controllers synthesis and nonlinear systems modeling. 
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1. Introduction  

Fuzzy modeling introduced by Takagi and Sugeno
1
 is a powerful identification 

method based on fuzzy sets theory. It has been successfully applied in several research areas 

i.e. control engineering
2
, prediction tasks

3
, systems analysis

4
. Fuzzy reasoning in above-

mentioned methodology, in its I order variant, is accomplished by using a set of fuzzy rules in 
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form: i
T
iiii DxCoutthenAisxandAisxif +=2211  Rifor ,,2,1 K= , where ijA  represents 

membership functions, iC  and iD  are the local linear function parameters and R  denotes the 

number of rules.  

The problem of extracting fuzzy rules from experimental data is solved using different 

techniques i.e. evolutionary algorithms
5
, neuro-fuzzy methods

6
 or statistical approaches

7
. The 

most popular clustering technique applied in this area of research is the subtractive clustering 

procedure proposed by Chiu
8
. The general concept of this density based algorithm has been 

successfully applied as well in some other fuzzy modeling techniques. In this paper the novel 

alternative approach of obtaining rules prototypes by means of clustering based on 

nonparametric kernel estimation is proposed and positively evaluated. Preliminary results in 

this field were presented in cited reference
9
. 

The paper is organized as follows. In the next Section some methodological 

preliminaries of the introduced technique are given. This part of the contribution contains a 

short description of statistical kernel density estimation (KDE) and the gradient clustering 

algorithm based on KDE. Subsequent part of the paper covers the details of fuzzy model 

construction based on obtained clusters parameters. Section 4 includes the results of 

numerical experiments involving the comparison of method under investigation with state-of-

art fuzzy modeling techniques. Finally some summarizing remarks are given in the last 

Section. 

2. Methodological Preliminaries 

2.1 Statistical Kernel Density Estimation 

In most practical data exploration tasks the probability density function f  of given 

sample is multimodal and can be hardly mapped into a function of any typical distribution. 

Therefore methods of nonparametric density estimation which do not need any assumptions 
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on the distribution type are used commonly. The kernel density estimation is one of the 

classical techniques with such property 
10,11

. 

Consider a n-dimensional random variable, with a distribution having the density f . 

Its kernel estimator ),0[:ˆ ∞→nf R  based on the m-elements data sample 1x , mxx ,,2 K , can 

be defined as:  
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where the positive coefficient h is called a smoothing parameter, while the measurable 

function ),0[: ∞→nK R , of unit integral, symmetrical with respect to zero, and having a 

weak global maximum at this point is called a kernel.  

Here the Gaussian kernel )2/exp()2/(1)( 22/1 xxK −= π  will be used. In the multidimensional 

case it will be generalized to the product kernel notation: 

)(...)()()],...,,([)( 21
T

21 nnKxK xKxKxKxxx ⋅⋅⋅==   , (2) 

where K  constitutes the one-dimensional Gaussian kernel given above. As a result 

smoothing parameter takes a form of a vector ]...,,,[ 21 nhhhh = . It can be easily obtained using 

automatic smoothing selection procedures i.e. plug-in method
12
. More detailed information 

about the practical issues of KDE methods and usage examples can be found in cited 

references
13,14

. 

2.2 Kernel Density Estimation Clustering 

KDE clustering belongs to the class of density gradient-based methods
15
. In the 

introduced algorithm following natural assumptions are made. First, each cluster center 

should be represented by a local maximum of KDE calculated for given dataset . Furthermore, 

argument corresponding to the first non-zero minimum of probability density function 
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obtained for distances between data elements ought to describe cluster’s radius. The algorithm 

relying on above-mentioned proposals consists of two phases.  

In the initial stage of the clustering procedure every point xi of the considered sample 

is moved according to a search direction indicated by gradient f̂∇ : 
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The parameter 
T

nbbbb ],,,[ 21 K=  
defines a speed of data relocation according to the 

following formula: 

3
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This part of the clustering algorithm ends when the next condition is fulfilled: 
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where )(kD  is a sum of distances between sample elements in each of k  algorithm’s 

iterations. 

The subsequent part of KDE clustering algorithm consists of calculation of distances between 

all input data elements )(k
ix  and afterwards – obtaining the probability estimation function (1) 

for such distance-based sample. The smallest argument of this function ensuring its local 

minimum (except zero) is determined and such distance mind serves then as a half of distance 

between clusters. Mapping elements to target clusters is performed in the following manner: 

each pair of points belong to the same cluster when the distance between them is lower then 

mind .This stage of the clustering procedure is definitely most computationally exhausting, 

especially for large sample sizes, as one have to obtain distance-based density estimates from 

2/)1( mm ⋅−  elements. To deal with this problem it is proposed to use either parallel 

processing
16
 to speed up associated computation time or condense the sample using effective 

“pruning” algorithm
17
. 

Detailed description of the clustering algorithm, its properties and usage guidelines can be 

found in the referenced bibliography
18
. 
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3. Fuzzy Identification with KDE Clustering 

To extract the rules of fuzzy model at first the data set representing input 1u , 

muu ,,2 K  and output 1y , myy ,,2 K  values of some system under consideration is separated 

into clusters using introduced clustering technique. Consider a set of c cluster centers 1{x , 

},,2 cxx K  where ix = 1{
icu , 

xii ncc uu ,,2 K , 1icy , },,2 yii ncc yy K . Each vector 
icu derived from 

cluster centre can be put into a fuzzy rule i, with a given degree to which this rule is fulfilled:  

2
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where positive parameter ar  allows to control the generalization ability of resulting fuzzy 

inference system. During method’s experimental evaluation it was established that as a “rule 

of thumb” the value cra /1=  could be used. 

The output vector y of modeling system is given as: 
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with 
icy  being a linear function of input variables as shown in the Introduction. The 

consequents of this function can be easily established as finding their optimal values 

constitutes a simple least-squares estimation problem
19
. 

4. Numerical simulations 

4.1 Modeling of nonlinear dynamical systems 

For testing purposes as an example of nonlinear plant modeling a benchmark problem, 

taken from Narendra et al. paper
20
 was used. The plant is given by the second order highly 

nonlinear differential equation: 
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The task is to use past values of control signal u and output y up to time step k to predict the 

value of y(k). The model with three inputs )}1(),2(),({ −− kykyku  and one output )(ky  was 

under consideration. As a training data 500 elements )}(),1(),2(),({ kykykyku −−  with 
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)(ku  uniformly distributed over the interval ]2,2[−  were used. Testing data was generated 

for )25/2sin()( kku π=  (testing set 1) and )30/2cos(6,1)( kku π=  (testing set 2). 

 

Table 1. Comparison of fuzzy modeling algorithms in a nonlinear plant identification 

problem. 
Method KDE-Based 

Clustering 

Subtractive 

Clustering 

ANFIS Genetic 

Algorithm
21
 

Least-squares + 

Gradient 

Descent
21
  

Fuzzy  

C-Means 

Clustering
21
 

Input 

variables 
u(k), y(k-2), y(k-1) 

No of rules 10 10 8 75 12 8 

Learning 

MSE 
0.086 0.041 0.005 0.037 0.507 0.618 

Testing 

MSE (set 1) 
0.031 0.112 0.010 0.040 0.245 0.204 

Testing 

MSE (set 2) 
0.035 0.306 1.619 0.037 not reported not reported 

 

Introduced fuzzy modeling technique was compared with subtractive clustering method and 

with Adaptive-Network-Based Fuzzy Inference System (ANFIS)
21
 procedure. For KDE 

clustering algorithm inplughh −= 6.1  was assumed. Subtractive clustering was executed with 

4.0=ar  and ANFIS with 100 epochs and two membership functions for each input. Those 

values provided the possibility to compare the efficiency of the algorithms at the same level 

of the rules number. The outcome of such comparison is presented in Table 1. It includes as 

well some previously published results
21
. 

Analysis of methods’ performance leads to the conclusion that the presented method ensures 

high modeling efficiency with compact number of rules incorporated in a fuzzy system. In the 

course of performed numerical tests KDE clustering procedure achieved high generalization 

ability similar to the one shown by GA technique
21
. Yet it was attained with significantly 

reduced rule set. At the fixed level of fuzzy system complexity the introduced technique offers 

better efficiency than state-of-art subtractive clustering and ANFIS methods. 
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4.2 HDD servo-motor fuzzy control 

The method under investigation was tested as well for a hard-drive servo motor 

control design
22
. The following continuous state-space rigid model of the servo system was 

used: 
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where u is the actuator input (in volts), y and v are the position (in tracks) and velocity of the 

disk drive’s head. The problem of accurate positioning was under consideration with the 

output )()( tytz = . 

First the standard 49-rules PD fuzzy logic controller (FLC)
23
 was properly tuned for 

quick response in time domain with the step reference signal. Obtained 101 input-output data 

elements },,{ uee ∆  were used for the clustering procedure. As a result new FLC with reduced 

rule base was synthesized. For comparison the performance of classical PID controller
23
: 
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was under experimental verification as well. The results of numerical simulations for all 

above-mentioned controllers are enclosed in Table 2. The number of fuzzy system’s rules (if 

appropriate) was reported, as well as the root-mean square error versus the reference signal, 

settling time Ts, 2% and the percentage overshoot of the output’s response. 

 

Table 2. Comparison of controllers performance. 

Controller Rules RMSE Ts, 2%[s] OV 

KDE-based FLC  38 0.2129 0.0013 11% 

Classical PID - 0.2909 0.0096 78 % 

PD FLC 49 0.1981 0.0020 92 % 

 

Results of such simulations in the time domain are also illustrated in Figure 1. It can be seen 

that even though the application of the introduced KDE-based clustering technique does not 

ensure the minimal value of the root-mean square error, the fuzzy logic controller synthesized 

using this method is the quickest one and it achieves significantly smallest overshoot.  
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Fig 1. Closed loop responses of hard drive servo controllers for a step reference signal. 

5. Conclusion  

In this paper a novel approach for modeling of complex-dynamical systems using fuzzy 

logic based structure was proposed. Applying presented method of estimating cluster centers from 

numerical data lead to the construction of accurate procedure for fuzzy model identification. Its 

efficiency is comparable (or even superior) to the one demonstrated by other fuzzy modeling 

techniques and it was positively verified in prediction and automatic control tasks. 

Further work in the subject could concern the improved method of mapping the 

obtained clusters structure to the rules based set, taking into consideration a shape of each 

cluster in an input-output space. 
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