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Abstract. The paper provides an insight into the improved novel meta-
heuristics of the Firefly Algorithm for constrained continuous optimiza-
tion tasks. The presented technique is inspired by social behavior of fire-
flies and the phenomenon of bioluminescent communication. The first
part of the paper is devoted to the detailed description of the existing al-
gorithm. Then some suggestions for extending the simple scheme of the
technique under consideration are presented. Subsequent sections con-
centrate on the performed experimental parameter studies and a com-
parison with existing Particle Swarm Optimization strategy based on
existing benchmark instances. Finally some concluding remarks on pos-
sible algorithm extensions are given, as well as some properties of the
presented approach and comments on its performance in the constrained
continuous optimization tasks.
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1 Introduction

Fireflies, also called lighting bugs, are one of the most special and fascinat-
ing creatures in nature. These nocturnal luminous insects of the beetle family
Lampyridae (order Coleoptera), inhabit mainly tropical and temperate regions,
and their population is estimated at around 1900 species [1]. They are capable
of producing light thanks to special photogenic organs situated very close to the
body surface behind a window of translucent cuticle [2]. Bioluminescent signals
are known to serve as elements of courtship rituals, methods of prey attraction,
social orientation or as a warning signal to predators (in case of immature firefly
forms commonly referred to as glowworms). The phenomenon of firefly glowing
is an area of continuous research considering both its biochemical [3] and social
aspects [4].

Mechanisms of firefly communication via luminescent flashes and their syn-
chronization has been imitated effectively in various techniques of wireless net-
works design [5], dynamic market pricing [6] and mobile robotics [7]. Firefly
Algorithm developed recently by Xin-She Yang at Cambridge University and
presented in the Chapter 8 of monograph [8] follows this approach. This swarm
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intelligence optimization technique is based on the assumption that solution of
an optimization problem can be perceived as agent (firefly) which “glows” pro-
portionally to its quality in a considered problem setting. Consequently each
brighter firefly attracts its partners (regardless of their sex), which makes the
search space being explored more efficiently. Similar nature inspired metaheuris-
tics include: Particle Swarm Optimization (PSO) [9] or Artificial Bee Colony
optimization technique (ABC) [10].

This paper is devoted to the detailed study of Firefly Algorithm (FA), its
experimental evaluation and possible improvements. It is organized as follows.
In the next Section a comprehensive review of the existing FA scheme based on
monograph [8] is given as well as some proposals for its extension. The subsequent
part of the paper contains the results of parameter studies and some guidelines
for its proper assignment. Next the comparison with Particle Swarm Optimiza-
tion technique is performed. Ultimately, the final part of the paper presents some
concluding remarks and suggestions for future work in the subject.

2 Firefly Algorithm in Practice

2.1 FA Scheme

Let us consider continuous constrained optimization problem where the task is
to minimize cost function f(x) for x ∈ S ⊂ Rn i.e. find x∗ such as:

f(x∗) = min
x∈S

f(x) . (1)

Assume that there exists a swarm of m agents (fireflies) solving above-
mentioned problem iteratively and xi represents a solution for a firefly i in
algorithm’s iteration k, whereas f(xi) denotes its cost. Initially all fireflies are
dislocated in S (randomly or employing some deterministic strategy). Each fire-
fly has its distinctive attractiveness β which implies how strong it attracts other
members of the swarm. As a firefly attractiveness one should select any mono-
tonically decreasing function of the distance rj = d(xi, xj) to the chosen firefly
j, e.g. the exponential function:

β = β0e
−γrj (2)

where β0 and γ are predetermined algorithm parameters: maximum attractive-
ness value and absorption coefficient, respectively [8]. Furthermore every member
of the swarm is characterized by its light intensity Ii which can be directly ex-
pressed as a inverse of a cost function f(xi). To effectively explore considered
search space S it is assumed that each firefly i is changing its position itera-
tively taking into account two factors: attractiveness of other swarm members
with higher light intensity i.e. Ij > Ii,∀j = 1, ...m, j 6= i which is varying across
distance and a fixed random step vector ui. It should be noted as well that if no
brighter firefly can be found only such randomized step is being used [8].
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To summarize, when taking into consideration all above statements, the al-
gorithm scheme established in [8] can be presented in the following pseudo-code
form:

Firefly Algorithm for Constrained Optimization

Input:
f(z), z = [z1, z2, ..., zn]T {cost function}
S = [ak, bk],∀k = 1, ..., n {given constraints}
m,β0, γ, minui, maxui {algorithm’s parameters}
Output:
ximin {obtained minimum location}
begin

for i=1 to m do
xi ← Generate Initial Solution ()

end
repeat

imin ← arg mini f(xi)
ximin ← arg minxi

f(xi)
for i=1 to m do

for j=1 to m do
if f(xj) < f(xi) then {move firefly i towards j}

rj ← Calculate Distance (xi,xj)
β ← β0e

−γrj {obtain attractiveness}
ui ← Generate Random Vector (minui, max ui)
for k=1 to n do

xi,k ← (1− β)xi,k + βxj,k + ui,k

end
end

end
end
uimin ← Generate Random Vector (minui, max ui)
for k=1 to n do

ximin,k ← ximin,k + uimin,k {best firefly should move randomly}
end

until stop condition true
end

In the next part of the paper some technical details of the algorithm will be
considered. A closer look will be taken at such important issues as the sensitivity
of the parameters, their influences on the convergence rate of the algorithm, the
potential improvement, and further development. For more detailed theoretical
considerations, MATLAB code and convincing two dimensional demonstrations
of the algorithm performance one could refer to the pioneer publication already
mentioned [8].
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2.2 Technical Details

The algorithm presented here makes use of a synergic local search. Each member
of the swarm explores the problem space taking into account results obtained
by others, still applying its own randomized moves as well. The influence of
other solutions is controlled by value of attractiveness (2). It can be adjusted by
modifying two parameters: its maximum value β0 and an absorption coefficient
γ.

The first parameter describes attractiveness at rj = 0 i.e. when two fireflies
are found at the same point of search space S. In general β0 ∈ [0, 1] should
be used and two limiting cases can be defined: when β0 = 0, that is only non-
cooperative distributed random search is applied and when β0 = 1 which is
equivalent to the scheme of cooperative local search with the brightest firefly
strongly determining other fireflies positions, especially in its neighborhood [8].

On the other hand, the value of γ determines the variation of attractiveness
with increasing distance from communicated firefly. Using γ = 0 corresponds to
no variation or constant attractiveness and conversely setting γ → ∞ results
in attractiveness being close to zero which again is equivalent to the complete
random search. In general γ ∈ [0, 10] could be suggested [8]. It is more conve-
nient, however, to derive γ value specifically for the considered problem. Such
customized absorption coefficient should be based on the “characteristic length”
of the optimized search space. It is proposed here to use:

γ =
γ0

rmax
(3)

or:
γ =

γ0

r2
max

(4)

wheras γ0 ∈ [0, 1] and:

rmax = max d(xi, xj), ∀xi, xj ∈ S . (5)

Efficiency of both techniques introduced here will be experimentally evaluated
in the next Section.

Finally one has to set random step size i.e. its lower and upper bounds
(minui, max ui) and define the method of its generation. In [8] it was proposed
to use min ui = −0.5α and max ui = 0.5α, with α ∈ [0, 1] being algorithm’s
parameter. In consequence ui for each search space dimension k is supposed to
be generated according to:

ui,k = α(rand− 1
2
) . (6)

with rand ∼ U(0, 1) - a random number obtained from the uniform distribution.
Here it is suggested to use alternative approach i.e. to define random vector as
a fraction of firefly distance to search space boundaries:

ui,k =
{

α rand2(bk − xi,k) if sgn(rand1 − 0.5) < 0
−α rand2(xi,k − ak) if sgn(rand1 − 0.5) ≥ 0 (7)
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with two uniform random numbers rand1, rand2 obtained similarly as above.
In the end it could be noted that computational complexity of the algorithm

under consideration is O(m2), so using larger population size leads to substantial
increase in calculation time. It can, however, bring significant benefits in terms of
algorithm’s performance, especially when some deterministic technique of initial
swarm displacement is being employed. In the paper, simple random dislocation
of fireflies in S, instead of such strategy, is being assumed.

3 Numerical Experiments and Parameter Studies

The performance of the presented technique was verified experimentally using its
MATLAB implementation and a set of 14 benchmark problems (for a detailed
list please refer to the Appendix). All tests were conducted for a fixed number of
algorithm iterations l and repeated in 100 independent trials with different ran-
dom number generator seeds. As problems are characterized by different scales
on the cost function it was more convenient to use ranking of different algo-
rithm’s variants instead of direct analysis of quality indexes |fmin − f(ximin)|.
It means that each problem was considered separately with tested configurations
being ranked by their performance. Then the final comparison was carried out
using medians of obtained ranks. Due to space limitations only most represen-
tative results are presented in the paper. The full set of simulation data can be
found on the first author’s web site (http://www.ibspan.waw.pl/~slukasik).

3.1 Population Size

Firstly, the influence of swarm size on the algorithm efficiency was analyzed. For
such purpose a fixed number of cost function evaluations (2000) and FA variants
with m = {6, 8, 10, ..., 200} were assumed and suitably decreasing number of iter-
ations l were compared. To make such a comparison more representative variants
characterized by significant rounding errors of ml product i.e. |bmlc −ml| > 20
were rejected. All tests were conducted for β0 = 1, α = 0.01 and fixed γ = 1.
Although general remarks on optimal number of fireflies cannot be made, two
tendencies can be observed. For difficult optimization tasks, such as instances
no 2, 3, 4, 8, 9, 13, 14 it is always a better option to use a maximum number of
fireflies. It is an observation based on medians of ranks for those problems de-
picted on Fig. 1. Still, there exists a set of relatively easy optimization problems
like 1, 5, 6, 7, 10, 11, 12, 13 where optimal number of fireflies could be found,
e.g. the problem of Sphere function minimization is solved most effectively by a
set of 28 fireflies as shown on Fig. 2.

The aforementioned remarks should be accompanied by an additional look
on associated calculation time which, as noted before, increases significantly
with size of the swarm. Taking it into account it is advisable to use reasonable
population of 40-50 fireflies and refrain from applying such rule only for more
complicated optimization tasks. It is worth noting that similar remarks have
been made in [9] with reference to the Particle Swarm Optimization technique.
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Fig. 1. Median of performance ranks for varying population size (problems no 2, 3, 4,
8, 9, 13, 14
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Fig. 2. Median of performance ranks for varying population size (problem: 12)

3.2 Maximum of Attractiveness Function

In the second series of computational experiments the influence of β0 value on
the algorithm performance was studied. Testing runs were conducted for β0 =
{0, 0.1, 0.2, ..., 1.0} with other parameters fixed i.e. m = 40, l = 250, α = 0.01 and
γ = 1. Again, each of the tested configurations was ranked by its performance
in the considered problem and median of such rank is reported (see Fig. 3).

It is observed that the best option is to use maximum attractiveness value
β0 = 1 which implies the strongest dependence of fireflies’ positions on their
brighter neighbors location.

3.3 Absorption Coefficient and Random Step Size

Finally changes in the algorithm’s performance with varying absorption coeffi-
cient γ and random step size α were under investigation. Maximum attractive-
ness β0 = 1 was used, with population size m = 40 and iteration number l = 250.
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Fig. 3. Median of performance ranks with varying maximum of attractiveness function

Firefly Algorithm variants with α = {0.001, 0.01, 0.1} and γ = {0.1, 1.0, 10.0}
were tested. Additionally two problem-related techniques of obtaining absorp-
tion coefficient (Eq. (3) and (4)) were considered (with γ0 = {0.1, 0.2, ..., 1.0}),
so the overall number of examined configurations reached 75.

The obtained results indicate that for the examined optimization problems
variants of the algorithm with α = 0.01 are the best in terms of performance.
Furthermore it could be advisable to use adaptable absorption coefficient ac-
cording to (3) with γ0 = 0.8 as this configuration achieved best results in the
course of executed test runs. Although proposed technique of γ adaptation in
individual cases often performs worse than fixed γ values it has an advantage to
be automatic and “tailored” to the considered problem.

4 Comparison with Particle Swarm Optimization

Particle Swarm Optimization is a swarm-based technique introduced by Kennedy
and Eberhart [11]. It has been intensively developed recently with research stud-
ies resulting in numerous interesting both theoretical and practical contributions
[9]. The Particle Swarm Optimizer was studied in continuous optimization con-
text in [12], with suggested variants and recommended parameter values being
explicitly given.

Experiments reported here involved a performance comparison of Firefly Al-
gorithm with such advanced PSO algorithm defined with constriction factor and
the best parameters set suggested in conclusion of [12]. Both algorithm were ex-
ecuted with the same population size m = 40, iteration number l = 250 and the
test was repeated 100 times for its results to be representative. The obtained re-
sults are presented in Tab. 1. It contains algorithms’ performance indices given
as average difference between a result obtained by both techniques f(ximin)
and actual minimum of cost function f(x∗) with standard deviations given for
reference. For the Firefly Algorithm results obtained by the best configuration
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selected in Section 3.3 are presented, as well as the best result obtained for each
test problem by one of the 75 algorithm variants considered in the same Section.

Table 1. Performance comparison of Firefly Algorithm and Particle Swarm Optimiza-
tion technique

Problem
avg.|f(x∗)− f(ximin)| ± std.dev.|f(x∗)− f(ximin)|
PSO FA(γ0 = 0.8) FA(best)

1 5.75E-21 ± 5.10E-02 2.35E-04 ± 3.76E-04 1.01E-04 ± 1.78E-04
2 4.98E+02 ± 1.59E+02 6.59E+02 ± 2.25E+02 4.14E+02 ± 2.98E+02
3 0.00E+00 ± 0.00E+00 1.42E-01 ± 3.48E-01 3.05E-02 ± 1.71E-01
4 3.04E+01 ± 1.09E+01 1.63E+01 ± 5.78E+00 2.78E+00 ± 5.39E-01
5 4.63E-02 ± 2.59E-02 1.56E-01 ± 4.56E-02 1.48E-01 ± 4.17E-02
6 2.31E-01 ± 6.17E-01 1.10E+00 ± 6.97E-01 5.66E-01 ± 3.36E-01
7 1.16E-17 ± 6.71E-17 7.90E-05 ± 6.82E-05 4.14E-05 ± 2.17E-05
8 2.15E-06 ± 6.51E-15 2.80E-02 ± 7.78E-02 2.21E-03 ± 1.11E-03
9 5.84E-02 ± 5.99E-02 2.18E-01 ± 1.67E-01 2.18E-02 ± 2.33E-02
10 2.86E+00 ± 3.52E+00 3.09E+00 ± 3.72E+00 1.69E-01 ± 1.08E+00
11 4.00E-18 ± 9.15E-18 1.63E-06 ± 1.60E-06 1.44E-06 ± 1.47E-06
12 7.31E-22 ± 1.61E-21 1.59E-06 ± 1.73E-06 6.17E-07 ± 6.23E-07
13 4.61E+00 ± 1.09E-01 6.46E-03 ± 6.46E-02 2.75E-06 ± 5.24E-06
14 3.63E-03 ± 6.76E-03 2.59E-02 ± 3.96E-02 1.00E-02 ± 1.28E-02

It is noticeable that Firefly Algorithm is outperformed repeatedly by Particle
Swarm Optimizer (PSO was found to perform better for 11 benchmark instances
out of 14 being used). It is also found to be less stable in terms of standard devi-
ation. It is important to observe though that the advantage of PSO is vanishing
significantly (to 8 instances for which PSO performed better) when one relates
it to the best configuration of firefly inspired heuristic algorithm. Consequently,
such comparison should be repeated after further steps in the development of
the algorithm being described here will be made. Some possible improvements
contributing to the Firefly Algorithm performance progress will be presented in
the final Section of the paper.

5 Conclusion

Firefly Algorithm described here could be considered as an unconventional swarm-
based heuristic algorithm for constrained optimization tasks. The algorithm con-
stitutes a population-based iterative procedure with numerous agents (perceived
as fireflies) concurrently solving a considered optimization problem. Agents com-
municate with each other via bioluminescent glowing which enables them to ex-
plore cost function space more effectively than in standard distributed random
search.

Most heuristic algorithms face the problem of inconclusive parameters set-
tings. As shown in the paper, coherent suggestions considering population size
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and maximum of absorption coefficient could be derived for the Firefly Algo-
rithm. Still the algorithm could benefit from additional research in the adaptive
establishment of absorption coefficient and random step size. Furthermore some
additional features like decreasing random step size and more sophisticated pro-
cedure of initial solution generation could bring further improvements in the
algorithm performance. The algorithm could be hybridized together with other
heuristic local search based technique like Adaptive Simulated Annealing [13].
Firefly communication scheme should be exploited then on the higher level of
the optimization procedure.

Acknowledgments. Authors would like to express their gratitude to Dr Xin-
She Yang of Cambridge University for his suggestions and comments on the
initial manuscript.

Appendix: Benchmark Instances

No. Name n S f(x∗) Remarks
1 Himmelblau [14] 2 (-6,6) 0 four identical local minima

2 Schwefel [15] 10 (-500,500) 0 several local minima
3 Easom [16] 2 (-100,100) -1 a singleton maximum in a hori-

zontal valley
4 Rastrigin [17] 20 (-5.12,5.12) 0 highly multimodal and difficult
5 Griewank [18] 5 (-600,600) 0 several local minima
6 Rosenbrock [19] 4 (-2.048,2.048) 0 long curved only slightly decreas-

ing valley, unimodal
7 Permutation [20] 2 (-2,2) 0 function parameter β=10
8 Hartman3 [21] 3 (0,1) -3.862 4 local minima
9 Hartman6 [21] 6 (0,1) -3.322 6 local minima
10 Shekel [22] 4 (0,10) -10.536 10 local minima
11 Levy 10 [23] 5 (-10,10) 0 105 local minima
12 Sphere [24] 3 (-5.12,5.12) 0 unimodal
13 Michalewicz [25] 5 (0,π) -4.687 n! local minima
14 Powersum [26] 4 (0,2) 0 singular minimum among very

flat valleys
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