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Abstract. The Krill Herd Algorithm is the latest heuristic technique to
be applied in deriving best solution within various optimization tasks.
While there has been a few scientific papers written about this algorithm,
none of these have described how its numerous basic parameters impact
upon the quality of selected solutions. This paper is intended to con-
tribute towards improving the aforementioned situation, by examining
empirically the influence of two parameters of the Krill Herd Algorithm,
notably, maximum induced speed and inertia weight. These parameters
are related to the effect of the herd movement as induced by individual
members. In this paper, the results of a study – based on certain exam-
ples obtained from the CEC13 competition – are being presented. They
appear to show a relation between these selected two parameters and the
convergence of the algorithm for particular benchmark problems. Finally,
some concluding remarks, based on the performed numerical studies, are
provided.

Key words: Krill Herd Algorithm, Biologically Inspired Algorithm, Op-
timization, Metaheuristic.

1 Introduction

The optimization problems [5] are encountered when deriving solutions to many
engineering issues [15]. Optimization can be considered as choosing of the best
possible use of limited resources (time, money, etc.) while attempting to bring
about certain goals. In achieving this, the optimization problem can be written
in a formal way. Let us introduce the ’cost function’ K:

K : A 7−→ R, (1)

(in some instances, this function can be also called the ’fitness function’) where
A ⊂ Rn. The optimization task consists of finding the value x∗ ∈ A, such that
for every x ∈ A the following relationship is true:

K(x) ≥ K(x∗). (2)
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Although the optimization problem can be easily defined and described, deter-
mining its solution is already a very difficult issue. To find solutions for this
problem, certain optimization algorithms are commonly used. Generally, these
are placed within two classes: deterministic and stochastic algorithms.

Deterministic algorithms operate according to strictly defined procedures,
and the results obtained through employing them are repeatable. A simple and
well-known example of this group is the numerical algorithm called ’Newton’s
Method’ [5]. This can easily be used to find the minimum of the function. As-
suming no change in the input data, the intermediate results and the final result
obtained in subsequent runs of the algorithm will be identical.

On the other hand, we have the stochastic algorithms. These have a random
factor and each execution of some algorithm belonging to this class implies that
results will vary. Typically this group of algorithms allows users to obtain so-
lution in a short time, but very often it constitutes only an approximation of
optimum value. Among stochastic algorithms that can be distinguished there
exists a group of procedures inspired by Nature. These are divided into three
main streams: evolutionary algorithms, artificial immune systems, and swarm
intelligence.

Evolutionary Algorithms [1] are based on biological evolution, and they are
built upon conceptualising a population that adapts to its surrounding world
by using mechanisms such as selection, reproduction, mutation and crossover.
There are many implementations of the evolutionary approach. Among these we
can distinguish Genetic Algorithms, Genetic Programming, and Evolutionary
Strategies [9]. In each of those, a population is created which evolves in successive
iterations towards the best solution.

Artificial Immune Systems [2] are adaptive systems inspired by the results of
studies on the immune systems of living organisms. Their main task is to detect
anomalies. Examples of such systems are the Negative Selection Procedure and
the Clonal Selection Procedure.

Swarm intelligence, also known as the ’intelligent group’ [4], is a decentralized
self-organizing system which is formed by a population consisting of a number of
individuals called ’agents’. In this approach, there is no commanding authority
that determines the way the agents behave. Instead, individual ’animals’ roam
the space of proposed solutions, while following few simple rules. The most well-
known implementations of this are: Ant Colony Optimization [3], Bee Colony
Algorithm [8], Particle Swarm Optimization [14], Glowworm Swarm Optimiza-
tion [13], and Firefly Algorithm [12]. In 2012, A. H. Gandomi and A. H. Alavi
contributed to these by developing Krill Herd Algorithm (KHA) [6].

The goal of the paper is to reveal the impact of selected parameters in KHA,
to the quality and convergence speed of an optimization procedure. Presented
tests empirically provide suggested strategies of selecting two parameters within
the Krill Herd Algorithm: maximum induced speed and inertia weight. These
quantities are related to the part of the herd movement that is induced by
other swarm members. Parameter choice is based upon numerical simulation
results which indicate solution’s quality: average error value with its standard
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deviation, the best result obtained by the swarm, and, additionally, the speed
of its convergence. Finally, to increase the quality of solutions, a procedure for
decreasing the value of the inertia weight parameter has also been proposed.

2 Krill herd algorithm

Antarctic krill (Euphausia superba) is a species of krill found in the Southern
Ocean. An adult body has a length of 6 cm, and its weight comes about 2 grams.
This species feeds on phytoplankton. A characteristic feature of krill, and the
inspiration of the present algorithm [6, 16], is the ability for individual krill to
be moulded within a large herd that is even hundreds of meters in length.

Algorithm 1 Krill Herd Algorithm

1: k ← 1 {initialization}
2: Initialize parameters (Dmax, Nmax, etc.)
3: for i = 1 to M do
4: Generate Solution (xi(k))
5: {evaluate and update best solutions}
6: K(xi(0)) ← Evaluate quality(xi(0))
7: end for
8: x∗ ← Save best individual x∗(0)
9: {main loop}

10: repeat
11: sort population of krills
12: for i = 1 to M do
13: Perform motion calculation and genetic operators:
14: Ni ← Motion induced by other individuals
15: Fi ← Foraging activity
16: Di ← Random diffusion
17: Crossover
18: Mutation
19: {update krill position}
20: Update Solution (xm(k))
21: {evaluate and update best solutions}
22: K(xi(k)) ← Evaluate quality(xi(k))
23: end for
24: x∗ ← Save best individual x∗(k)
25: stop condition ← Check stop condition ()
26: k ← k + 1
27: until stop condition = false
28: return K(x∗(k)), x∗(k), k

The Krill Herd procedure is shown in Algorithm 1. Operation of the algorithm
starts with the initialization of data structures, i.e. describing individuals, as well
as the whole population. Initializing data structure representing a krill, means
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situating it in a certain place (at the ’solution space’) by giving it a set of
coordinates. For this purpose, it is recommended to employ random number
generation according to a uniform distribution. Like other algorithms inspired
by Nature, each individual represents one possible solution of the problem under
consideration.

After the initialization phase of the algorithm, it follows into a series of
iterations. The first step of each is to calculate fitness function value for each
individual of the population. This is equivalent to the calculation of optimized
functions with arguments which are the coordinates of the krill’s position. Then,
for each individual of the population, the vector which indicates the displacement
in the solution space is calculated. The movement of krill is described by an
equation dependent on three factors:

dXi

dt
= Ni + Fi + Di, (3)

where Ni refers to the movement induced by the influence of other krills (sub-
section 2.1), Fi is a movement associated with the search for food (subsection
2.2), and Di constitutes a random diffusion factor (subsection 2.3).

In order to improve efficiency, the algorithm includes two genetic operators:
crossover and mutation (subsection 2.4). This phase is optional, implementa-
tion of these operators can be completely omitted or only one of them can be
employed. As shown by certain preliminary tests [6] the Krill Herd Algorithm
achieves the best results when only the crossover operator is implemented.

The next step is to update the position of krills in the solution space, in
accordance with the designated movement vectors (3). In the next iteration,
based on these values, the new value of the fitness function will be calculated.

A termination of the algorithm can be implemented in many ways. One
possibility is to stop it when the solution achieves or is below predetermined
cost function value. This approach is used where the main purpose is accuracy.
The second way is to terminate the procedure upon reaching a predetermined
number of iterations. This method is applicable in situations where the solution
must be achieved in a fixed time. The most common method is a combination
of both conditions.

2.1 Motion induced by other individuals

The movement stimulated by the presence of other individuals (krills) is defined
as:

Ni = Nmaxαi + ωNold
i , (4)

where
αi = αlocal

i + αtarget
i . (5)

In the above formulas Nmax constitutes the maximum speed induced by the
presence of other krills, and it is determined experimentally (in paper [6] express-
ing this value as 0.01 was recommended – this recommendation rate is based on
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the maximum induced speed of the krill herd [7]. Furthermore, the parameter
ω describes the inertia weight of the induced motion, and takes the value from
the interval [0, 1]. What is more, Nold

i is the last iteration value limiting this
motion. Moreover, αlocal

i denotes the local effect provided by neighbouring krill,
and αtarget

i constitutes a target direction effect based on the position of the
best individuals. The neighbours effect, connected with attractiveness, can be
described as:

αlocal
i =

Mneighbours∑
j=1

K̂i,jX̂i,j . (6)

Where the variable K̂i,j and vector X̂i,j are defined as follows:

X̂i,j =
Xi −Xj

∥Xi −Xj∥ + ϵ
, (7)

K̂i,j =
Ki −Kj

Kworst −Kbest
. (8)

Here Kworst and Kbest are the worst and best values of the fitness function within
a population (the wording ”best” means the smallest value of K(Xi), taking into
account the fact that a minimum of a function (1) is to be located). In addition
the variable Ki in equation (8) represents the fitness function’s value of the
i-th krill, and the Kj j-th neighbour for j = 1, 2, ...,Mneighbours. Moreover a
notation Mneighbours expresses the number of krill neighbours. In order to avoid
zero coming about within the equation (7), in the denominator, a factor ϵ is
added, which is a small positive number. Finally, the neighbours of the krill are
those individuals that are in range, i.e. in the area of a circle centred at the
position of the i-th krill, and which has a radius equal to:

ds,i =
1

5N

M∑
j=1

∥Xj −Xi∥, (9)

where M represents the total number of individuals in a population.
The movement of krill is also dependent on the best individual location. This

factor determines the value αtarget
i in following way:

αtarget
i = γbestK̂i,bestX̂i,best, (10)

where γbest is the ratio of the individual impact with the best fitness function
value for the i-th krill:

γbest = 2(ξ +
k

Imax
). (11)

In the previous equation, ξ is a random number coming from the interval [0, 1],
while k denotes the number of the current iteration, and Imax indicates a max-
imum number of iterations.
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2.2 Foraging activity

The movement associated with the search for food (foraging) depends on two
components. The first one is the current food location and the second points out
the previous location of food intake. For the i-th individual, this component of
movement is defined as:

Fi = Vfβi + ωfF
old
i , (12)

where
βi = βfood

i + βbest
i . (13)

Furthermore, quantity Vf describes the speed of searching for food, and has been
selected empirically. Its recommended value is 0.02. The notation ωf denotes the
inertia weight of the foraging motion in range [−1, 1]. The location of food is the
quantity that for KHA is defined on the basis of the distribution of the fitness
function. It is given by following equation:

Xfood =

∑M
i=1 K

−1
i Xi∑M

i=1 K
−1
i

. (14)

The previous equation participates in determining a quantity which is a mea-
sure of the impact of food on the i-th krill:

βfood
i = CfoodK̂i,foodX̂i,food, (15)

where Cfood represents a coefficient determining the influence of the impact of
food location on the i-th krill

Cfood = 2(1 − k

Imax
). (16)

In this algorithm, the best individual and its position are also included in accor-
dance with the following formula:

βbest
i = K̂i,bestX̂i,best. (17)

2.3 Physical diffusion

Physical diffusion is a random process, and this vector is defined as follows:

Di = Dmax(1 − k

Imax
)δ, (18)

where Dmax ∈ [0.002, 0.01] is the maximal diffusion speed, while denoted as
δ represents the random directional vector, and its elements belong within the
interval [−1, 1].

The previously described factors affect that the krill additionally changes its
position to some extent randomly over time.
Finally, its location at time t + ∆t is determined as follows:

Xi(t + ∆t) = Xi(t) + ∆t
dXi

dt
, (19)
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wherein ∆t is the scaling factor for the speed of the search of the solution space,
and is defined as:

∆t = Ct

N∑
j=1

(UBj − LBj). (20)

In the above formula, the condition Ct ∈ [0, 2] is fulfilled, while N is search space
dimensionality. In addition, UBj and LBj are the upper and lower limitations
of j-th coordinates of vector X.

2.4 Genetic operators

The final stage of the main iteration in KHA is the use of genetic operators [17].
The crossover results in a change of the m-th coordinate of i-th krill as shown
below by the formula:

xi,m =

{
xr,m for γ ≤ Cr
xi,m for γ > Cr

(21)

where Cr = 0.2K̂i,best; r ∈ {1, 2, ..., i − 1, i + 1, ..., N} denotes a random index,
and γ is a random number from the interval [0, 1) generated according to the
uniform distribution. In this approach the crossover operator is acting on a single
individual.

The mutation modifies the m-th coordinate of the i-th krill in accordance
with the formula:

xi,m =

{
xgbest,m + µ(xp,m − xq,m) for γ ≤ Mu

xi,m for γ > Mu
(22)

wherein Mu = 0.05/K̂i,best; p, q ∈ {1, 2, ..., i− 1, i + 1, ...,K} and µ ∈ [0, 1).
Additional information about the Krill Herd Algorithm in [16, 18] could be

found.

3 Numerical studies

In this section, the performance of the KHA metaheuristic for different sets of
selected parameters connected with motion is verified – by running a series of
experiments related to various global numerical optimization tasks. One of the
main goals in presenting these numerical experiments is to show the dynamics
of an optimization process based on KHA for diverse sets of the algorithm’s
parameters. In doing so, the minimal values of an error, as well as a set of mean
values with their standard deviations were derived in order to perform such a
comparison.

For numerical experiments, we applied a selected set of benchmark functions
considered in the CEC’13 competition [11]. Table 1 revels a list of functions
with their formulas, dimensionality, feasible bounds and optimal values. From
the set of benchmark tasks, six functions were selected, the first three having
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Table 1. Benchmark functions used for experimental study

K Name Expression Feasible
bounds

N K(x∗)

K1 Sphere K1(x) =
∑N

i=1 z
2
i + K∗

1

z = x− o
[−100, 100]N 10 -1400

K2 Rotated Bent Cigar K2(x) = z21 + 106 ∑N
i=2 z

2
i + K∗

2

z = M2T
0.5
asy(M1(x− o))

[−100, 100]N 10 -1000

K3 Different Powers K3(x) =

√∑N
i=1 |zi|

2+4 i−1
N−1 + K∗

3

z = x− o
[−100, 100]N 10 -1000

K4 Rotated Rastrigin K4(x) =
∑N

i=1 (z2i − 10 cos(2πzi) + 10) + K∗
4

z = M1Λ
10M2T

0.2
asy(Tosz(M1

5.12(x−o)
100

))

[−100, 100]N 10 -300

K5 Schwefel K5(x) = 418.9829N
∑N

i=1 g(zi) + K∗
5

z = Λ10( 1000(x−o)
100

) + 4.209687462275036e + 002

g(zi) = zi sin(|zi|1/2)

[−100, 100]N 10 -100

K6 Rotated Katsuura K6(x) = 10
N2

∏N
i=1(1 + i

∑32
j=1

|2jzi−round(2jzi)|
2j

)
10

N1.2 − 10
N2 +

K∗
6

z = M2Λ
100(M1

5(x−o)
100

)

[−100, 100]N 10 200

an unimodal character, while the others are of a multimodal type. Due to text
limitation, a description of the symbols used in Table 1 can be found in [11].

The experiments were carried out for a fixed number of iterations Imax =
10000 (1000N), and 30 trials were undertaken for each benchmark function. In
all numerical experiments the population size M = 40 was used. What is more
KHA was configured with the parameters given in section 2. However, this does
not apply to the parameters of the algorithm described in subsection 2.1, which
are the subject of this study.

As a performance measure the mean optimization error Êmean was used (with
Ê(k) = |K(x∗(x))−K∗|) along with its standard deviation σÊ . In addition, as a
measure of the optimization algorithm quality, a minimal error is also reported.

3.1 Selection of Nmax parameter

The first set of tests was associated with the selection of the Nmax parameter.
This can be defined as maximum speed induced by the presence of other indi-
viduals. In order to investigate the best value of this parameter, the value of
Nmax was set in following order {0.005, 0.010, 0.015, 0.020, 0.025}. Moreover, in
these tests, the decreasing character of the parameter w was proposed according
to the following formula:

w = 0.1 + 0.8 ∗
(

1 − k

IMax

)
. (23)

The results of this investigation can be seen in Table 2, as well as in the exemplary
diagrams (Figures 1 and 2). These show the first 200 iterations of the algorithm’s
convergence for the unimodal (K1) and multimodal (K4) functions, respectively.

In interpreting the presented results, the following remarks can be concluded.
If we optimize the function of the unimodal character, the smallest parameter
value of the Nmax should be chosen. In addition, for the K1 and K3 functions,
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Table 2. Optimisation results for benchmark functions with varying Nmax

Nmax

0.005 0.010 0.015 0.020 0.025

Êmin 0.00000 0.00000 0.00000 0.00000 0.00000

K1 Êmean 0.00000 0.00000 0.00000 0.00001 0.00001
σÊ 0.00000 0.00000 0.00000 0.00000 0.00000

Êmin 4.993E+03 1.124E+03 7.949E+02 2.750E+02 1.961E+02

K2 Êmean 1.617E+08 2.797E+07 1.246E+07 5.227E+07 2.008E+07
σÊ 5.436E+08 7.600E+07 3.279E+07 9.625E+07 3.836E+07

Êmin 0.00005 0.00002 0.00003 0.00006 0.00004

K3 Êmean 0.00011 0.00008 0.00009 0.00011 0.00013
σÊ 0.00004 0.00004 0.00004 0.00005 0.00005

Êmin 14.92439 9.94961 9.94960 4.97481 8.95464

K4 Êmean 47.19417 38.13998 31.44063 25.30509 29.94820
σÊ 17.08109 16.87140 15.33291 12.15950 13.50465

Êmin 269.95241 309.41975 496.45608 285.41008 367.79078

K5 Êmean 992.74120 953.26188 846.03055 786.37048 775.80619
σÊ 346.93644 288.11901 270.35735 365.50859 277.75687

Êmin 0.02427 0.03769 0.02559 0.05169 0.03126

K6 Êmean 0.14897 0.13162 0.12815 0.15088 0.15652
σÊ 0.10647 0.08539 0.08918 0.08900 0.09986

Fig. 1. Convergence of KHA with varying Nmax for the benchmark function K1

the best results for Nmax belong to the interval range [0.005, 0.01]. On the other
hand, it can be seen that an increase in of this parameter results in a faster
convergence of the optimization algorithm. For the functions of a multimodal
character (K4-K6), a higher value of this parameter (even to 0.025) is recom-
mended. This is due to the presence of numerous local minima. Thus increasing
the value of this parameter allows for a stronger influence upon the solutions
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Fig. 2. Convergence of KHA with varying Nmax for the benchmark function K4

derived from the previous iteration. This results in an easier way to escape from
a local extreme.

3.2 Selection of inertia weight parameter

In this subsection, the performance comparison of using KHA for varying inertia
weight parameter is described. In order to perform a numerical study, a parame-
ter w was taken as being {0.1, 0.3, 0.5, 0.7 and 0.9}. Additionally, for comparison,
a variant is described in which the added value of this parameter was generated
randomly from the range [0, 1] according to the uniform distribution. In this
situation, a comparison also should be made to the case of decreasing the pa-
rameter that was reported in the previous subsection. To conduct the numerical
tests, based on the results obtained in the last subsection, the following values
of Nmax parameter 0.01, 0.01, 0.01, 0.7 and 0.9 for the corresponding function K
were set out. The results of these numerical experiments can be seen in Table
3, as well as in the exemplary diagrams (Figures 3 and 4), which show the first
200 iterations of algorithm convergence for unimodal (K1) and multimodal (K4)
functions, respectively.

In this quantitative comparison, both means with standard deviations and
best obtained values of error were reported. The results show that here as well,
two cases should be considered. An example of the former are the unimodal
functions K1 − K3. For these instances, the smaller value of the parameter w
is preferred. In this research, the best results were obtained for w = 0.1. The
exception was the K2 function, here, the best results were obtained by way of
the random inertia weight parameter. The second case incorporates examples of
multimodal functions (K4 −K6). In this situation, we recommend a set up of
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Table 3. Optimisation results for benchmark functions with varying inertia weight w

w
0.100 0.300 0.500 0.700 0.900 rand

Êmin 0.00000 0.00000 0.00000 0.00007 0.03219 0.00001

K1 Êmean 0.00000 0.00001 0.00002 0.00019 0.07729 0.00002
σÊ 0.00000 0.00000 0.00001 0.00007 0.02606 0.00001

Êmin 6.348E+03 6.757E+02 1.911E+02 8.015E+02 5.140E+04 2.915E+01

K2 Êmean 1.234E+08 2.750E+07 2.133E+07 7.599E+07 3.060E+07 2.206E+07
σÊ 2.584E+08 6.249E+07 7.178E+07 1.794E+08 5.036E+07 6.098E+07

Êmin 0.00001 0.00009 0.00026 0.00056 0.04050 0.00028

K3 Êmean 0.00003 0.00024 0.00087 0.00175 0.09250 0.00050
σÊ 0.00001 0.00008 0.00038 0.00100 0.02360 0.00017

Êmin 50.74270 41.78823 28.85386 42.78334 9.05741 23.87924

K4 Êmean 123.30676 115.57938 91.40320 82.58270 33.56695 100.25815
σÊ 37.03286 46.96247 42.16632 29.73748 17.12788 38.81281

Êmin 388.25117 283.30526 467.88315 390.25919 173.34292 374.17893

K5 Êmean 795.00710 810.78165 808.17313 962.54859 467.21808 955.54884
σÊ 319.50109 276.70611 200.73907 274.54883 139.34147 279.48430

Êmin 0.08638 0.02508 0.01941 0.08221 0.60140 0.05913

K6 Êmean 0.26328 0.17722 0.16912 0.26530 0.96770 0.26897
σÊ 0.16465 0.12818 0.10473 0.13189 0.19718 0.17963

Fig. 3. Convergence of KHA with varying w for the benchmark function K1

w = 0.9. However, if we look at the results of the best value of cost function, then
the best solution seems to be to adopt a variable parameter w derived by way
of formula (23). Based on the presented Figures 3 and 4, we can easily conclude
that the increase of the parameter w influences a faster convergence. Finally, it
is also worth to note that KHA was found to underperform for some of examined
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Fig. 4. Convergence of KHA with varying w for the benchmark function K4

benchmark instances (K2 in particular) - regardless of selected parameters set.
This phenomenon is planned to be investigated in the next phase of our research.

4 Conclusions

The paper examined selected aspects of a new bio-inspired metaheuristic called
the Krill Herd Algorithm. This procedure was applied herein for optimization
tasks. As practical examples, a set of benchmark functions that were obtained
from the CEC13 competition was utilized. The study considered two types of
tests. The first one dwelt with choosing the parameter Nmax while the second one
concerned the determining of the influence of the parameter w on the quality of
the obtained results, as well as on the speed of convergence of the optimization
algorithm. In all comparisons, both means with standard deviations and best
obtained error values were reported. During the study, two cases of the nature
of the cost functions have been distinguished: unimodal and multimodal. On
the basis of the carried-out tests, some clear results were obtained. We found
that for optimization tasks with unimodal cost functions, the smaller value of
the parameter Nmax and w is highly recommended. Otherwise, for describing
the multimodal character of cost function, we recommend higher values of these
parameters or the application of the decreasing parameter w. This also results
in a faster convergence of the optimization algorithm.

Finally, it should be noted that the performed experiments do not include a
full analysis of the KHA parameters. The obtained results may, however, provide
a starting point for further research and practical applications. In the near future,
it is planned to publish research containing a full empirical analysis of the KHA
procedure [10].



Krill Herd Algorithm – experimental study 13

References

1. Ashlock, D.: Evolutionary Computation for Modeling and Optimization, Springer
(2006)

2. Castro, L. N., Timmis, J.: Artificial Immune Systems: A New Computational In-
telligence Approach, Springer (2002)

3. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computa-
tional Intelligence Magazine 1, 28-39 (2006)

4. Engelbrecht, A.: Fundamentals of Computational Swarm Intelligence. John Wiley
& Sons (2005)

5. Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons (2000)
6. Gandomi, A.H., Alavi, A.H.: Krill herd: A new bio-inspired optimization algorithm.

Communications in Nonlinear Science and Numerical Simulation 17, 4831-4845
(2012)

7. Hofmann, E.E, Haskell, A.G.E, Klinck, J., Lascara M.: Lagrangian modelling stud-
ies of Antarctic krill (Euphasia superba) swarm formation. ICES J Mar Sci, 61,617-
631 (2004)

8. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing 8, 687-697 (2008)

9. Kowalski, P.A.: Evolutionary Strategy for the Fuzzy Flip-Flop Neural Networks
Supervised Learning Procedure, in: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (Eds.), Artificial Intelligence and Soft
Computing, Lecture Notes in Computer Science vol 7894. Springer Berlin Heidel-
berg, pp. 294-305, (2013)

10. Kowalski, P.A,  Lukasik S.: Properties and experimental evaluation of Krill Head
Algorithm”, (2014), in preparation

11. Liang, J., Qu, B., Suganthan, P., Hernandez-Diaz, A.: Problem Definitions and
Evaluation Criteria for the CEC 2013 Special Session and Competition on
Real-Parameter Optimization, technical Report 201212, Computational Intelli-
gence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report,
Nanyang Technological University, Singapore (2013)
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