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Abstract. Modern optimization has in its disposal an immense variety
of heuristic algorithms which can effectively deal with both continuous
and combinatorial optimization problems. Recent years brought in this
area fast development of unconventional methods inspired by phenom-
ena found in nature. Flower Pollination Algorithm based on pollination
mechanisms of flowering plants constitutes an example of such technique.
The paper presents first a detailed description of this algorithm. Then
results of experimental study of its properties for selected benchmark
continuous optimization problems are given. Finally, the performance
the algorithm is discussed, predominantly in comparison with the well-
known Particle Swarm Optimization Algorithm.
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1 Introduction

Inspiration from nature is a feature found in many traditional [1, 2] or newly de-
veloped metaheuristics. Among the examples of mechanisms mimicked by recent
unconventional heuristic algorithms one can name, e.g. bioluminescent commu-
nication of fireflies [3], social spider’s cooperative schemes [4] or swarm behavior
of krill herds [5]. This paper studies an approach based on flower pollination,
namely Flower Polination Algorithm (FPA) proposed in 2012 by Xin-She Yang
[6].

The goal of the paper is to evaluate FPA performance and study its proper-
ties in continuous optimization. Up to date the only contributions in this area
have been made by creator of the algorithm. They establish the basic form of
FPA [6] and describe its multi-objective variant [11]. Here we try to supple-
ment those studies, e.g. by more detailed analysis of parameters and evaluation
of algorithm’s performance with regards to standard variant of Particle Swarm
Optimization (PSO) [12].
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The paper is organized as follows. First, it provides a foundation upon the al-
gorithm was constructed along with its formal description. Then, it describes the
results of numerical experiments, devoted to exploring possible parameter val-
ues. Algorithm’s performance in relation to PSO method is also studied therein.
Finally, the last part of the contribution contains some concluding remarks on
FPA and proposals for its further development.

2 FPA Formulation

Pollination itself as a natural phenomenon constitutes a process of transferring
pollen grains from the stamens, the flower parts that produce them, to the ovule-
bearing organs or to the ovules (seed precursors) themselves [7]. It is crucial for
fertilization and reproduction of flowering plants also known as the angiosperms
– the largest and most conspicuous group of modern plants [8]. Two types of
pollination can be distinguished with regards to the methods of pollen transfer.
First, abiotic pollination that does not involve using other organisms and em-
ploys wind, water or gravity as pollination mediators. Second, biotic pollination,
which is the dominant one, requires pollinators, i.e. organisms, predominantly
insects, that carry or move the pollen grains. Evolutionary, pollination by in-
sects probably occurred in primitive seed plants, with reliance on other means
being a relatively recent development [7]. Pollination can be accomplished by
cross-pollination or by self-pollination. Self-pollination occurs when pollen from
one flower pollinates the same flower or other flowers of the same individual
[9]. In contrast to that, cross-pollination happens when pollen is delivered to a
flower from a different plant. About 70% of the present day angiosperms are
cross-pollinated while the rest are self-pollinated [10]. To sum up, it is worth to
mention that nowadays in nature all kind of pollination modes can be found, with
some plants being able to effectively employ each and every one of them. Con-
sequently both biotic and cross-pollination as well as abiotic and self-polination
strategies were translated into the optimization domain and included in novel
unconventional metaheuristic of FPA.

Pollination process constitutes a set of complex mechanisms crucial to the
success of plants reproductive strategies. To build an effective algorithm mimick-
ing those mechanisms several simplifications in understanding their fundamen-
tal aspects have to be made. Firstly, global, i.e. long-distance pollination should
occur for biotic and cross-pollination pollen transfers. At the same time abi-
otic and self-pollination are to be associated with local reproductive strategies.
Plants can employ both pollination schemes, however attractiveness of selected
plant should influence the tendency of individual pollinators to exclusively visit
it. The strength of this attraction is referred to as flower constancy.

When moving to the optimization domain pollination concept can be under-
stood as follows. A single flower or pollen gamete will constitute a solution of
the optimization problem, with the whole flower population being actually used.
Their constancy will be understood as solution fitness. Pollen will be transferred
in the course of two operations used interchangeably, that is: global and local
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pollination. The first one employs pollinators to carry pollen to long distances
towards individual characterized by higher fitness. Local pollination on the other
hand occurs within limited range of individual flower thanks to pollination medi-
ators like wind or water. FPA for continuous optimization built on assumptions
presented above will be more strictly formulated in the subsequent part of this
Section.

The general goal of continuous optimization is to find x∗ which satisfies:

f(x∗) = min
x∈S

f(x), (1)

where S ⊂ RN , and f(x) constitutes solution’s x cost function value. Therefore
actual task of the optimizer is to find argument minimizing f .

To solve the optimization problem (1) the population of M individuals will
be used. It is represented by a set of N -dimensional vectors – equivalent to
individuals’ positions – within the iteration k denoted by:

x1(k), x2(k), ..., xM (k). (2)

The best position found by given individual m prior to iteration k is given by
x∗

m(k) with cost/fitness function value f(x∗

m(k)). At the same time:

x∗(k) = arg min
m=1,...,M

f(xm(k)), (3)

or
x∗(k) = arg max

m=1,...,M
f(xm(k)), (4)

corresponds to the best solution found by the algorithm in its k iterations, with
f(x∗(k)) representing its related cost (3) or fitness (4) function value. The for-
mula used depends on type of optimization task (minimization or maximization
of function f).

Flower Pollination Algorithm’s formal description using aforementioned no-
tation will be given below (as Algorithm 1). It can be seen that global pollination
occurs with probability p defined by so called switch probability. If this phase
is omitted local pollination takes place instead. The first one constitutes of pol-
linator’s movement towards best solution x∗(k) found by the algorithm, with s
representing N -dimensional step vector following a Lévy distribution :

L(s) ∼
λΓ (λ) sin(πλ/2)

πs1+λ
, (s ≫ s0 > 0), (5)

with Γ being the standard gamma function and parameters λ = 1.5, s0 = 0.1 as
suggested by Yang [11]. Practical method for drawing step sizes s following this
distribution by means of Mantegna algorithm are given in [13]. Local pollination
includes two randomly selected members of the population and is performed
via movement towards them, with randomly selected step size ǫ. Finally, the
algorithm is terminated when number of iteration k reaches predetermined limit
defined by K.
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Algorithm 1 Flower Pollination Algorithm

1: k ← 1 {initialization}
2: f(x∗(0)) ← ∞
3: for m = 1 to M do

4: Generate Solution(xm(k))
5: end for

6: {find best}
7: for m = 1 to M do

8: f(xm(k)) ← Evaluate quality(xm(k))
9: if f(xm(k)) < f(x∗(k − 1)) then

10: x∗(k) ← xm(k)
11: else

12: x∗(k) ← x∗(k − 1)
13: end if

14: end for

15: {main loop}
16: repeat

17: for m = 1 to M do

18: if Real Rand in (0, 1) < p then

19: {Global pollination}
20: s ← Levy(s0, γ)
21: xtrial ← xm(k) + s(x∗(k)− xm(k))
22: else

23: {Local pollination}
24: ǫ ← Real Rand in (0, 1)
25: r, q ← Integer Rand in(1,M)
26: xtrial ← xm(k) + ǫ(xq(k)− xr(k))
27: end if

28: {Check if new solution better}
29: f(xtrial) ← Evaluate quality(xtrial)
30: if f(xtrial) < f(xm(k)) then

31: xm(k) ← xtrial

32: f(xm(k)) ← f(xtrial)
33: end if

34: end for

35: {find best and copy population}
36: for m = 1 to M do

37: if f(xm(k)) < f(x∗(k − 1)) then

38: x∗(k) ← xm(k)
39: else

40: x∗(k) ← x∗(k − 1)
41: end if

42: f(x(k + 1)) ← f(xk)
43: x(k + 1) ← x(k)
44: end for

45: f(x∗(k + 1)) ← f(x∗k)
46: x∗(k + 1) ← x∗(k)
47: stop condition ← Check stop condition()
48: k ← k + 1
49: until stop condition = false

50: return f(x∗(k)), x∗(k), k
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Next Section of the paper will present results of conducted tests which were
aimed at exploring the performance of the Flower Pollination Algorithm in the
form being presented here extensively.

3 Experimental results

For computational experiments examining properties of the FPA set of bench-
mark problems already considered in CEC’13 competition was used [14]. Table 1
presents those functions along with their mathematical expressions, dimension-
ality and optimum values f∗.

Table 1: Benchmark functions used for experimental studies

f Name Expression Feasible
bounds

N f∗

f1 Sphere f1(x) =
∑N

i=1 z
2
i + f∗

1

z = x− o

[−100, 100]N 10 -1400

f2 Rotated Bent Cigar f2(x) = z21 + 106 ∑N
i=2 z

2
i + f∗

2

z = M2T
0.5
asy(M1(x− o))

[−100, 100]N 10 -1000

f3 Different Powers f3(x) =

√

∑N
i=1 |zi|

2+4 i−1
N−1 + f∗

3

z = x− o

[−100, 100]N 10 -1000

f4 Rotated Rastrigin f4(x) =
∑N

i=1 (z2i − 10 cos(2πzi) + 10) + f∗
4

z = M1Λ
10M2T

0.2
asy(Tosz(M1

5.12(x−o)
100

))

[−100, 100]N 10 -300

f5 Schwefel f5(x) = 418.9829N
∑N

i=1 g(zi) + f∗
5

z = Λ10( 1000(x−o)
100

) + 4.209687462275036 ∗ 102

g(zi) = zi sin(|zi|
1/2)

[−100, 100]N 10 -100

f6 Rotated Katsuura f6(x) = 10
N2

∏N
i=1(1+i

∑32
j=1

|2jzi−round(2jzi)|
2j

)
10

N1.2 − 10
N2 +f∗

6

z = M2Λ
100(M1

5(x−o)
100

)

[−100, 100]N 10 200

——–
Symbols:

o = x∗ the shifted global optimum , which is randomly distributed in [−80, 80]N ,
M1,M2 - orthogonal (rotation) matrix generated from standard normally distributed entries
by Gram-Schmidt orthonormalization.

Λα - a diagonal matrix in N dimensions with the ith diagonal element as λii = α
i−1

2(N−1) for i = 1, 2, ..., N .

T β
asy - if xi > 0, xi = x

1+β i−1
N−1

√
xi

i for i = 1, 2, ..., N .
Tosz - for xi = sign(xi) exp(x̂i + 0.049(sin(c1 x̂i) + sin(c2x̂i))) for i = 1, 2, ..., N .
where:
x̂i = log(|xi|) for xi 6= 0, otherwise x̂i = 0,
c1 = 10 if xi > 0, otherwise c1 = 5.5,
c2 = 7.9 if xi > 0, otherwise c2 = 3.1.

The experiments were conducted for fixed number of iterations K = 10000
(1000 ∗ N), and 30 trials for each function. As a performance measure mean
optimization error E(K) was used (with E(K) = |f(x∗(K)) − f∗|) along with
its standard deviation σE(K). We have also studied mean execution time t in
seconds needed for one algorithm’s run.
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First the influence of population size M was under investigation. We tested
FPA with M = {10, 20, 30, ..., 100} and p = 0.8 as suggested in [6]. Obviously,
as the algorithm is characterized by O(M) complexity, it is recommended to
limit population size if satisfactory outcomes are achieved for smaller M . It is
the case for unimodal functions f1, f2 and f3 where acceptable results were ob-
tained for 20 individuals. For multimodal functions it is recommended to further
increase population size, e.g. to 80 as significant improvement in optimization
performance is observed. It is illustrated by mean optimization error shown for
f5 and f6 on Fig. 1.

(a) Function f5 (b) Function f6

Fig. 1: Mean error values for varying population size

In the subsequent phase of numerical experiments we used M = 20 for f1,
f2, f3 and f4 and M = 80 for f5 and f6. During these tests suggested value
for switch probability p were under investigation. Most significant findings were
summarized in Table 2. It presents values of p which ensure minimum error value
in single run. It was established that for unimodal functions FPA provided op-
timum values regardless of p being used. It was noted however that higher value
of switch probability is recommended, as computational cost of the algorithm
is lower in this case. For multimodal problems best results can be achieved for
p ∈ [0.5, 0.8].

Table 2: Switch probability values ensuring min(E(K))

Function Minimum error for

f1 p={0.1,...,0.9}
f2 p={0.3,...,0.8}
f3 p={0.1,...,0.9}
f4 p=0.8
f5 p=0.5
f6 p=0.7
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Finally, experimental evaluation of algorithm’s performance in reference to
the standard Particle Swarm Optimization was performed. PSO variant with
constriction factor χ was used [2]. For parameter values χ = 0.72984 and c1 =
c2 = 2.05 were chosen [15]. Experiments were executed for the same population
sizes and switch probabilities established in previous tests. Mean error, its devi-
ation and minimum value along with execution time were under investigation.
Summary of obtained results is provided in Table 3.

It can be seen that FPA and PSO exhibit similar performance for selected
benchmark functions. The algorithm studied in this paper performs better for f2
and f4. Choice between PSO and FPA is not so obvious for f1, f3 and f6 where
indistinguishable performance differences were observed. PSO in turn would be
an apparent choice in case of f5 function.

Table 3: Performance comparison of Flower Pollination Algorithm and Particle
Swarm Optimization for selected benchmark functions

Function Algorithm E(K) σE(K) minE(K) t[s]

f1 FPA 0.00 0.00 0.00 3.69
PSO 0.00 0.00 0.00 2.88

f2 FPA 1.51 2.36 0.00 3.78
PSO 3288692 7359309 0.16 3.03

f3 FPA 0.00 0.00 0.00 3.72
PSO 0.00 0.00 0.00 2.91

f4 FPA 12.55 6.58 2.98 3.84
PSO 13.69 5.27 3.98 3.19

f5 FPA 227.78 70.78 39.02 18.78
PSO 130.30 80.71 0.31 7.96

f6 FPA 0.59 0.16 0.16 18.02
PSO 0.42 0.13 0.19 11.02

To illustrate the dynamics of both algorithms average error values obtained
for f4 function during 10000 iterations were enclosed on Figure 2. It can be seen
that in this case PSO converges faster in the first phase of the optimization
process. It stucks in the local minimum however and is outperformed by FPA in
the latter part of the process.

4 Conclusion

The paper examined novel nature-inspired metaheuristics of Flower Pollination
Algorithm. Besides its detailed description, experimental evaluation of its sensi-
tivity to parameter values and performance with regards to the Particle Swarm
Optimization were under consideration.
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Fig. 2: Average error values during 10000 iterations for PSO and FPA (function
f4, logarithmic scale)

We found that the initial variant of the algorithm – as introduced by Yang
– proved to be quite competitive even in comparison to the well-studied PSO.
Mechanisms of local and global exploration embedded within the algorithm are
complementary and allow the algorithm to effectively search the domain of opti-
mization problem at hand. What is more FPA is characterized by small number
of parameters which make it an attractive tool for real-life optimization prob-
lems, also multiobjective ones [11].

Further studies in the area of this contribution will concern, both studying
algorithm’s properties for more diverse set of benchmark instances as well as
assessing more sophisticated variant of FPA which will employ variable switch
probability. Those aspects are to be covered by the forthcoming follow-up paper
[16].
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