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Abstract—Dimensionality reduction constitutes a process of
selecting/extracting most important features from the initial
dataset to obtain its compact representation. It is commonly
required for a majority of large datasets tackled by contemporary
tools of data analysis. While a process of dimensionality reduction
usually creates more usable representation of given data set, it
may also result in perturbing relations between individual sample
elements. To overcome this problem indices of so called topology
preservation can be used. They may be employed in subsequent
data analysis tasks to reduce the impact of dataset’s structural
deformation. The paper studies selected dissimilarity measures
which can be used to construct these indices. We evaluate their
usability and performance for selected benchmark datasets and
data mining problems.

I. INTRODUCTION

CONTEMPORARY data analysis is dealing with complex
datasets characterized by huge volume, heterogeneous

structure and other methodological obstacles, like missing
values or the requirement of tedious data preprocessing [1].
Alleviating the problem of data dimensionality remains of
critical importance. It is due to inherent properties of highly
dimensional datasets referred in bibliography as “curse of
dimensionality” [2] and its grave impact on the result of data
analysis.

Conventionally a procedure of data dimensionality reduc-
tion is introduced to reduce the influence of aforementioned
phenomena. Let X to denote n×m data matrix:

X =
[
x1 x2 ... xm

]
. (1)

Each of n columns of this matrix will be referred later in this
paper as a feature and single row as a sample element or a case.
The aim of dimensionality reduction is a data transformation to
its new N×m sized form Y , where N is significantly smaller
than n. It is usually achieved through feature extraction, i.e.
construction of a new set of N features based on the initial
ones.

It can be deducted that the general goal of dimensional-
ity reduction is removing dataset’s redundant content. Still
concurrently a loss of important information carried within

its entries can be observed. In our previous contributions we
proposed to quantitatively evaluate dataset’s structural defor-
mation on per point basis using different preservation quality
indices [3], [4]. It allows to assess how well each element
of the dataset was relatively preserved by the dimensionality
reduction transformation. The goal of this paper is to study the
impact of underlying dissimilarity measure on the performance
of data analysis procedures employing topology preservation
indices in the reduced feature space.

The paper is organized as follows. Various topology preser-
vation indices already presented in our previous research are
covered in the following Section. It is ensued by a description
of dissimilarity metrics which were used to construct those
indices. The use of some of them, on per-element basis,
for selected data analysis procedures in the reduced feature
space is discussed in Section 4, along with some preliminary
experimental results given in Section 5. Finally, the last part
of the contribution contains some concluding remarks on the
introduced approach and planned further research.

II. TOPOLOGY PRESERVATION INDICES

Let d : Rn × Rn → [0,+∞) represent a dissimilarity
measure which quantifies the degree to which objects differ
from each other. It satisfies the conditions of nonnegativity,
reflexivity and symmetry. If additionally triangle inequality is
fulfilled the measure can be referred to as a distance or a
metric [5].

Let us denote dij as a dissimilarity between xi and xj
and δij as a corresponding dissimilarity in the reduced feature
space, i.e. between yi and yj . The quality of relative preser-
vation of the element i can then be evaluated with simple raw
stress used in many variants of Multidimensional Scaling [6]:

SRi =

m∑
j=1

(dij − δij)2 (2)



or with its normalized form provided by Sammon [7]:

SSi =
1∑m−1

i=1

∑m
j=i+1 dij

m∑
j=1

(dij − δij)2

dij
(3)

In many situations it is adequate to measure the preservation
of distances order rather than their exact values. Spearman’s
rho [8] can be used for that purpose as it estimates the
correlation of rank order data. This coefficient, in the context
of dimensionality reduction, can therefore indicate how well
the corresponding low-dimensional embedding preserves the
order of pairwise distances between the original data points
converted to ranks [3]. Spearman’s rho value equal to 1
is equivalent to perfect preservation of distances’ order (in
general ρSP ∈ [−1, 1]). For evaluating structural deformation
it’s modified non-negative ρ∗SPi

form will be used here. It is
calculated by using the following equation:

ρ∗SPi = 1− ρSPi =
6
∑m

p=1(r
i
pd
− ripδ)

2

M3 −M
(4)

where M = m(m − 1)/2 is a total number of distances
subjected to the comparison and ripd and ripδ represent ranks of
distances from p to the element i for both, initial and reduced
feature space.

Fourth measure, namely Mean Relative Rank Error (MRRE)
index, which is used in our research evaluates neighbourhood
graph preservation. Let Nk(xi) to represent a group of k-
nearest neighbors of xi, and Ri

jd
, Ri

jδ
be the ordered rank

of distances dij and δij respectively, defined for a set of all
distances between element i and a rest of the dataset. Then
MRRE on per-point basis is defined as follows:

MRREi =
1

C

∑
xj∈Nk(xi)

|Ri
jd
−Ri

jδ
|

Ri
jd

(5)

with the corresponding normalizing factor C:

C = m

k∑
p=1

|2p−m− 1|
p

(6)

which ensures that MRREi falls in [0, 1] range. We used
MRRE with k = 11 in our experiments.

The next Section of this contribution will discuss possible
dissimilarity measures which can be used to construct afore-
mentioned topology preservation indices.

III. SELECTED DISTANCE MEASURES

Traditional data mining algorithms employ the distance
measure defined by the Euclidean metric:

d(z, v) =

√√√√ n∑
i=1

(zi − vi)2, (7)

where z = (z1, . . . , zn) and z = (z1, . . . , zn).
As an alternative Manhattan distance defined by:

d(z, v) =

n∑
i=1

|zi − vi|, (8)

is also frequently used.
Fractional p-norm constitutes a generalization of (7-8) for-

mulated as follows:

d(z, v) =

(
n∑

i=1

‖zi − vi‖p
)1/p

, (9)

with p ∈ (0, 1). Such distance measures were found to perform
better for some instances of data mining problems in case of
multidimensional data [9]. In practical applications experimen-
tal determination of the exact value for p is recommended [10].

Finally cosine dissimilarity which is defined by:

d(z, v) = 1−
∑n

i=1 zivi√∑n
i=1 z

2
i

√∑n
i=1 v

2
i

, (10)

can be also used for evaluating the degree in which z and v
differ from each other. Cosine dissimilarity for z, v ∈ R+ is
bounded in [0, 1] that is why it is most commonly used in
high-dimensional positive spaces [11].

IV. TOPOLOGY PRESERVATION MEASURES FOR DATA
ANALYSIS IN THE REDUCED FEATURE SPACE

Indices presented in Section 2 (namely SRi , SSi , ρ
∗
SPi

and MRREi) can be treated as weights w∗i indicating the
adequacy of dataset’s element i after dimensionality reduc-
tion. Cases with higher weight might be perceived as more
adequate. Values of final weights wi ensuring useful property:

m∑
i=1

wi = m . (11)

are to be calculated using w∗i values and formula

wi =
m(w∗i )

−1∑m
i=1(w

∗
i )
−1 (12)

for i = 1, ...,m. If w∗i = 0 it should be replaced with
minj=1,...,m w∗j 6= 0.

Weights in such form can be used directly in data mining
procedures executed for datasets of reduced dimensionality.
However more invasive routine can be also applied. It involves
neglecting (by setting wi = 0) those cases for which wi falls
below elimination threshold W .

In our previous contribution [3] we have demonstrated how
the general weight-based scheme defined above can be utilized
for two standard data mining algorithms: clustering with K-
means procedure and nearest neighbour classification. In the
first case the influence of topology preservation ratio in the
reduced feature space can be included in the second stage
of clustering algorithm, i.e. establishing cluster centers. Sim-
ilarly modified nearest neighbor algorithm assigns calculated
weighted distance from the investigated element x̃ and assigns
it to a class which nearest neighbour of x̃ from the training
set belongs to.



V. EXPERIMENTAL RESULTS

To evaluate the impact of used dissimilarity measure on
the performance of data analysis procedures employing topol-
ogy preservation indices we performed experiments involving
clustering and classification of five reduced multidimensional
datasets taken from the UCI Machine Learning Repository
[12].

TABLE I
EXPERIMENTAL DATASETS DESCRIPTION

Dataset m n N Classes

glass 214 9 4 6
wine 178 13 5 3
WBC 683 9 4 2

vehicle 846 18 10 4
seeds 210 7 2 3

Dimensionality reduction was performed using Principal
Components Analysis. We used values of embedding dimen-
sion N established in previous experiments. All tests where
repeated 30 times.

The initial experiments were conducted to evaluate the
distribution of weight values calculated from (2-5) using
all dissimilarity measures described in Section 3. It was
computationally verified by setting W = 0.1, 0.2, ..., 1.5 and
observing the percentage (relative to the sample size m) of
dataset elements with weight values under W , labelled as
mel. The exemplary results of those studies for seeds dataset
and raw stress are shown on Figure 1. It can be seen for
this specific dataset that cosine dissimilarity measure yields
higher concentration of weights’ values. Not surprisingly for
all Minkowski metrics raw stress values distribution seems
similar, with Euclidean distance causing the occurrence of the
lowest values of weights. This would lead in this case to the
highest intensity of sample reduction when the option with
neglecting points having wi < W would have been chosen.
The specific shapes of these distributions differ, however the
main outcome remains the same for all datasets – chosen
dissimilarity measure severely affects the weights distribution.

The second phase of experiments concerned clustering and
classification. We used K-means clustering with its accuracy
measured using Rand index value IC calculated versus class
labels. Nearest-neighbour classification algorithm was used in
the second phase of experiments with average classifier accu-
racy IK during 5-fold cross validation under close scrutiny.
Mean and standard deviation of both performance indicators
are being reported here (in “mean ± standard deviation”
notation). Preliminary results for MRRE-based weights and
neglecting cases with wi < 0.4 are enclosed in Table 2.

Of investigated dissimilarity measures cosine coefficient
seems to be the best choice for most of studied datasets.
It offers stable, relatively high accuracy of both clustering
and classification across tested datasets. It may be also noted
however that using some dissimilarity measures for specific
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Fig. 1. Weights values distribution for seeds datasets and raw stress topology
preservation indicator

TABLE II
CLUSTER ANALYSIS AND CLASSIFICATION ACCURACY FOR MRRE-BASED

TOPOLOGY PRESERVATION INDEX AND W = 0.4

Dataset Euclidean Manhattan Minkowski Cosine

glass IC 68.6 69.9 70.8 69.8
±2.2 ±2.2 ±1.9 ±2.3

IK 62.0 62.2 62.2 61.5
±2.7 ±2.7 ±2.7 ±2.6

wine IC 70.8 71.2 71.3 71.3
±1.1 ±1.1 ±1.0 ±1.1

IK 67.6 68.8 68.7 72.3
±2.9 ±2.7 ±2.7 ±2.7

WBC IC 91.7 78.6 55.3 92.9
±0.7 ±12.8 ±3.5 0

IK 93.6 65.1 65.1 95.6
±1.0 ±1.5 ±1.5 ±0.7

vehicle IC 63.8 64.2 64.0 64.0
±1.9 ±1.8 ±1.7 ±2.1

IK 57.5 58.0 57.8 57.5
±1.5 ±1.5 ±1.5 ±1.6

seeds IC 86.3 87.4 87.0 87.6
±1.3 ±0.0 ±0.3 ±0.7

IK 89.7 88.9 89.3 89.6
±1.6 ±1.8 ±1.7 ±1.6

datasets (e.g. WBC) causes concentration of weights below
W = 0.4 and elimination of too many cases. It causes dramatic
decrease in the clustering/classification accuracy.

VI. CONCLUSION

Building up on our previous studies the paper examined the
impact of dissimilarity measures on the form and efficiency of
topology preservation indices used in data analysis procedures
for reduced feature space.

We found that the choice of dissimilarity measure is impor-
tant for the efficiency of those procedures. It not only affects
the distribution of synthesized weights but also their impact
on the performance of clustering/classification for the reduced
datasets.



It should be also noted that performed experiments gener-
ated huge amount of experimental data which has to be filtered
and analyzed more carefully. That is why this study is planned
to be enriched with more detailed analysis in the framework
of the forthcoming follow-up contribution.
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