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Abstract: Dealing with astronomical observations repre-
sents one of the most challenging areas of big data analyt-
ics. Besides huge variety of data types, dynamics related
to continuous data flow from multiple sources, handling
enormous data volume is of critical importance. The pa-
per overviews methods aimed at reducing both number of
features/attributes and data instances. It concentrates on
data mining approaches not related to instruments and
observation tools but working on processed object-based
data. The main goal of this article is to describe exist-
ing datasets on which algorithms are frequently tested,
to characterize and classify available data reduction al-
gorithms and identify promising solutions capable of ad-
dressing present and future challenges in astronomy.

Keywords: astronomy, big data, dimensionality reduc-
tion, feature extraction, data condensation

1 Introduction
Astronomy stands on the forefront of big data analyt-
ics. In the last decades it acquired tools which have en-
abled unprecedented growth in generated data and conse-
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quently – information which needs to be processed. It led
to the creation of two specific fields of scientific research:
astrostatistics, which applies statistics to the study and
analysis of astronomical data and astroinformatics, which
uses information/communications technologies to solve
the big data problems faced in astronomy [58].

Since the times of individual observations with ba-
sic optical instruments astronomy transformed into a do-
main employing more than 1900 observatories (Interna-
tional Astronomical Union code list currently holds 1984
records [23]). The sizes of catalogs of astronomical ob-
jects reach petabytes, and they may contain billions of
instances described by hundreds of parameters [14]. As
such, the obstacles of astronomical data analysis exem-
plify perfectly three main challenges of Big Data, namely
volume, velocity and variety (also known as 3Vs). The
first corresponds to both large number of instances and
characteristics (features), the second is related to dynam-
ics of the data flow and finally – variety stands for the
broad range of data types and data sources [17].

This paper summarizes research efforts in the first of
aforementioned domains. Its goal is to present techniques
aimed at alleviating problems of data dimensionality and
its numerosity from a data mining perspective as well as
to suggest suitable algorithms for upcoming challenges.
Data is seen here as a set of astronomical objects and their
properties (or their spectra). It means it is already pro-
cessed from raw signals/images typically present at the
instrument’s level. Similarly the term "reduction" corre-
sponds here purely to the transformation of object-based
data not to the transition of raw signals/images to science
ready data products. The latter can be composed of sev-
eral steps and in this context data reduction could refer
to several things: that raw images were processed, that
photometric measurements were performed using counts
stored in the pixels, that physical properties were ex-
tracted from spectra, etc.

In the first part of the paper, following this Intro-
duction, we try to emphasize the scale of the data anal-
ysis problems of contemporary observational astronomy.
We report on available datasets and knowledge discovery
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procedures. In the third Section an overview of feature
extraction/dimensionality reduction techniques is being
provided along with examples of their application for as-
tronomical data. The fourth Section is devoted to data
numerosity reduction and its specific utilization for visu-
alization of astronomical data. Both sampling and more
sophisticated approaches are also being addressed. Fi-
nally we suggest some existing algorithmic solutions for
astronomical data reduction problems, identify future
challenges in this domain and provide some concluding
remarks.

2 Data Volume Problem in
Observational Astronomy

The development of novel instruments used for produc-
ing astronomical data increases the data volume, gener-
ated each year, to double at Moore’s law pace, every year
[46]. That is why the essence of contemporary observa-
tional astronomy could be accurately described with the
metaphor of drinking water from the fire hose [49]. It
reflects the fact that data processing algorithms have to
deal with enormous amount of data – also on real-time ba-
sis [58]. Consequently data reduction occurs at low-level,
at signal/image processing phase to bring down the size of
transferred data. It typically involves removing noise, sig-
natures of the atmosphere and/or instrument and other
data contaminating factors. For examples of this type of
reduction one could refer to [15, 16, 44, 50].

Sky surveys represent the fundamental core of astron-
omy. Historically, making sky observations, plotting and
monitoring with the naked eye allowed significant devel-
opments to the astronomical science. Today both wide-
field surveys (large data sets obtained over areas of the
sky that may be at least of the order of 1% of the entire
Galaxy, e.g. see Gaia in Table 1) and deep surveys (aimed
at getting important informative content from only small
area of the galaxy but with significant depth) represent
keys to groundbreaking discoveries about the Universe.

Selected recent surveys frequently approached with
the use of data science tools are listed in Table 1. For a
more exhaustive list of astronomical surveys one can refer
to [9]. It can be noticed that the number of objects listed
– even for older projects – is huge. The dimensionality
of the datasets depends on appropriate data preprocess-
ing (e.g. frequency binning) but may reach thousands of
attributes.

The extraction of knowledge from such enormous
data sets is a highly complex task. Difficulties which may

Table 1. Selected sky surveys

Survey Institution Number of objects Type Time frame

Hipparcos European Space Agency 0.12M Optical 1989-1993
Tycho-2 European Space Agency 2.5M Optical 1989-1993
DPOSS Caltech 550M Optical 1950-1990
2MASS Univ. of Massachusetts, Caltech 300M Near-IR 1997-2001

Gaia European Space Agency 1000M Optical 2013-
SDSS Astrophysical Research Consortium 470M Optical 2000-
LSST LSST Corporation 4000M Optical 2019-

occur are mainly related to limits in efficiency of com-
puter systems – for large-sized samples – and problems
exclusively connected with the analysis of multidimen-
sional data. The latter arises mostly from a number of
phenomena occurring in data sets of this type, known in
literature as "the curse of multidimensionality". Above all,
this includes the exponential growth in sample size, nec-
essary to achieve appropriate effectiveness of data anal-
ysis methods with increasing dimension, as well as the
vanishing difference between near and far points (norm
concentration) using standard distance metrics [30].

Survey data can be explored with a variety of data
science techniques. First of all outlier detection which
is aimed at identifying elements which are atypical for
the whole dataset. In astronomy that technique is gener-
ally useful for discovering unusual, rare or unknown types
of astronomical objects or phenomena but also for data
preprocessing [59]. Another procedure is cluster analy-
sis which corresponds to such division of available data
elements into subgroups (clusters) where the elements be-
longing to each cluster are similar to each other and, on
the other hand, there exist a significant dissimilarity be-
tween different clusters’ elements [33]. Identifying galax-
ies or group of objects/galaxies are clustering tasks fre-
quently performed in astronomical data analysis [13, 26].
Clustering techniques can be also used for data reduc-
tion as it will be indicated in Section 5. Both detection of
outliers and clustering represent methods of unsupervised
learning which are supposed to find hidden structures and
relations among unlabeled data instances. Conversely, ob-
jects classification represents typical supervised learning
technique. Its goal is to assign each element to one of
the fixed classes, with a known set of labeled representa-
tive patterns. In astronomy it is predominantly used for
identifying object types [8, 47].

Algorithms aimed at solving all of aforementioned
problems are prone to negative effects from large data
size, which may make their execution ineffective or even
impossible. Besides applying new knowledge discovery
techniques, a variety of procedures for feature extraction
and data numerosity reduction can be used. They can be
oriented not only towards the specific data mining task
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but also to data visualization which is very important for
performing visual analytics on astronomical observations.
These methods will be covered in more detail in the fol-
lowing Sections.

3 Techniques of Feature
Extraction

Let us assume that the object-based dataset is repre-
sented by a matrix of dimension m× n:

X = [x1|x2|...|xm]T , (1)

with m rows representing data instances (objects) and n
columns – features or attributes of all objects. The aim
of reducing data dimensionality is to transform the data
matrix in order to obtain its new representation with di-
mension m×N , where N is considerably smaller than n.
The reduction can be achieved either by choosing N most
significant coordinates/features (i.e. through so called fea-
ture selection) or by means of constructing a reduced data
set, based on initial features (feature extraction) [24, 57].
The latter can be treated as more general since data se-
lection is a particularly simple case of extraction. It is
important to note that any reduction procedure can be
coupled with an underlying supervised learning technique
– where performance of the latter is being used to eval-
uate the quality of the data mapping. It is common that
dimensionality of astronomical data is being reduced to-
gether with the execution of classification algorithm.

Table 2 lists feature extraction methods commonly
used for astronomical data. Besides the algorithms’ names
and bibliographical references Table 2 also provides the
type of mapping, i.e. linear/nonlinear which states if the
resulting dataset is obtained through linear transforma-
tion of the initial one. In addition, the number of required
parameters – which is very important from a practical
point of view – was also included. All these methods along
with their applications in astronomy will be briefly pre-
sented below. Afterwards, we will also concisely present
feature selection techniques.

Table 2. Selected methods of dimensionality reduction used for
astronomical data

Method Linear Parameters References
Principal Component Analysis Yes – [27]

Kernel Principal Component Analysis No 1 [45]
Isomap No 1 [48]

Locally Linear Embedding No 1 [43]
Diffusion Maps No 2 [31]

Locality Preserving Projection Yes 1 [20]
Laplacian Eigenmaps No 2 [3]

The list of feature extraction algorithms should start
with Principal Component Analysis (PCA) as it is the
most commonly used dimensionality reduction method.
PCA relies on orthogonal linear transformation which
transforms the dataset into a new reduced, feature space,
characterized by the greatest variance of projected data
along new coordinate system axes. Practically the trans-
formation is represented by principal eigenvectors (or so
called principal components) of the standardized data
sample covariance matrix. PCA does not need significant
computational effort and requires only one input parame-
ter – dimensionality of reduced feature space N , which is
shared by the majority of dimensionality reduction pro-
cedures. The suggested value for N known as intrinsic di-
mensionality can be estimated however through the anal-
ysis of eigenvalues – it is a standard approach for estab-
lishing reduced number of features. PCA is widely used
for astronomical data. As an illustration one can name
the study on classification of galaxies from SDSS (Sloan
Digital Sky Survey) where PCA was not only used for
feature extraction but also obtaining 2D plots [36]. Be-
sides dimensionality reduction PCA has been also used,
for instance, to study the importance of features present
in the Hipparcos catalog [21].

Kernel PCA constitutes an important modification
of PCA by using the so called "kernel trick" [45]. Instead
of principal eigenvectors of the covariance matrix Ker-
nel PCA employs the eigenvectors of kernel matrix. It
is obtained by transforming the dataset using selected
positive-semi definite kernel function K. Choice of this
function can be considered as an input parameter (typi-
cally normal kernel can be used). Consequently Kernel
PCA benefits from a property of constructing nonlin-
ear mappings. It found successful applications in astron-
omy for supernovae photometric classification with near-
est neighbor classifier [25]. Its superiority over PCA for
specific datasets was also demonstrated therein.

Isomap is a dimensionality reduction algorithm based
on preserving pairwise geodesic (i.e. measured over the
manifold) distances between data points. It estimates
these distances with the shortest path between two points
in the neighbourhood graph. Every data point in this
graph is connected with its k neighbours, with k being
an Isomap parameter. Resulting pairwise geodesic dis-
tance matrix is then transformed using classical multidi-
mensional scaling [48]. Isomap was used for instance in
classification of stellar spectral subclasses in SDSS data
[5] and for discovering White Dwarf + Main Sequence for
the same survey [53]. In both cases as the classification
engine Support Vector Machine method was employed,
with the superiority of this solution over the one using
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PCA being demonstrated once more. A similar studies
devoted to outlier detection have also been carried out.

Local Linear Embedding (LLE) similarly to Isomap
starts with constructing a neighbourhood graph. However
LLE preserves only a local geometry of the manifold sur-
rounding each data element by representing it through a
linear combination – the so-called reconstruction weights
– of its k nearest neighbours (k has to be supplied as
a parameter). Technically low dimensional embedding is
obtained using eigenvectors (the ones corresponding to
the smallest non-zero eigenvalues) of the inner product
of reconstruction weight matrix W subtracted from the
identity matrix I [43]. LLE was employed for classification
of objects from SDSS using their spectra in [52]. Original
1000 dimensional sample was reduced to a three dimen-
sional subspace. As the algorithm is computationally ex-
pensive the paper also proposes a suitable data sampling
scheme.

Laplacian Eigenmaps is another technique aimed at
preserving local properties of the manifold. It uses ad-
ditional weights corresponding to the proximity index in
the set of k-nearest neighbours. It essentially means that
the highest contribution to the cost function comes from
the nearest neighbor. Establishing low dimensional em-
bedding is formulated again as the eigenvalue problem
through spectral graph theory [3]. Weights of the edges in
the neighbourhood graph are computed using the Gaus-
sian kernel function, therefore a supplementary parame-
ter, i.e. deviation of this function σ has to be provided.
Linear variant of this technique – Locality Preserving
Projections (LPP) can also be named [19, 20]. While LPP
has been already used with success for stellar spectral
classification based on SDSS data [61] the application of
Laplacian Eigenmaps for astronomical purposes was only
briefly demonstrated in the paper describing new machine
learning library named "megaman" [35].

Finally, Diffusion maps rely on Markov random walk
on the data represented by a graph [31]. It is based on ob-
taining so called diffusion distance which is related to the
proximity of the data elements. The proximity is calcu-
lated during random walks performed for a limited num-
ber of time steps. The goal of dimensionality reduction
is to preserve pairwise diffusion distances. The concept is
derived from the field of dynamic systems. The method
has been used, e.g. for predicting redshifts of galaxies in
SDSS data by means of robust regression [40] as well as
for the estimation of star formation history and supernova
light curve classification [32].

It was already indicated that one alternative to data
transformation is to select the most representative set of
features – which is known as feature selection. It can be

performed with filter methods like Relief [28] or Focus
[2]. Their aim is to rank available attributes according to
their informative content (or predictive power) and then
select the top ones. Another approach is to use a wrapper
approach. It involves iterative choice of feature subsets
based on their predictive power, with forward and back-
ward elimination being most popular procedures of this
class [56]. The first starts with empty feature set and iter-
atively adds useful attributes, the latter begins with the
full set and in each iteration reduces it according to an op-
timization criterion. For more detailed description of fea-
ture selection algorithms and demonstration of their ap-
plications for astronomical data (for customized database
of stars, galaxies, galactic nuclei as well as Catalina Real-
Time Transient Survey and the Kepler Mission datasets)
one could refer to [11, 60].

4 Methods of Instances
Reduction

As previously mentioned, the data set size can be reduced
to speed up data analysis calculations or make them at
all feasible [7]. For astronomical datasets it is frequently
used only to enable informative visualizations.

In the classical approach, data reduction is realized
mostly with sampling methods [38]. Uniform sampling
with or without replacement is the most widely used ap-
proach – also in astronomy. An example of its use can
be found in [12]. In this study sampling was used for
generating portion of data for which approximate prin-
cipal components were to be obtained. Subsequent anal-
ysis concerned outlier detection for 2MASS and SDSS
survey’s data. In [41] automated star/galaxy clustering
for digital sky data is under consideration. Randomly se-
lected data subsets are employed for generating starting
points for clustering procedures. A sample from the Dig-
itized Palomar Sky Survey (DPOSS) is used for exper-
imental verification. More specialized random sampling
strategies related to stratified sampling – preserving the
distribution of objects among classes – were also identi-
fied in the literature of the subject. For example, study
[1] concerning the classification of six million unresolved
photometric detections from SDSS survey obtained train-
ing data by supplementing random sample with under-
represented examples. With this approach well-know is-
sue with random sampling, namely: poor representation
of the sparsely represented examples is being alleviated.

Some specific data reduction procedures designed to
be used in conjunction with individual data mining tools
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can be also found in the astronomical domain, as demon-
strated in [54]. It uses kernel density estimation employ-
ing only a reduced, small percentage of the data sample
to form probabilistic models, for instance: modeling stars
distribution. For that purpose the whole data set is seg-
mented into hyper-balls with a fix radii, where each cell
is associated with a kernel and a mixture weight, and
subsequently the kernels are updated to fit the local dis-
tribution [54].

A variety of other methods were developed only for
visualization and visual analytics. They often do not per-
form strict reduction, which is understood as the elimina-
tion of data elements. They simply create new data con-
text consisting of selected data points which then may be
effectively visualized. Such selection can be done manu-
ally [6], using cubes or other geometric structures [39] or
based on distance from the viewpoint. More detailed re-
view of methods dealing with large astronomical datasets
only for the purpose of visualization can be found in [18].

5 Future Challenges and
Suggested Algorithms

Table 1 provided a brief list of sky surveys. It included
two which can be perceived as upcoming challenges: Gaia
and LSST. The amount of information being generated
by these project is overwhelming. LSST in one day will
generate one SDSS each night for 10 years [58]. Storing
data of this size and perform effective processing will not
be a minor problem. It will require careful data selection
and transformation aimed at enabling even simple data
mining tasks.

It was already pointed out that essentially two most
important features of data reduction algorithms – also in
the context of forthcoming sky surveys and data gener-
ated – are required. First, it is scalability – that is the abil-
ity to use the same procedure even for huge datasets. It is
essential to tackle datasets of ever-increasing size which
we may expect in the future. The second, it is the low
number of parameters required or their semi-automatic
adjustments. Taking into account significant computa-
tional costs associated with data mining for astronomical
data instances spending too much time on preliminary
experiments related to data reduction should be avoided.

To reduce the number of instances we propose here
to use a data condensation technique proposed by Mitra
et al [37]. It finds iteratively points with closest k-nearest
neighbor (the distance from which is denoted by rk) and
then adds it to the reduced dataset. Simultaneously the

point lying within a disc of radius 2 ∗ rk are eliminated.
As the procedure requires a lot of k-NN search and range
search operations using kd-trees was investigated to speed
up these search operations [4]. We will demonstrate here
the application of this approach for a compact version
of the Hipparcos dataset with 9 features and 60876 ob-
jects. For the reduction we use only spatial coordinates
of objects.

First we examined the scalability of the proposed so-
lution. Figure 1 demonstrate that its complexity was iden-
tified to be quadratic. It means that for desktop PC used
in the experiment running the algorithm for the dataset
of similar structure to Hipparcos, with m = 1000000,
k = 5 would take approximately 61 hours to process,
which seems acceptable.

Fig. 1. Scalability of Mitra et al. algorithm (Hipparcos dataset)

To measure the accuracy of data condensation ISE
(Integrated Square Error) values were also under investi-
gation. In general:

ISE(f̂(x)) =
∫

(f̂(x)− f(x))2dx (2)

Let us consider f(x) as an original probabilistic den-
sity function. Ideally it should be of analytic form describ-
ing the whole population. Here it will be represented by
an estimator obtained for the whole Hipparcos 3D sam-
ple, while f̂(x) will correspond to the same estimator con-
structed for the reduced dataset. Numerically the prob-
lem of calculating Integrated Square Error is then given
by:

ISE(f̂(x)) =
m∑

i=1
(f̂(xi)− f(xi))2 (3)

with xi being a sample element obtained from the original
dataset (at the same time m = 60876). It basically means
that we calculate an error at each sample element. We will
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then examine ISE in this form for three cases of data size
reduction, using the same condensation intensity: random
sampling (uniformly distributed), data condensation al-
gorithm investigated here and K-means clustering (with
cluster centers serving as new reduced sample elements).

Density estimates were calculated by means of a Ker-
nel Density Estimator:

ĝ(x) = 1
mhn

m∑
i=1

wiK(x− xi

h
). (4)

For approaches involving representing a group of points
as one point [(2) and (3)] we use weights wi equal to
the number of points in a cluster. For the experiments
Gaussian kernel was used and smoothing parameter h
was established using commonly used Silverman’s "rule of
thumb" [29]. As random sampling and K-means contain
randomized component we used 30 replicates and report
ISE mean and standard deviation. Figure 2 exhibits ob-
tained results. It may be noticed that k-means underper-
forms significantly. When considering random sampling
and data condensation in all cases it was the latter tech-
nique which offers better condensation quality. What is
more the relative difference in ISE values of both methods
grows – from 7% in case of k=5 to 26% in case of k = 20.
For k = 5 results of random sampling were worse than
data condensation for 22 replications of the experiment.
For k = 20 this factor grew to 27. To conclude, the pro-
posed approach offers reasonable time performance along
with cardinality reduction which preserves important in-
formative content of the dataset. What is more intuitive
is that parameter k allows to control the intensity of re-
duction.

Fig. 2. Integrated Square Error values obtained for probabilistic
density estimates of the reduced Hipparcos data set (Hipparcos
dataset)

As an alternative to condensation techniques other
clustering methods may be also employed (e.g. with ele-
ments closest to the cluster centers being preserved). The
main requirements in this case are the ability to form as-
pherical clusters and decent computational efficiency. As

an example of suitable algorithm the one demonstrated
in [42] can be named.

For dimensionality reduction we are suggesting to
experiment with the recent unsupervised algorithm of
t-SNE. It represents an improved variant of Stochastic
Neighbourhood Embedding (SNE) introduced by Hinton
and Roweis [22]. In general SNE techniques start with
calculating similarity matrices in both the original data
space and in the low-dimensional embedding space in a
way, that the similarities form a probability distribution
over pairs of objects [51]. The probabilities in t-SNE con-
sidered here are given by Student-t kernel computed from
the input data and from the embedding. The mapping by
itself is obtained by minimizing the Kullback-Leibler di-
vergence between the two probability distributions. It was
already demonstrated that t-SNE offers very-high qual-
ity mappings. For astronomical purposes the main con-
cern could be feasibility in terms of computational time.
That is why we evaluated algorithm’s complexity in its
Barnes-Hut variant [34] using the Hipparcos dataset. The
results displayed on Figure 3 prove that it truly offers
O(m logm) computational complexity as indicated in the-
oretical studies. It seems promising in terms of possible
applications in astronomy. A more exhaustive list of al-
ternative algorithms for dimensionality reduction can be
found in [10].

Fig. 3. Scalability of Barnes-Hut t-SNE algorithm (Hipparcos
dataset)

Finally it is worth to note that moving one step fur-
ther from using specific well-performing algorithms with
technical improvements (GPU and distributed comput-
ing, effective data representation etc.) is also possible. By
means of alternative computing paradigm new possibili-
ties of high-performance data mining might appear. First
experiments in quantum computing for knowledge dis-
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covery prove that its a promising direction which might
be used to tackle problems of future astronomical data
analysis [55].

6 Conclusion
The paper studied methods of data reduction in astron-
omy when processed object-based data is under consid-
eration. Besides presenting available techniques and their
applications we tried to demonstrate which solutions seem
more promising – also for future datasets obtained from
prospective sky surveys like Gaia or LSST. The problem
of discovering knowledge from astronomical datasets is
not trivial – besides issues of data size difficulties related
to data distribution and real-time character have to be
addressed. However the benefits and the amount of use-
ful information coming from astronomical data analysis
may have a tremendous impact on Space science. It can
be demonstrated by the fact that the Sloan Digital Sky
Survey, which has been a precursor of the field of As-
troinformatics, already gave foundation to thousands of
scientific publications [14]. To conclude it should be also
noted that the impact of contemporary data-oriented as-
tronomy is not limited to discovering the truth about the
Universe but also about finding a way to successfully nav-
igate through ever-present continuous streams of diverse
data.

Acknowledgment: This research was supported in part
by PL-Grid Infrastructure.
The contribution was co-funded by the European
Union from resources of the European Social Fund.
Project PO KL ”Information technologies: Research and
their interdisciplinary applications”, Agreement UDA-
POKL.04.01.01-00-051/10-00.
This work was partially funded by the Portuguese Agency
”Fundação para a Ciência e a Tecnologia” (FCT) in
the framework of project UID/EEA/00066/2013 and also
by the European Space Agency (ESA) under contract
4000112822/14/NL/JD of project GAVIDAV.

References
[1] S. Abraham et al. A photometric catalogue of quasars and

other point sources in the sloan digital sky survey. Monthly
Notices of the Royal Astronomical Society, 419:80–94, 2012.

[2] H. Almuallim and T. G. Dietterich. Learning with many
irrelevant features. In Proceedings of the Ninth National

Conference on Artificial Intelligence - Volume 2, AAAI’91,
pages 547–552. AAAI Press, 1991.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural Compu-
tation, 15:1373–1396, 2003.

[4] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509–517,
September 1975.

[5] Y. Bu, F. Chen, and J. Pan. Stellar spectral subclasses
classification based on isomap and {SVM}. New Astronomy,
28:35 – 43, 2014.

[6] R. Burgess, A. Falcão, T. Fernandes, R. A. Ribeiro,
M. Gomes, A. Krone-Martins, and A. M. de Almeida. Selec-
tion of large-scale 3d point cloud data using gesture recog-
nition. In M. Luis Camarinha-Matos, A. Thais Baldissera,
Giovanni Di Orio, and Francisco Marques, editors, Techno-
logical Innovation for Cloud-Based Engineering Systems: 6th
IFIP WG 5.5/SOCOLNET Doctoral Conference on Comput-
ing, Electrical and Industrial Systems, DoCEIS 2015, Costa
de Caparica, Portugal, April 13-15, 2015, Proceedings, pages
188–195. Springer International Publishing, Cham, 2015.

[7] I. Czarnowski and P. Jedrzejowicz. Application of agent-
based simulated annealing and tabu search procedures to
solving the data reduction problem. International Journal of
Applied Mathematics and Computer Science, 21(1):57–68,
2011.

[8] G. Dan, Z. Yan-Xia, and Z. Yong-Heng. Random forest al-
gorithm for classification of multiwavelength data. Research
in Astronomy and Astrophysics, 9(2):220, 2009.

[9] S. G. Djorgovski, A. Mahabal, A. Drake, M. Graham, and
C. Donalek. Sky Surveys. In T. D. Oswalt and H. E. Bond,
editors, Planets, Stars and Stellar Systems. Volume 2: Astro-
nomical Techniques, Software and Data, page 223. Springer,
2013.

[10] D. Domańska and S. Łukasik. Handling high-dimensional
data in air pollution forecasting tasks. Ecological Informat-
ics, 34:70 – 91, 2016.

[11] C. Donalek et al. Feature selection strategies for classifying
high dimensional astronomical data sets. In Big Data, 2013
IEEE International Conference on, pages 35–41, 2013.

[12] H. Dutta, C. Giannella, K. Borne, and H. Kargupta. Dis-
tributed Top-K Outlier Detection from Astronomy Cata-
logs using the DEMAC System, chapter 47, pages 473–478.
SIAM, 2005.

[13] K. Edwards and M. M. Gaber. Astronomy and Big Data: A
Data Clustering Approach to Identifying Uncertain Galaxy
Morphology. Springer Science & Business Media, April 2014.

[14] E. D. Feigelson and G. J. Babu. Big data in astronomy.
Significance, 9:22–25, 2012.

[15] H. C. Ferguson et al. Astronomical Data Reduction and
Analysis for the Next Decade. In astro2010: The Astronomy
and Astrophysics Decadal Survey, 2010. position paper no
15.

[16] W. Freudling et al. Automated data reduction workflows for
astronomy. The ESO Reflex environment. Astronomy and
Astrophysics, 559:A96, November 2013.

[17] L. Grandinetti, G.R. Joubert, and M. Kunze. Big Data and
High Performance Computing. IOS Press, 2015.

[18] A. Hassan and C. J. Fluke. Scientific visualization in astron-
omy: Towards the petascale astronomy era. PASA - Publica-



8 Szymon Łukasik et al., Survey of Data Reduction Techniques in Observational Astronomy

tions of the Astronomical Society of Australia, 28:150–170,
1 2011.

[19] X. He, D. Cai, S. Yan, and H.J. Zhang. Neighborhood
preserving embedding. In Proceedings of the 10th IEEE
International Conference on Computer Vision, pages 1208—-
1213. IEEE, 2005.

[20] X. He and P. Niyogi. Locality preserving projections. In
Advances in Neural Information Processing Systems, pages
153–160. MIT Press, Cambridge, 2003.

[21] M. Hernández-Pajares and J. Floris. Classification of
the hipparcos input catalogue using the kohonen net-
work. Monthly Notices of the Royal Astronomical Society,
268(2):444–450, 1994.

[22] G.E. Hinton and S.T. Roweis. Stochastic neighbor embed-
ding. In Advances in Neural Information Processing Systems,
volume 15, pages 833–840. The MIT Press, Cambridge,
2002.

[23] IAU list of observatory codes. http://www.
minorplanetcenter.net/iau/lists/ObsCodesF.html. accessed
Aug 15, 2016.

[24] I. Inza, P. Larranaga, R. Etxeberria, and B. Sierra. Feature
subset selection by bayesian network-based optimization.
Artificial Intelligence, 123(1–2):157–184, 2000.

[25] E. E. O. Ishida and R. S. de Souza. Kernel PCA for Type Ia
supernovae photometric classification. Monthly Notices of
the Royal Astronomical Society, 430:509–532, March 2013.

[26] W. Jang and M. Hendry. Cluster analysis of massive
datasets in astronomy. Statistics and Computing, 17(3):253–
262, 2007.

[27] I.T. Jolliffe. Principal Component Analysis. Springer, New
York, 2002.

[28] K. Kira and L. A. Rendell. The feature selection problem:
Traditional methods and a new algorithm. In Proceedings
of the Tenth National Conference on Artificial Intelligence,
AAAI’92, pages 129–134. AAAI Press, 1992.

[29] P. Kulczycki. Kernel estimators in industrial applications.
In Bhanu Prasad, editor, Soft Computing Applications in
Industry, pages 69–91. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[30] P. Kulczycki and S. Łukasik. An algorithm for reducing di-
mension and size of sample for data exploration procedures.
International Journal of Applied Mathematics and Computer
Science, 24:133–149, 2014.

[31] S. Lafon and A.B. Lee. Diffusion maps and coarse-graining:
a unified framework for dimensionality reduction, graph par-
titioning, and data set parameterization. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28(9):1393–
1403, 2006.

[32] A. B. Lee and P. E. Freeman. Exploiting non-linear struc-
ture in astronomical data for improved statistical inference.
In D. Eric Feigelson and Jogesh G. Babu, editors, Statis-
tical Challenges in Modern Astronomy V, pages 255–267.
Springer New York, New York, NY, 2012.

[33] S. Łukasik and P. Kulczycki. An algorithm for sample and
data dimensionality reduction using fast simulated annealing.
In Jie Tang, Irwin King, Ling Chen, and Jianyong Wang,
editors, Advanced Data Mining and Applications: 7th Inter-
national Conference, ADMA 2011, Beijing, China, December
17-19, 2011, Proceedings, Part I, pages 152–161. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[34] L. Maaten van der. Accelerating t-sne using tree-based
algorithms. Journal of Machine Learning Research, 15:3221–
3245, 2014.

[35] J. McQueen, M. Meila, J. VanderPlas, and Z. Zhang. mega-
man: Manifold Learning with Millions of points. ArXiv e-
prints, March 2016.

[36] A. Misra and S. J. Bus. Artificial Neural Network Classi-
fication of Asteroids in the Sloan Digital Sky Survey. In
AAS/Division for Planetary Sciences Meeting Abstracts
#40, volume 40 of Bulletin of the American Astronomical
Society, page 508, September 2008.

[37] P. Mitra, C.A. Murthy, and S.K. Pal. Density-based mul-
tiscale data condensation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24:734—-747, 2002.

[38] S. K. Pal and P. Mitra. Pattern Recognition Algorithms for
Data Mining. CRC Press, 2004.

[39] S. Perkins et al. Scalable desktop visualisation of very large
radio astronomy data cubes. New Astronomy, 30:1 – 7,
2014.

[40] J. W. Richards, P. E. Freeman, A. B. Lee, and C. M.
Schafer. Exploiting low-dimensional structure in astronomi-
cal spectra. The Astrophysical Journal, 691(1):32, 2009.

[41] D. M. Rocke and Jian Dai. Sampling and subsampling
for cluster analysis in data mining: With applications to
sky survey data. Data Mining and Knowledge Discovery,
7(2):215–232, 2003.

[42] A. Rodriguez and A. Laio. Clustering by fast search and find
of density peaks. Science, 344(6191):1492–1496, 2014.

[43] S. Roweis and L. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290:2323–2326, 2000.

[44] M. Schirmer. THELI: Convenient Reduction of Optical,
Near-infrared, and Mid-infrared Imaging Data. The Astro-
physical Journal Supplement Series, 209:21, December 2013.

[45] B. Schölkopf, A. Smola, and K.-R. Muller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural
Computation, 10:1299—-1319, 1998.

[46] A. Szalay and J. Gray. The world-wide telescope. Science,
293(5537):2037–2040, 2001.

[47] Cheng-Hsien Tang et al. Efficient Astronomical Data Classi-
fication on Large-Scale Distributed Systems, pages 430–440.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[48] J. Tenenbaum, V. de Silva, and J. Langford. A global ge-
ometric framework for nonlinear dimensionality reduction.
Science, 290:2319––2323, 2000.

[49] A. R. Thakar. The sloan digital sky survey: Drinking from
the fire hose. Computing in Science and Engineering,
10(1):9–12, 2008.

[50] F. G. Valdes. The Reduction of CCD Mosaic Data. In
R. Gupta, H. P. Singh, and C. A. L. Bailer-Jones, editors,
Automated Data Analysis in Astronomy, page 309, 2002.

[51] L.J.P. van der Maaten and G.E. Hinton. Visualizing high-
dimensional data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, 2008.

[52] J. Vanderplas and A. Connolly. Reducing the dimensionality
of data: Locally linear embedding of sloan galaxy spectra.
The Astronomical Journal, 138(5):1365, 2009.

[53] W. Wang, G. Guo, B. Jiang, and Y. Shi. Automatic classi-
fication for WDMS with Isomap and SVM. In Information
and Automation, 2015 IEEE International Conference on,
pages 1409–1413, Aug 2015.

http://www.minorplanetcenter.net/iau/lists/ObsCodesF.html
http://www.minorplanetcenter.net/iau/lists/ObsCodesF.html


Szymon Łukasik et al., Survey of Data Reduction Techniques in Observational Astronomy 9

[54] X. Wang, P. Tino, M. A. Fardal, S. Raychaudhury, and
A. Babul. Fast parzen window density estimator. In 2009
International Joint Conference on Neural Networks, pages
3267–3274, June 2009.

[55] P. Wittek. Quantum Machine Learning: What Quantum
Computing means for Data Mining. Academic Press, 2014.

[56] L. Xu and W.-J. Zhang. Comparison of different methods
for variable selection. Analytica Chimica Acta, 446(1–2):475
– 481, 2001. 7th International Conference on Chemometrics
and Analytical Chemistry Antwerp, Belgium, 16-20 October
2000.

[57] R. Xu and D.C. Wunsch. Clustering. Wiley, New Jersey,
2009.

[58] Y. Zhang and Y. Zhao. Astronomy in the Big Data Era.
Data Science Journal, 14:1–9, 2015.

[59] Y.-X. Zhang, A.-L. Luo, and Y.-H. Zhao. Outlier detection
in astronomical data. In P. J. Quinn and A. Bridger, edi-
tors, Optimizing Scientific Return for Astronomy through
Information Technologies, pages 521–529, 2004.

[60] H. Zheng and Y. Zhang. Feature selection for high-
dimensional data in astronomy. Advances in Space Research,
41(12):1960 – 1964, 2008.

[61] L. Zhong-bao. Stellar spectral classification with locality
preserving projections and support vector machine. Journal
of Astrophysics and Astronomy, 37(2):1–7, 2016.


	Survey of Object-Based Data Reduction Techniques in Observational Astronomy
	1 Introduction
	2 Data Volume Problem in Observational Astronomy
	3 Techniques of Feature Extraction
	4 Methods of Instances Reduction
	5 Future Challenges and Suggested Algorithms
	6 Conclusion


