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Abstract. In the course of the paper we recall the Markov model for
immunological Evolutionary Multi-Agent System. The model allows to
study dynamic features of the computation and increases understanding
the considered classes of systems. The main contribution of the paper
is the draft of the proof of the ergodicity feature of the Markov chain
modelling iEMAS dynamics.

1 Introduction

Certain heuristic system may never become one ultimate answer to solving all
possible optimisation problem [22]. On the other hand, when building complex
hybrid algorithms, an important question should be posed, does this system is
able to work at all? This is important, because complex search methods may
affect the ability to find all possible answers to the given problem, therefore
formal proving of certain features of the computation becomes an important
argument in the discussion of applicability of certain search methods.

The formal model presented by Vose [20] proved in the most simple, yet
effective way, asymptotic guarantee of success, i.e. “ability to find all local max-
imizers (minimizers) with probability 1 after infinite number of epochs” [18, 12,
15] in the analysis of the Simple Genetic Algorithm (SGA) behaviour, formally
confirming the possibility of using SGA for global optimisation. Formal mod-
els for genetic algorithms were also proposed by other researchers, providing a
deeper insight into the long term, steady state behaviour of large population EAs
[9, 19, 16] or modelling specific features of EAs such as selection, genetic drift,
niching etc. [10, 14, 11]. Many other, more complex, biologically-inspired com-
putational techniques were proposed (e.g. memetic systems, immune-inspired
systems), however, the problem of construction of appropriate mathematical
models and approaches at proving asymptotic guarantee of success do not seem
to be studied extensively or even were not undertaken at all.

In the course of paper we recall the basic features of the stochastic Markov
models already introduced in the works of Byrski et al. (e.g. [5, 17, 6]). We de-
fine the space of states, synchronisation mechanism, and we draw the prob-
ability transition function. The main contribution of the paper is a draft of



the sequence of actions proving the ergodicity of Markov chain constructed for
iEMAS (immunological Evolutionary Multi Agent System introduced by Byrski
and Kisiel-Dorohinicki [2]) by transferring the system between two arbitrarily
chosen states. The formal proof for EMAS (predecessor of iEMAS, being a gen-
eral optimisation system leveraging paradigms of evolutionary computation and
agency, introduced by Cetnarowicz [7]) ergodicity has already been submitted
for publication, we will follow with full proof of ergodicity of iEMAS in the near
future.

2 Evolutionary and Immunological Agent-Based
Computation

EMAS and iEMAS are general-purpose optimisation systems leveraging paradigms
of evolutionary computation and agency, following work of Cetnarowicz [7]) that
has already proven its efficiency for certain class of problems (see e.g., [4, 2, 3]).

In the simplest possible model of an evolutionary multi-agent system there
is one type of agents and one resource defined. Genotypes of agents represent
feasible solutions to the problem.
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Fig. 1. Evolutionary (EMAS) and immunological (iEMAS) multi-agent system

Energy is exchanged by agents in the process of evaluation. The agent in-
creases its energy when it finds out that one (e.g. randomly chosen) of its neigh-
bours, has lower fitness. In this case, the agent takes part of its neighbour’s
energy, otherwise, it passes part of its own energy to the evaluated neighbour.
The level of life energy triggers actions of death and reproduction (low energy
causes death while high energy makes reproduction possible). Attaining prede-
fined level of energy may lead an agent also to migrate from one evolutionary
island to another (see Fig. 1(a)).

Immune-inspired approaches were applied to many problems, such as clas-
sification or optimisation (e.g. [8]). The most often used algorithms of clonal



and negative selection correspond to their origin and are used in a variety of
applications [21].

The main idea of applying immunological inspirations to speed up the pro-
cess of selection in EMAS is based on the assumption that ‘bad’ phenotypes
come from ‘bad’ genotypes. Thus, a new group of agents (acting as lympho-
cyte T-cells) may be introduced [3]. They are responsible for recognising and
removing agents with genotypes similar to the genotype pattern possessed by
these lymphocytes. Another approach may introduce specific penalty applied by
T-cells for recognised agents (certain amount of the agent’s energy is removed)
instead of removing them from the system. The general structure of iEMAS
(immunological EMAS) is presented in Fig. 1(b).

Of course there must exist some predefined affinity (lymphocyte-agent match-
ing) function, which may be based, e.g., on the percentage difference between
corresponding genes. Agents-lymphocytes are created in the system after the ac-
tion of death. The late agent genotype is transformed into lymphocyte patterns
by means of mutation operator, and the newly created lymphocyte (or group of
lymphocytes) is introduced into the system.

In both cases, new lymphocytes must undergo the process of negative selec-
tion. In a specific period of time, the affinity of immature lymphocytes’ patterns
to ‘good’ agents (possessing relatively high amount of energy) is tested. If it is
high (lymphocytes recognize ‘good’ agents as ‘non-self’) they are removed from
the system. If the affinity is low, it is assumed that they will be able to recognize
‘non-self’ individuals (‘bad’ agents) leaving agents with high energy intact. The
life span of lymphocytes is controlled by specific, renewable resource (strength),
used as a counter by the lymphocyte agent (see Fig. 1(b)).

3 Agent-based management and synchronisation

We start considerations from evolutionary multi-agent systems solving global
optimisation problems (cf. [17]), which consist in finding all global minimizers of
a given nonnegative fitness function over a finite genetic universum U with car-
dinality r. EMAS agents belong to a predefined finite set Ag. Every active agent
is assigned to a location (evolutionary island) from the set Loc = {1, . . . , s}. The
locations are interconnected with channels along which agents can migrate. A
channel topology is given by a symmetric relation Top ⊂ Loc2.

Continuing considerations presented in e.g. [5, 17] we focus on the Immuno-
logically based Evolutionary Multi-Agent System (iEMAS) that contains (besides
dynamic collection of agents that belong to the predefined finite set Ag identical
to the one of EMAS) a dynamic collection of lymphocytes that belong to the
finite set Tc. Lymphocytes are unambiguously indexed by the genotypes from
U , so that #Tc = #U = r.

The lymphocytes have a similar structure as the agents previously defined,
however, their actions differ (because their goals differ from the agents’ goals)
and their total energy does not have to be constant.



iEMAS may be modeled as the following tuple:

< U, {Pi}i∈Loc, Loc, Top,Ag, {agseli}i∈Loc, locsel, {LAi}i∈Loc,MA, ω,Act,

{typeseli}i∈Loc, {tcseli}i∈Loc, T c, T cact > (1)

where:

– MA (master agent) is used to synchronize the work of the locations; it allows
to perform actions in particular locations. This agent is also used to introduce
necessary synchronisation into the system.

– locsel : X → M(Loc) is the function used by MA to determine which
location should be allowed to perform the next action,

– LAi (local agent) is assigned to each location; it is used to synchronize
the work of computational agents present in its location, LAi chooses the
computational agent and lets it evaluate a decision and perform the action,
at the same time asking MA whether this action may be performed.

– agseli : X → M(U × Pi) is a family of functions used by local agents to
select the agent that may perform the action, so every location i ∈ Loc has
its own function agseli.

– ω : X ×U →M(Act) is a function used by agents for selecting actions from
the set Act; both these symbols will be described later.

– Act is a predefined, finite set of actions.
– typeseli is a function used to select the type of agent in i-th location to

interact with the system in the current step,
– tcseli is used to choose a lymphocyte in i-th location to interact with the

system in the current step,
– ϕ is the decision function for lymphocytes,
– Tcact is a set of actions that may be performed by lymphocytes.

Hereafter M(Ω) shall stand for the space of probabilistic measures over Ω.
In order to design a Markov model of the system with relaxed synchronisa-

tion (i.e. such that agents present in different locations may act in parallel), a
timing mechanism must be introduced, i.e. all state changes must be assigned
to subsequent time moments t0, t1, . . ..

In Fig. 2 the scheme of the synchronisation mechanism built using agents,
LAi, i ∈ Loc and MA is presented.

The computational agent CA present in the location i in every observable
time moment chooses an action it wants to perform and asks its supervisor (local
agent LAi) for a permission to carry on. Then it suspends its work waiting for
the permission. When the permission is granted and the decision assigned to
the considered action is positive, the computational agent changes the state of
the location. Afterwards the agent suspends its work again in order to get a
permission to perform a subsequent action. The immunological agent TC works
in a similar way to CA, managing behaviour of a single lymphocyte.

The local agent LAi receives signals containing actions to be performed from
all its agents. Then chooses one computational agent which should try to perform
its action. This action is reported to the master agent MA and after receiving
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Fig. 2. Scheme of the synchronisation mechanism

permission, the computational agent can perform the action. All other agents
are stopped from performing their actions.

The master agent MA waits for all requests from location and then chooses
randomly one location. If this location asks for permission to perform global
action, then it is granted this permission and all other locations are rejected.
Otherwise all locations which asked for the permission to perform global action
are rejected and all those asking for permission to perform local action — are
granted.

4 System state

In this section we cite the description of EMAS state and extend it by adding a
matrix describing iEMAS state (following [17]).

4.1 EMAS state

Let us introduce the set of three-dimensional, incidence and energy matrices
x ∈ X with s layers (corresponding to all locations) x(i) = {x(i, gen, n), gen ∈
U, n ∈ Pi}, i ∈ Loc. The layer x(i) will contain energies of agents in i-th
location. In other words, if x(i, gen, k) > 0, it means that the k-th clone of the
agent containing the gene gen ∈ U is active, its energy equals x(i, gen, k) and it
is located in i-th location.

We introduce the following coherency conditions:

– (·, j, k)-th column contains at most one value greater than zero, which ex-
presses that the agent with k-th copy of j-th genotype may be present in
only one location at a time, whereas other agents containing copies of j-th
genotype may be present in other locations;

– incidence and energy matrices’ entries are non-negative x(i, j, k) ≥ 0, ∀ i =
1, . . . , s, j = 1, . . . , r, k = 1, . . . , p and

∑s
i=1

∑r
j=1

∑p
k=1 x(i, j, k) = 1,

which means that total energy contained in the whole system is constant,
equal to 1;



– each layer x(i) contains at most qi values greater than zero, which denotes
the maximum capacity of the i-th location, moreover, the quantum of energy
∆e is lower or equal than total energy divided by the maximal number of
individuals that may be present in the system ∆e ≤ 1∑s

i=1 qi
which allows us

to achieve maximal population of agents in the system;
– reasonable values of p should be greater or equal to 1 and less or equal to∑s

i=1 qi; we assume that p =
∑s
i=1 qi which assures that each configuration

of agents in locations is available, respecting the constrained total number
of active agents

∑s
i=1 qi; increasing p over this value does not enhance the

descriptive power of the presented model;
– the maximal number of copies for each location #Pi should not be less than
qi, because we want to allow a system state in which a particular location
is filled with clones of one agent; obviously increasing #Pi over qi is only a
formal constraint relaxation, so finally we assume that #Pi = qi.

Gathering all these conditions, the set of three-dimensional incidence and
energy matrices may be described in the following way.

Λ =
{
ince ∈ {0, ∆e, 2 ·∆e, 3 ·∆e, . . . ,m ·∆e}s·r·p, ∆e ·m = 1,

s∑
i=1

r∑
j=1

p∑
k=1

x(i, j, k) = 1,∀ i = 1, . . . , s :

r∑
j=1

p∑
k=1

[x(i, j, k) > 0] ≤ qi, (2)

∀ i = 1, . . . , s, j = 1, . . . , r, k /∈ Pi : x(i, j, k) = 0,

∀j = 1, . . . , r, k = 1, . . . , p :

s∑
i=1

[x(i, j, k) > 0] ≤ 1
}

where [·] denotes the value of the logical expression contained in the parentheses.

4.2 iEMAS state

In addition to the EMAS state describing the location and energy of agents
(see (4.1)), we need to consider a set of matrices containing similar information
for lymphocytes. Yet there is no need to assure the constant total energy for
lymphocytes. We describe this additional set of lymphocyte incidence and energy
matrices in the following way:

Γ =

{
tcince ∈ [0, ∆e, . . . , n ·∆e]r·s : ∀ i = 1, . . . , s

r∑
j=1

[tcince(i, j) > 0] ≤ tcqj

and ∀ j = 1, . . . , r

s∑
i=1

[tcince(i, j) > 0] ≤ 1

}
(3)

where tcince(i, j) stands for energy of tcj being active in the location i. The
integers tcqj , j = 1, . . . , s stand for the maximum number of lymphocytes in
particular locations. It is most convenient to assume tcqj = qj , ∀j = 1, . . . , s.

The space of iEMAS states is defined as follows:

X = Λ× Γ (4)



5 System behaviour

Let us denote by Xgen the subset of states in which there are active agents with
genotype gen ∈ U or an active lymphocyte.

5.1 EMAS behaviour

Each action α ∈ Act will be represented as the pair of function families
({δgenα }gen∈U , {ϑgenα }gen∈U ). The functions

δgenα : X → M({0, 1}) (5)

represent the decision to be taken: whether the action can be performed or not.
The action α is performed with the probability δgenα (x)(1) by the agent aggen,n
at the state x ∈ X and rejected with the probability δgenα (x)(0).

Next, the formula

ϑgenα : X →M(X) (6)

defines the non-deterministic state transition functions, so that ϑgenα is caused
by the execution of the action α by the agent aggen,n. Because the function is
invoked only if the agent in active, it is enough to define its restriction ϑgenα |Xgen

and take an arbitrary value on X \Xgen.

If any action is rejected, the trivial state transition

ϑnull : X →M(X) (7)

such that for all x ∈ X

ϑnull(x)(x′) =

{
1 if x = x′

0 otherwise
(8)

is performed.

The probability transition function for the action α performed by the agent
containing the genotype gen

%genα : X →M(X) (9)

is given by the formula

%genα (x)(x′) = δgenα (x)(0) · ϑnull(x)(x′) (10)

+δgenα (x)(1) · ϑgenα (x)(x′)

where x ∈ X denotes a current state and x′ ∈ X a consecutive state resulted
from the conditional execution of α.



5.2 iEMAS behaviour

We introduce the function typeseli choosing which type of agents will have the
possibility of performing the action:

typeseli : X →M({0, 1}) (11)

when 0 is chosen, one of the agents is activated, when 1 — the lymphocyte.

The function choosing which agent will be activated agseli is like in EMAS
but it now depends in some way on the extended state from X defined by (4).
Now we introduce a new function that will choose which lymphocyte will be
activated:

tcseli : X →M(Tc) (12)

The function ω choosing the action for the active agent remains intact, though
its domain changes (because of the new state definition, see (4)).

The function choosing the action for the active lymphocyte is the following:

ϕ : U ×X →M(Tcact) (13)

We will use the family of functions ηgenα : X → M(X) where gen ∈ U ,
α ∈ Tcact. Each of them expresses the probability transition imposed by the
lymphocyte tcgen that performs the action α ∈ Tcact. They are given by the
general formula:

ηgenα (x)(x′) = γα(gen, x)({0}) · ϑnull(x)(x′) + γα(gen, x)({1}) · κgen,nα (x)(x′)
(14)

The agents’ and lymphocytes’ actions may be divided into two distinct types:
global — they change the state of the system in two or more locations, so only
one global action may be performed at a time, local — they change the state of
the system inside one location respecting only the state of local agents, only one
local action for one location may be performed at a time.

Therefore we divide the Act set in the following way: Act = Actgl ∪ Actloc
and accordingly, Tcact : Tcact = Tcactgl ∪ Tcactloc. Speaking informally, local
actions (elements of Actloc, T cactloc) change only the entries of the layer x(i)
of the incidence and energy matrices if the location i ∈ Loc contains the agent
performing a certain action. Moreover, these actions do not depend on other
layers of x. The action null is obviously “the most local one”, because it does
not change anything at all.

In the case of EMAS and iEMAS, actions such as evaluation or lymphocyte
pattern matching may be perceived as local, at the same time action of migration
is perceived as global. The above-stated conditions may be defined formally and
may be used to prove commutativity of iEMAS (cf. [5, 17]), however here we skip
this proof because lack of space.



6 Parallel iEMAS dynamics

At the observable moment at which EMAS takes the state x ∈ X all agents in
all locations notify their local agents their intent to perform an action, all local
agents choose an agent with the distribution given by the agseli(x), i ∈ Loc
function and then notify the master agent of their intent to let perform an
action by one of their agents. The master agent chooses the location with the
probability distribution given by locsel(x).

We extend the model of EMAS dynamics in order to model the behaviour
of iEMAS. The probability that in the chosen location i ∈ Loc the agent or
lymphocyte wants to perform local action is as follows:

ξi(x) = typesel(x)({0})
∑
gen∈U

p∑
n=1

(agseli(x)({gen, n})

·ω(gen, x)(Actloc)) + typesel(x)({1}) (15)

The probability that the master agent will chose the location with the agent
intending to perform the local action is:

ζloc(x) =
∑
i∈Loc

locsel(x)({i})ξi(x) (16)

of course the probability of choosing the global action by the master agent is:

(1− ζloc(x)) = ζgl(x) (17)

If the global action is chosen, the state transition is given by:

τgl(x)(x′) =
∑
i∈Loc

locsel(x)({i}) ·

 ∑
gen∈U

p∑
n=1

agsel(x)({gen, n})·

 ∑
α∈Actgl

ω(gen, x)({α}) · %gen,nα (x)(x′)

 (18)

Let us state the set of action sequences containing at least one local action:

Act+1loc =

{
(α1, . . . , αs) ∈ (Act ∪ Tcact)s;

s∑
i=1

[αi ∈ (Actloc ∪ Tcact)] > 0

}
(19)

The probability that in i-th location the agent aggeni,ni
or the lymphocyte

tcg̃eni
chooses the action αi is given by:

µαi,geni,ni,g̃eni
(x) = typesel(x)({0}) · agseli(x)({geni, ni})ω(geni, x)({αi})+
typesel(x)({1})tcseli(x)({g̃eni})ϕ(g̃eni, x)({αi}) (20)



Let us define a multi-index:

ind = (α1, . . . , αs; (gen1, n1), . . . , (gens, ns); (g̃en1), . . . , (g̃ens)
)

∈ IND = (Act ∪ Tcact)s × (U × {1, . . . , p})s × Us (21)

the probability that in consecutive locations agents aggeni,ni
or lymphocytes

tcg̃eni
will choose the actions αi is given by:

µind(x) =

s∏
i=1

µαi,geni,ni,g̃eni
(x). (22)

Transition function for parallel system is following:

τ loc(x)(x′) =
∑

(α1,...,αs)∈Act+1loc

∑
ind∈IND

µind(x)(πind1 (x) ◦ , . . . , ◦πinds (x))(x′)

(23)

where πi is defined as:

πindi (x) =


%geni,ni
αi

(x), αi ∈ Actloc
ηg̃eni
αi

(x), αi ∈ Tcact
ϑnull, αi ∈ Actgl

(24)

The value of (πind1 (x) ◦ , . . . , ◦πinds (x))(x′) does not depend on the composition
order, because transition functions associated with local actions commutate pair-
wise (see 5.2) . Finally, we may derive the following observation.

Observation 1 The probability transition function for the parallel iEMAS model
is given by the formula

τ(x)(x′) = ζgl(x)τgl(x)(x′) + ζloc(x)τ loc(x)(x′) (25)

and formulas (15) – (24).

Observation 2 The stochastic state transition of iEMAS given by formula (25)
satisfies the Markov condition.

Proof. All transition functions and probability distributions given by formulas
(15)–(24) depend only on the current state of the system, which motivates the
Markovian features of the transition function τ given by (25). The transition
functions do not depend on the number of step at which is applied what motivates
the stationarity of the chain.

7 iEMAS ergodicity proof draft

In this section we present a draft of a proof of the ergodicity feature for the
Markov chain describing the behaviour of iEMAS.



Theorem 1. Assume that the following assumptions hold.

1. The migration energy threshold is lower than the total energy divided by the
number of locations emigr <

1
s . This assumption ensures that there will be at

least one location in the system in which an agent is capable of performing
migration (by gathering enough energy from its neighbors).

2. The quantum of energy is lower than or equal to the total energy divided
by the maximum number of agents that may be present in the system ∆e 6

1∑s
i=1 qi

. This assumption allows to achieve a maximal population of agents

in the system.
3. Reproduction (cloning) energy is lower than two energy quanta erepr 6 2∆e.
4. The amount of energy passed from parent to the child during cloning action

is equal to ∆e (so n1 = 1).
5. The maximum number of agents on every location is greater than one, qi >

1, i = 1, . . . , s.
6. Locations are totally connected, i.e. Top = Loc2.
7. Each active agent can be selected by its local agent with strictly positive

probability.
8. The families of probability distributions being the parameters of EMAS have

uniform, strictly positive lower bounds.

Then the Markov chain modeling iEMAS (see equation (25)) is irreducible, i.e.
all its states communicate.

In order to prove the Theorem 1, it is enough to show that the passage from
xb to xe (two arbitrarily chosen states from X) may be performed in a finite
number of steps with probability strictly greater then zero.

Let us consider the following sequence of stages.

– Stage 0: In every location in parallel: If the location is full, an agent is cho-
sen, and it performs sequentially evaluation action with one of its neighbors
in order to remove it (to make possible incoming migration from any other
location, in case this location is full). After removing one of its neighbors
the agent tries to perform any global action, e.g., migration (and fails), until
the end of the stage. Otherwise, the trivial null state transition is performed.
Final state of the Stage 0 is denoted by x0e.

– Stage 1 a: One location is chosen, at which the sum of agents’ energy
exceeds the migration threshold in the state x0e (based on assumption 1 of
Theorem 1 there must be at least one). Then one agent from this location
aggen1,n1 (possibly possessing the largest energy in the state x0e) is chosen.
This agent performs a sequence of evaluation actions in order to gather all
energy from all its neighbors, finally removing them from the system (by
bringing their energy to zero).

– Stage 1 b: If there are any lymphocytes on the current location, they per-
form killing action, one by one, on the agent aggen1,n1

, failing to remove it
from the system, until all lymphocytes are removed. In the end, only one
agent is present in the location.



– Stage 1 c: Now this agent begins the first migration round in order to visit
all locations and to remove the agents (overtaking their energy by performing
multiple get actions) and remove all lymphocytes. This round is finished at
location i1. Now, agent aggen1,n1 possesses the total energy of the system
which equals 1. Final state of the Stage 1 is denoted by x1e. Note, that the
state matrix has only one positive entry x1e(i1, gen1, n1) = 1.

– Stage 2 a: The agent performs cloning action producing one of the agents
(aggen2,n2

) that will be present on the location i2, one of the locations in
the state xe containing total energy greater than the migration threshold.
Now it passes all of its energy to this newly produced agent, finally being
removed from the system. The purpose of the Stage 2 is to ensure that the
agent recreating the population at the last location i2 will be one of the
agents present on this location in the state xe. Otherwise if i2 is full in the
state xe, aggen1,n1

could not recreate this population. If aggen1,n1
is active

at the location i2 at the state xe (i.e. xe(i2, gen1, n1) > 0), the Stage 2 may
be omitted (in this case aggen1,n1 takes the role of aggen2,n2 in the following
stages).

– Stage 3: Next, the agent aggen2,n2
begins the second migration round (start-

ing migration from the location i1) visiting all locations. In every visited
location it performs cloning action producing one of the agents that will
be present on this location in the state xe. The cloned agent on each non-
empty location (denoted by aggenfirst

i ,nfirst
i

) will receive the total energy that

should be assigned to its location, by the sequence of evaluation actions. The
agent finishes the migration after recreating the population on the location
i2 (one of the islands containing a total energy in the state xe greater than
the migration threshold).

– Stage 4 a: In the system, the following sequence of actions assigned with
the consecutive locations labeled by i ∈ Loc, non empty in the state xe, is
performed: every agent aggenfirst

i ,nfirst
i

perform a cloning action to produce

an agent with the genotype of one of lymphocytes existing in the location
in the state xe. Now it performs a sequence of evaluation action to remove
the agent (and the appropriate lymphocyte is performed). The lymphocyte
performs a sequence of energy lowering actions to adjust its energy to the
level observed in the state xe. This is repeated until all the lymphocytes
present in xe are recreated.

– Stage 4 b: In the system, the following sequence of actions assigned with
the consecutive locations labeled by i ∈ Loc, non empty in the state xe,
is performed: every agent aggenfirst

i ,nfirst
i

performs a sequence of cloning

actions, recreating the population of agents on its location in the state xe.

– Stage 5: In every location in parallel: agent aggenfirst
i ,nfirst

i
performs a se-

quence of evaluation actions with its neighbors in order to pass to them a
sufficient amount of energy, required in the state xe.

In the extended version of this paper we will show that every of aforemen-
tioned stages requires performing at most finite number of Markov chain steps



by estimating their upper bounds. Moreover, we will show, that every aforemen-
tioned sequences have non-zero probabilities by estimating its lower bounds.

Theorem 1 leads us straightforwardly to the statement that every possible
state of iEMAS is reachable (with positive probability) after performing a finite
sequence of transitions independently on the initial population. We can refor-
mulate such a conclusion in the following corollary.

Corollary 1. All states containing the extrema are reachable from an arbitrary
initial state. Thus iEMAS satisfies asymptotic guarantee of success in the sense
of [18, 12, 15].

The following theorem shows an additional feature of the considered Markov
chain.

Theorem 2. If the assumptions of Theorem 1 hold, then the Markov chain mod-
eling EMAS is aperiodic.

Proof. Let us consider a state of the chain such that every location contains
a single computational agent only. In this case let us assume that each agent
chooses evaluation as its next action. Because all agents have chosen local actions,
the master agent will allow them all to perform their actions, however the absence
of neighbors will force all the agents to perform the trivial (i.e. null) action. The
transition probability function is then the s-fold composition of ϑnull. Therefore
in this case the system will return to the same state in one step. The probability
of such transition is greater than zero. It means that the considered state is
aperiodic. Our chain is irreducible (see Theorem 1) and therefore it has only one
class of states, the whole state space, which obviously contains the considered
aperiodic state. On the other hand, from Theorem 2.2 of [13] we know that
aperiodicity is a state class property. In our case it means that all states of
EMAS are aperiodic, which concludes the proof.

The following corollary is a consequence of Theorems 1 and 2.

Corollary 2. The Markov chain modeling EMAS is ergodic.

Remark 1. It is worth noticing that the Markov chain (25) is ergodic in a strong
sense (not only irreducible, but also aperiodic). Such chains are quite often called
regular (see e.g. [13]).

Because the space of states X is finite we may introduce the probability
transition matrix:

Q = {τ(x)(y)}, x, y ∈ X (26)

where τ is the iEMAS probability transition function — see Eq. (25). The
Markov chain describing the iEMAS dynamics is a sequence of random variables
(or, equivalently, probability distributions) {ξt} ⊂ M(X), t = 0, 1, . . . where ξ0
should be a given initial probability distribution. Of course we have that

ξt+1 = Q · ξt, t = 0, 1, . . . (27)



Remark 2. From Theorems 1 and 2 as well as the ergodic theorem [1] there exists

a strictly positive limit ξ̂ ∈ M(X) (i.e., ξ̂(x) > 0,∀ x ∈ X) of the sequence
{ξt} as t → +∞. This equilibrium distribution does not depend on the initial
probability distribution ξ0.

8 Conclusions

In the course of this contribution, a formal model for iEMAS has been recalled
and adjusted for a discrete system state space. The space of states and the
transition functions allowing to construct a uniform Markov chain model have
been proposed. This model based on stationary Markov chains allows a better
understanding of the behaviour of the proposed complex systems as well as their
constraints.

One of the main implications of the analysis conducted here is the formulation
and proof draft of Theorem 1 stating that the Markov chain based model of
EMAS is stationary and ergodic. This will lead to an important conclusion stated
in Corollary 1, namely that EMAS possesses the feature of asymptotic guarantee
of success.

Ergodicity of Markov chain modelling iEMAS proves that this hybridization
does not hamper the capabilities of solving optimization problem in general,
the experimental results prove, that for certain problems with complex fitness
function (e.g., evolution of neural network parameters) employing iEMAS is
especially advantegeous.

A full formal proof for EMAS ergodicity has already been formulated and
submitted for publication. In the near future we will follow with preparing a
similar proof of iEMAS ergodicity.
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